qemu/gdbstub.c

1599 lines
40 KiB
C
Raw Normal View History

/*
* gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include "qemu.h"
#else
#include "qemu-common.h"
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
#endif
#include "qemu_socket.h"
#ifdef _WIN32
/* XXX: these constants may be independent of the host ones even for Unix */
#ifndef SIGTRAP
#define SIGTRAP 5
#endif
#ifndef SIGINT
#define SIGINT 2
#endif
#else
#include <signal.h>
#endif
//#define DEBUG_GDB
enum RSState {
RS_IDLE,
RS_GETLINE,
RS_CHKSUM1,
RS_CHKSUM2,
RS_SYSCALL,
};
typedef struct GDBState {
CPUState *env; /* current CPU */
enum RSState state; /* parsing state */
char line_buf[4096];
int line_buf_index;
int line_csum;
uint8_t last_packet[4100];
int last_packet_len;
int signal;
#ifdef CONFIG_USER_ONLY
int fd;
int running_state;
#else
CharDriverState *chr;
#endif
} GDBState;
/* By default use no IRQs and no timers while single stepping so as to
* make single stepping like an ICE HW step.
*/
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
#ifdef CONFIG_USER_ONLY
/* XXX: This is not thread safe. Do we care? */
static int gdbserver_fd = -1;
/* XXX: remove this hack. */
static GDBState gdbserver_state;
static int get_char(GDBState *s)
{
uint8_t ch;
int ret;
for(;;) {
ret = recv(s->fd, &ch, 1, 0);
if (ret < 0) {
if (errno == ECONNRESET)
s->fd = -1;
if (errno != EINTR && errno != EAGAIN)
return -1;
} else if (ret == 0) {
close(s->fd);
s->fd = -1;
return -1;
} else {
break;
}
}
return ch;
}
#endif
/* GDB stub state for use by semihosting syscalls. */
static GDBState *gdb_syscall_state;
static gdb_syscall_complete_cb gdb_current_syscall_cb;
enum {
GDB_SYS_UNKNOWN,
GDB_SYS_ENABLED,
GDB_SYS_DISABLED,
} gdb_syscall_mode;
/* If gdb is connected when the first semihosting syscall occurs then use
remote gdb syscalls. Otherwise use native file IO. */
int use_gdb_syscalls(void)
{
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
: GDB_SYS_DISABLED);
}
return gdb_syscall_mode == GDB_SYS_ENABLED;
}
/* Resume execution. */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
s->running_state = 1;
#else
vm_start();
#endif
}
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
{
#ifdef CONFIG_USER_ONLY
int ret;
while (len > 0) {
ret = send(s->fd, buf, len, 0);
if (ret < 0) {
if (errno != EINTR && errno != EAGAIN)
return;
} else {
buf += ret;
len -= ret;
}
}
#else
qemu_chr_write(s->chr, buf, len);
#endif
}
static inline int fromhex(int v)
{
if (v >= '0' && v <= '9')
return v - '0';
else if (v >= 'A' && v <= 'F')
return v - 'A' + 10;
else if (v >= 'a' && v <= 'f')
return v - 'a' + 10;
else
return 0;
}
static inline int tohex(int v)
{
if (v < 10)
return v + '0';
else
return v - 10 + 'a';
}
static void memtohex(char *buf, const uint8_t *mem, int len)
{
int i, c;
char *q;
q = buf;
for(i = 0; i < len; i++) {
c = mem[i];
*q++ = tohex(c >> 4);
*q++ = tohex(c & 0xf);
}
*q = '\0';
}
static void hextomem(uint8_t *mem, const char *buf, int len)
{
int i;
for(i = 0; i < len; i++) {
mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
buf += 2;
}
}
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
int len, csum, i;
uint8_t *p;
#ifdef DEBUG_GDB
printf("reply='%s'\n", buf);
#endif
for(;;) {
p = s->last_packet;
*(p++) = '$';
len = strlen(buf);
memcpy(p, buf, len);
p += len;
csum = 0;
for(i = 0; i < len; i++) {
csum += buf[i];
}
*(p++) = '#';
*(p++) = tohex((csum >> 4) & 0xf);
*(p++) = tohex((csum) & 0xf);
s->last_packet_len = p - s->last_packet;
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
#ifdef CONFIG_USER_ONLY
i = get_char(s);
if (i < 0)
return -1;
if (i == '+')
break;
#else
break;
#endif
}
return 0;
}
#if defined(TARGET_I386)
#ifdef TARGET_X86_64
static const uint8_t gdb_x86_64_regs[16] = {
R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
8, 9, 10, 11, 12, 13, 14, 15,
};
#endif
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
int i, fpus, nb_regs;
uint8_t *p;
p = mem_buf;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
nb_regs = 16;
for(i = 0; i < 16; i++) {
*(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
p += 8;
}
*(uint64_t *)p = tswap64(env->eip);
p += 8;
} else
#endif
{
nb_regs = 8;
for(i = 0; i < 8; i++) {
*(uint32_t *)p = tswap32(env->regs[i]);
p += 4;
}
*(uint32_t *)p = tswap32(env->eip);
p += 4;
}
*(uint32_t *)p = tswap32(env->eflags);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_CS].selector);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_SS].selector);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_DS].selector);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_ES].selector);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_FS].selector);
p += 4;
*(uint32_t *)p = tswap32(env->segs[R_GS].selector);
p += 4;
for(i = 0; i < 8; i++) {
/* XXX: convert floats */
#ifdef USE_X86LDOUBLE
memcpy(p, &env->fpregs[i], 10);
#else
memset(p, 0, 10);
#endif
p += 10;
}
*(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
p += 4;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
*(uint32_t *)p = tswap32(fpus); /* fstat */
p += 4;
*(uint32_t *)p = 0; /* ftag */
p += 4;
*(uint32_t *)p = 0; /* fiseg */
p += 4;
*(uint32_t *)p = 0; /* fioff */
p += 4;
*(uint32_t *)p = 0; /* foseg */
p += 4;
*(uint32_t *)p = 0; /* fooff */
p += 4;
*(uint32_t *)p = 0; /* fop */
p += 4;
for(i = 0; i < nb_regs; i++) {
*(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
p += 8;
*(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
p += 8;
}
*(uint32_t *)p = tswap32(env->mxcsr);
p += 4;
return p - mem_buf;
}
static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
int sreg)
{
const uint8_t *p;
uint32_t sel;
p = *pp;
sel = tswap32(*(uint32_t *)p);
p += 4;
if (sel != env->segs[sreg].selector) {
#if defined(CONFIG_USER_ONLY)
cpu_x86_load_seg(env, sreg, sel);
#else
/* XXX: do it with a debug function which does not raise an
exception */
#endif
}
*pp = p;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
const uint8_t *p = mem_buf;
int i, nb_regs;
uint16_t fpus;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
nb_regs = 16;
for(i = 0; i < 16; i++) {
env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
p += 8;
}
env->eip = tswap64(*(uint64_t *)p);
p += 8;
} else
#endif
{
nb_regs = 8;
for(i = 0; i < 8; i++) {
env->regs[i] = tswap32(*(uint32_t *)p);
p += 4;
}
env->eip = tswap32(*(uint32_t *)p);
p += 4;
}
env->eflags = tswap32(*(uint32_t *)p);
p += 4;
cpu_gdb_load_seg(env, &p, R_CS);
cpu_gdb_load_seg(env, &p, R_SS);
cpu_gdb_load_seg(env, &p, R_DS);
cpu_gdb_load_seg(env, &p, R_ES);
cpu_gdb_load_seg(env, &p, R_FS);
cpu_gdb_load_seg(env, &p, R_GS);
/* FPU state */
for(i = 0; i < 8; i++) {
/* XXX: convert floats */
#ifdef USE_X86LDOUBLE
memcpy(&env->fpregs[i], p, 10);
#endif
p += 10;
}
env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
p += 4;
fpus = tswap32(*(uint32_t *)p);
p += 4;
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
p += 4 * 6;
if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
/* SSE state */
for(i = 0; i < nb_regs; i++) {
env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
p += 8;
env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
p += 8;
}
env->mxcsr = tswap32(*(uint32_t *)p);
p += 4;
}
}
#elif defined (TARGET_PPC)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
uint32_t *registers = (uint32_t *)mem_buf, tmp;
int i;
/* fill in gprs */
for(i = 0; i < 32; i++) {
registers[i] = tswapl(env->gpr[i]);
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
}
/* nip, msr, ccr, lnk, ctr, xer, mq */
registers[96] = tswapl(env->nip);
registers[97] = tswapl(env->msr);
tmp = 0;
for (i = 0; i < 8; i++)
tmp |= env->crf[i] << (32 - ((i + 1) * 4));
registers[98] = tswapl(tmp);
registers[99] = tswapl(env->lr);
registers[100] = tswapl(env->ctr);
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
registers[101] = tswapl(ppc_load_xer(env));
registers[102] = 0;
return 103 * 4;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
uint32_t *registers = (uint32_t *)mem_buf;
int i;
/* fill in gprs */
for (i = 0; i < 32; i++) {
env->gpr[i] = tswapl(registers[i]);
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
*((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
*((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
}
/* nip, msr, ccr, lnk, ctr, xer, mq */
env->nip = tswapl(registers[96]);
ppc_store_msr(env, tswapl(registers[97]));
registers[98] = tswapl(registers[98]);
for (i = 0; i < 8; i++)
env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
env->lr = tswapl(registers[99]);
env->ctr = tswapl(registers[100]);
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
ppc_store_xer(env, tswapl(registers[101]));
}
#elif defined (TARGET_SPARC)
#ifdef TARGET_ABI32
#define tswap_abi(val) tswap32(val &0xffffffff)
#else
#define tswap_abi(val) tswapl(val)
#endif
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
#ifdef TARGET_ABI32
abi_ulong *registers = (abi_ulong *)mem_buf;
#else
target_ulong *registers = (target_ulong *)mem_buf;
#endif
int i;
/* fill in g0..g7 */
for(i = 0; i < 8; i++) {
registers[i] = tswap_abi(env->gregs[i]);
}
/* fill in register window */
for(i = 0; i < 24; i++) {
registers[i + 8] = tswap_abi(env->regwptr[i]);
}
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
/* fill in fprs */
for (i = 0; i < 32; i++) {
registers[i + 32] = tswap_abi(*((uint32_t *)&env->fpr[i]));
}
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
registers[64] = tswap_abi(env->y);
{
uint32_t tmp;
tmp = GET_PSR(env);
registers[65] = tswap32(tmp);
}
registers[66] = tswap_abi(env->wim);
registers[67] = tswap_abi(env->tbr);
registers[68] = tswap_abi(env->pc);
registers[69] = tswap_abi(env->npc);
registers[70] = tswap_abi(env->fsr);
registers[71] = 0; /* csr */
registers[72] = 0;
return 73 * sizeof(uint32_t);
#else
/* fill in fprs */
for (i = 0; i < 64; i += 2) {
uint64_t tmp;
tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
tmp |= *(uint32_t *)&env->fpr[i + 1];
registers[i / 2 + 32] = tswap64(tmp);
}
registers[64] = tswapl(env->pc);
registers[65] = tswapl(env->npc);
registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
((env->asi & 0xff) << 24) |
((env->pstate & 0xfff) << 8) |
GET_CWP64(env));
registers[67] = tswapl(env->fsr);
registers[68] = tswapl(env->fprs);
registers[69] = tswapl(env->y);
return 70 * sizeof(target_ulong);
#endif
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
#ifdef TARGET_ABI32
abi_ulong *registers = (abi_ulong *)mem_buf;
#else
target_ulong *registers = (target_ulong *)mem_buf;
#endif
int i;
/* fill in g0..g7 */
for(i = 0; i < 7; i++) {
env->gregs[i] = tswap_abi(registers[i]);
}
/* fill in register window */
for(i = 0; i < 24; i++) {
env->regwptr[i] = tswap_abi(registers[i + 8]);
}
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
/* fill in fprs */
for (i = 0; i < 32; i++) {
*((uint32_t *)&env->fpr[i]) = tswap_abi(registers[i + 32]);
}
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
env->y = tswap_abi(registers[64]);
PUT_PSR(env, tswap_abi(registers[65]));
env->wim = tswap_abi(registers[66]);
env->tbr = tswap_abi(registers[67]);
env->pc = tswap_abi(registers[68]);
env->npc = tswap_abi(registers[69]);
env->fsr = tswap_abi(registers[70]);
#else
for (i = 0; i < 64; i += 2) {
uint64_t tmp;
tmp = tswap64(registers[i / 2 + 32]);
*((uint32_t *)&env->fpr[i]) = tmp >> 32;
*((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
}
env->pc = tswapl(registers[64]);
env->npc = tswapl(registers[65]);
{
uint64_t tmp = tswapl(registers[66]);
PUT_CCR(env, tmp >> 32);
env->asi = (tmp >> 24) & 0xff;
env->pstate = (tmp >> 8) & 0xfff;
PUT_CWP64(env, tmp & 0xff);
}
env->fsr = tswapl(registers[67]);
env->fprs = tswapl(registers[68]);
env->y = tswapl(registers[69]);
#endif
}
#undef tswap_abi
#elif defined (TARGET_ARM)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
/* 16 core integer registers (4 bytes each). */
for (i = 0; i < 16; i++)
{
*(uint32_t *)ptr = tswapl(env->regs[i]);
ptr += 4;
}
/* 8 FPA registers (12 bytes each), FPS (4 bytes).
Not yet implemented. */
memset (ptr, 0, 8 * 12 + 4);
ptr += 8 * 12 + 4;
/* CPSR (4 bytes). */
*(uint32_t *)ptr = tswapl (cpsr_read(env));
ptr += 4;
return ptr - mem_buf;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
/* Core integer registers. */
for (i = 0; i < 16; i++)
{
env->regs[i] = tswapl(*(uint32_t *)ptr);
ptr += 4;
}
/* Ignore FPA regs and scr. */
ptr += 8 * 12 + 4;
cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
}
#elif defined (TARGET_M68K)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
int i;
uint8_t *ptr;
CPU_DoubleU u;
ptr = mem_buf;
/* D0-D7 */
for (i = 0; i < 8; i++) {
*(uint32_t *)ptr = tswapl(env->dregs[i]);
ptr += 4;
}
/* A0-A7 */
for (i = 0; i < 8; i++) {
*(uint32_t *)ptr = tswapl(env->aregs[i]);
ptr += 4;
}
*(uint32_t *)ptr = tswapl(env->sr);
ptr += 4;
*(uint32_t *)ptr = tswapl(env->pc);
ptr += 4;
/* F0-F7. The 68881/68040 have 12-bit extended precision registers.
ColdFire has 8-bit double precision registers. */
for (i = 0; i < 8; i++) {
u.d = env->fregs[i];
*(uint32_t *)ptr = tswap32(u.l.upper);
*(uint32_t *)ptr = tswap32(u.l.lower);
}
/* FP control regs (not implemented). */
memset (ptr, 0, 3 * 4);
ptr += 3 * 4;
return ptr - mem_buf;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
int i;
uint8_t *ptr;
CPU_DoubleU u;
ptr = mem_buf;
/* D0-D7 */
for (i = 0; i < 8; i++) {
env->dregs[i] = tswapl(*(uint32_t *)ptr);
ptr += 4;
}
/* A0-A7 */
for (i = 0; i < 8; i++) {
env->aregs[i] = tswapl(*(uint32_t *)ptr);
ptr += 4;
}
env->sr = tswapl(*(uint32_t *)ptr);
ptr += 4;
env->pc = tswapl(*(uint32_t *)ptr);
ptr += 4;
/* F0-F7. The 68881/68040 have 12-bit extended precision registers.
ColdFire has 8-bit double precision registers. */
for (i = 0; i < 8; i++) {
u.l.upper = tswap32(*(uint32_t *)ptr);
u.l.lower = tswap32(*(uint32_t *)ptr);
env->fregs[i] = u.d;
}
/* FP control regs (not implemented). */
ptr += 3 * 4;
}
#elif defined (TARGET_MIPS)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
for (i = 0; i < 32; i++)
{
*(target_ulong *)ptr = tswapl(env->active_tc.gpr[i]);
ptr += sizeof(target_ulong);
}
*(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = tswapl(env->active_tc.LO[0]);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = tswapl(env->active_tc.HI[0]);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = tswapl(env->active_tc.PC);
ptr += sizeof(target_ulong);
if (env->CP0_Config1 & (1 << CP0C1_FP))
{
for (i = 0; i < 32; i++)
{
if (env->CP0_Status & (1 << CP0St_FR))
*(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
else
*(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
ptr += sizeof(target_ulong);
}
*(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
ptr += sizeof(target_ulong);
*(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
ptr += sizeof(target_ulong);
}
/* "fp", pseudo frame pointer. Not yet implemented in gdb. */
*(target_ulong *)ptr = 0;
ptr += sizeof(target_ulong);
/* Registers for embedded use, we just pad them. */
for (i = 0; i < 16; i++)
{
*(target_ulong *)ptr = 0;
ptr += sizeof(target_ulong);
}
/* Processor ID. */
*(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
ptr += sizeof(target_ulong);
return ptr - mem_buf;
}
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
{
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
#define RESTORE_ROUNDING_MODE \
set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
for (i = 0; i < 32; i++)
{
env->active_tc.gpr[i] = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
}
env->CP0_Status = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
env->active_tc.LO[0] = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
env->active_tc.HI[0] = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
env->CP0_Cause = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
env->active_tc.PC = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
if (env->CP0_Config1 & (1 << CP0C1_FP))
{
for (i = 0; i < 32; i++)
{
if (env->CP0_Status & (1 << CP0St_FR))
env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
else
env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
ptr += sizeof(target_ulong);
}
env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
ptr += sizeof(target_ulong);
/* The remaining registers are assumed to be read-only. */
/* set rounding mode */
RESTORE_ROUNDING_MODE;
#ifndef CONFIG_SOFTFLOAT
/* no floating point exception for native float */
SET_FP_ENABLE(env->fcr31, 0);
#endif
}
}
#elif defined (TARGET_SH4)
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
uint32_t *ptr = (uint32_t *)mem_buf;
int i;
#define SAVE(x) *ptr++=tswapl(x)
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
} else {
for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
}
for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
SAVE (env->pc);
SAVE (env->pr);
SAVE (env->gbr);
SAVE (env->vbr);
SAVE (env->mach);
SAVE (env->macl);
SAVE (env->sr);
SAVE (env->fpul);
SAVE (env->fpscr);
for (i = 0; i < 16; i++)
SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
SAVE (env->ssr);
SAVE (env->spc);
for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
return ((uint8_t *)ptr - mem_buf);
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
uint32_t *ptr = (uint32_t *)mem_buf;
int i;
#define LOAD(x) (x)=*ptr++;
if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
} else {
for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
}
for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
LOAD (env->pc);
LOAD (env->pr);
LOAD (env->gbr);
LOAD (env->vbr);
LOAD (env->mach);
LOAD (env->macl);
LOAD (env->sr);
LOAD (env->fpul);
LOAD (env->fpscr);
for (i = 0; i < 16; i++)
LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
LOAD (env->ssr);
LOAD (env->spc);
for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
}
#elif defined (TARGET_CRIS)
static int cris_save_32 (unsigned char *d, uint32_t value)
{
*d++ = (value);
*d++ = (value >>= 8);
*d++ = (value >>= 8);
*d++ = (value >>= 8);
return 4;
}
static int cris_save_16 (unsigned char *d, uint32_t value)
{
*d++ = (value);
*d++ = (value >>= 8);
return 2;
}
static int cris_save_8 (unsigned char *d, uint32_t value)
{
*d++ = (value);
return 1;
}
/* FIXME: this will bug on archs not supporting unaligned word accesses. */
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
uint8_t *ptr = mem_buf;
uint8_t srs;
int i;
for (i = 0; i < 16; i++)
ptr += cris_save_32 (ptr, env->regs[i]);
srs = env->pregs[PR_SRS];
ptr += cris_save_8 (ptr, env->pregs[0]);
ptr += cris_save_8 (ptr, env->pregs[1]);
ptr += cris_save_32 (ptr, env->pregs[2]);
ptr += cris_save_8 (ptr, srs);
ptr += cris_save_16 (ptr, env->pregs[4]);
for (i = 5; i < 16; i++)
ptr += cris_save_32 (ptr, env->pregs[i]);
ptr += cris_save_32 (ptr, env->pc);
for (i = 0; i < 16; i++)
ptr += cris_save_32 (ptr, env->sregs[srs][i]);
return ((uint8_t *)ptr - mem_buf);
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
uint32_t *ptr = (uint32_t *)mem_buf;
int i;
#define LOAD(x) (x)=*ptr++;
for (i = 0; i < 16; i++) LOAD(env->regs[i]);
LOAD (env->pc);
}
#else
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
return 0;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
}
#endif
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
{
const char *p;
int ch, reg_size, type;
char buf[4096];
uint8_t mem_buf[4096];
uint32_t *registers;
target_ulong addr, len;
#ifdef DEBUG_GDB
printf("command='%s'\n", line_buf);
#endif
p = line_buf;
ch = *p++;
switch(ch) {
case '?':
/* TODO: Make this return the correct value for user-mode. */
snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
put_packet(s, buf);
/* Remove all the breakpoints when this query is issued,
* because gdb is doing and initial connect and the state
* should be cleaned up.
*/
cpu_breakpoint_remove_all(env);
cpu_watchpoint_remove_all(env);
break;
case 'c':
if (*p != '\0') {
addr = strtoull(p, (char **)&p, 16);
#if defined(TARGET_I386)
env->eip = addr;
#elif defined (TARGET_PPC)
env->nip = addr;
#elif defined (TARGET_SPARC)
env->pc = addr;
env->npc = addr + 4;
#elif defined (TARGET_ARM)
env->regs[15] = addr;
#elif defined (TARGET_SH4)
env->pc = addr;
#elif defined (TARGET_MIPS)
env->active_tc.PC = addr;
#elif defined (TARGET_CRIS)
env->pc = addr;
#endif
}
gdb_continue(s);
return RS_IDLE;
case 'C':
s->signal = strtoul(p, (char **)&p, 16);
gdb_continue(s);
return RS_IDLE;
case 'k':
/* Kill the target */
fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
exit(0);
case 'D':
/* Detach packet */
cpu_breakpoint_remove_all(env);
cpu_watchpoint_remove_all(env);
gdb_continue(s);
put_packet(s, "OK");
break;
case 's':
if (*p != '\0') {
addr = strtoull(p, (char **)&p, 16);
#if defined(TARGET_I386)
env->eip = addr;
#elif defined (TARGET_PPC)
env->nip = addr;
#elif defined (TARGET_SPARC)
env->pc = addr;
env->npc = addr + 4;
#elif defined (TARGET_ARM)
env->regs[15] = addr;
#elif defined (TARGET_SH4)
env->pc = addr;
#elif defined (TARGET_MIPS)
env->active_tc.PC = addr;
#elif defined (TARGET_CRIS)
env->pc = addr;
#endif
}
cpu_single_step(env, sstep_flags);
gdb_continue(s);
return RS_IDLE;
case 'F':
{
target_ulong ret;
target_ulong err;
ret = strtoull(p, (char **)&p, 16);
if (*p == ',') {
p++;
err = strtoull(p, (char **)&p, 16);
} else {
err = 0;
}
if (*p == ',')
p++;
type = *p;
if (gdb_current_syscall_cb)
gdb_current_syscall_cb(s->env, ret, err);
if (type == 'C') {
put_packet(s, "T02");
} else {
gdb_continue(s);
}
}
break;
case 'g':
reg_size = cpu_gdb_read_registers(env, mem_buf);
memtohex(buf, mem_buf, reg_size);
put_packet(s, buf);
break;
case 'G':
registers = (void *)mem_buf;
len = strlen(p) / 2;
hextomem((uint8_t *)registers, p, len);
cpu_gdb_write_registers(env, mem_buf, len);
put_packet(s, "OK");
break;
case 'm':
addr = strtoull(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoull(p, NULL, 16);
if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
put_packet (s, "E14");
} else {
memtohex(buf, mem_buf, len);
put_packet(s, buf);
}
break;
case 'M':
addr = strtoull(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoull(p, (char **)&p, 16);
if (*p == ':')
p++;
hextomem(mem_buf, p, len);
if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
put_packet(s, "E14");
else
put_packet(s, "OK");
break;
case 'Z':
type = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
addr = strtoull(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoull(p, (char **)&p, 16);
switch (type) {
case 0:
case 1:
if (cpu_breakpoint_insert(env, addr) < 0)
goto breakpoint_error;
put_packet(s, "OK");
break;
#ifndef CONFIG_USER_ONLY
case 2:
type = PAGE_WRITE;
goto insert_watchpoint;
case 3:
type = PAGE_READ;
goto insert_watchpoint;
case 4:
type = PAGE_READ | PAGE_WRITE;
insert_watchpoint:
if (cpu_watchpoint_insert(env, addr, type) < 0)
goto breakpoint_error;
put_packet(s, "OK");
break;
#endif
default:
put_packet(s, "");
break;
}
break;
breakpoint_error:
put_packet(s, "E22");
break;
case 'z':
type = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
addr = strtoull(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoull(p, (char **)&p, 16);
if (type == 0 || type == 1) {
cpu_breakpoint_remove(env, addr);
put_packet(s, "OK");
#ifndef CONFIG_USER_ONLY
} else if (type >= 2 || type <= 4) {
cpu_watchpoint_remove(env, addr);
put_packet(s, "OK");
#endif
} else {
put_packet(s, "");
}
break;
case 'q':
case 'Q':
/* parse any 'q' packets here */
if (!strcmp(p,"qemu.sstepbits")) {
/* Query Breakpoint bit definitions */
snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
SSTEP_ENABLE,
SSTEP_NOIRQ,
SSTEP_NOTIMER);
put_packet(s, buf);
break;
} else if (strncmp(p,"qemu.sstep",10) == 0) {
/* Display or change the sstep_flags */
p += 10;
if (*p != '=') {
/* Display current setting */
snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
put_packet(s, buf);
break;
}
p++;
type = strtoul(p, (char **)&p, 16);
sstep_flags = type;
put_packet(s, "OK");
break;
}
#ifdef CONFIG_LINUX_USER
else if (strncmp(p, "Offsets", 7) == 0) {
TaskState *ts = env->opaque;
snprintf(buf, sizeof(buf),
"Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
";Bss=" TARGET_ABI_FMT_lx,
ts->info->code_offset,
ts->info->data_offset,
ts->info->data_offset);
put_packet(s, buf);
break;
}
#endif
/* Fall through. */
default:
/* put empty packet */
buf[0] = '\0';
put_packet(s, buf);
break;
}
return RS_IDLE;
}
extern void tb_flush(CPUState *env);
#ifndef CONFIG_USER_ONLY
static void gdb_vm_stopped(void *opaque, int reason)
{
GDBState *s = opaque;
char buf[256];
int ret;
if (s->state == RS_SYSCALL)
return;
/* disable single step if it was enable */
cpu_single_step(s->env, 0);
if (reason == EXCP_DEBUG) {
if (s->env->watchpoint_hit) {
snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
SIGTRAP,
s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
put_packet(s, buf);
s->env->watchpoint_hit = 0;
return;
}
tb_flush(s->env);
ret = SIGTRAP;
} else if (reason == EXCP_INTERRUPT) {
ret = SIGINT;
} else {
ret = 0;
}
snprintf(buf, sizeof(buf), "S%02x", ret);
put_packet(s, buf);
}
#endif
/* Send a gdb syscall request.
This accepts limited printf-style format specifiers, specifically:
%x - target_ulong argument printed in hex.
%lx - 64-bit argument printed in hex.
%s - string pointer (target_ulong) and length (int) pair. */
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
{
va_list va;
char buf[256];
char *p;
target_ulong addr;
uint64_t i64;
GDBState *s;
s = gdb_syscall_state;
if (!s)
return;
gdb_current_syscall_cb = cb;
s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
vm_stop(EXCP_DEBUG);
#endif
s->state = RS_IDLE;
va_start(va, fmt);
p = buf;
*(p++) = 'F';
while (*fmt) {
if (*fmt == '%') {
fmt++;
switch (*fmt++) {
case 'x':
addr = va_arg(va, target_ulong);
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
break;
case 'l':
if (*(fmt++) != 'x')
goto bad_format;
i64 = va_arg(va, uint64_t);
p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
break;
case 's':
addr = va_arg(va, target_ulong);
p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
addr, va_arg(va, int));
break;
default:
bad_format:
fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
fmt - 1);
break;
}
} else {
*(p++) = *(fmt++);
}
}
*p = 0;
va_end(va);
put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
gdb_handlesig(s->env, 0);
#else
cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
#endif
}
static void gdb_read_byte(GDBState *s, int ch)
{
CPUState *env = s->env;
int i, csum;
uint8_t reply;
#ifndef CONFIG_USER_ONLY
if (s->last_packet_len) {
/* Waiting for a response to the last packet. If we see the start
of a new command then abandon the previous response. */
if (ch == '-') {
#ifdef DEBUG_GDB
printf("Got NACK, retransmitting\n");
#endif
put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
}
#ifdef DEBUG_GDB
else if (ch == '+')
printf("Got ACK\n");
else
printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
if (ch == '+' || ch == '$')
s->last_packet_len = 0;
if (ch != '$')
return;
}
if (vm_running) {
/* when the CPU is running, we cannot do anything except stop
it when receiving a char */
vm_stop(EXCP_INTERRUPT);
} else
#endif
{
switch(s->state) {
case RS_IDLE:
if (ch == '$') {
s->line_buf_index = 0;
s->state = RS_GETLINE;
}
break;
case RS_GETLINE:
if (ch == '#') {
s->state = RS_CHKSUM1;
} else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
s->state = RS_IDLE;
} else {
s->line_buf[s->line_buf_index++] = ch;
}
break;
case RS_CHKSUM1:
s->line_buf[s->line_buf_index] = '\0';
s->line_csum = fromhex(ch) << 4;
s->state = RS_CHKSUM2;
break;
case RS_CHKSUM2:
s->line_csum |= fromhex(ch);
csum = 0;
for(i = 0; i < s->line_buf_index; i++) {
csum += s->line_buf[i];
}
if (s->line_csum != (csum & 0xff)) {
reply = '-';
put_buffer(s, &reply, 1);
s->state = RS_IDLE;
} else {
reply = '+';
put_buffer(s, &reply, 1);
s->state = gdb_handle_packet(s, env, s->line_buf);
}
break;
default:
abort();
}
}
}
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
GDBState *s;
char buf[256];
int n;
s = &gdbserver_state;
if (gdbserver_fd < 0 || s->fd < 0)
return sig;
/* disable single step if it was enabled */
cpu_single_step(env, 0);
tb_flush(env);
if (sig != 0)
{
snprintf(buf, sizeof(buf), "S%02x", sig);
put_packet(s, buf);
}
/* put_packet() might have detected that the peer terminated the
connection. */
if (s->fd < 0)
return sig;
sig = 0;
s->state = RS_IDLE;
s->running_state = 0;
while (s->running_state == 0) {
n = read (s->fd, buf, 256);
if (n > 0)
{
int i;
for (i = 0; i < n; i++)
gdb_read_byte (s, buf[i]);
}
else if (n == 0 || errno != EAGAIN)
{
/* XXX: Connection closed. Should probably wait for annother
connection before continuing. */
return sig;
}
}
sig = s->signal;
s->signal = 0;
return sig;
}
/* Tell the remote gdb that the process has exited. */
void gdb_exit(CPUState *env, int code)
{
GDBState *s;
char buf[4];
s = &gdbserver_state;
if (gdbserver_fd < 0 || s->fd < 0)
return;
snprintf(buf, sizeof(buf), "W%02x", code);
put_packet(s, buf);
}
static void gdb_accept(void *opaque)
{
GDBState *s;
struct sockaddr_in sockaddr;
socklen_t len;
int val, fd;
for(;;) {
len = sizeof(sockaddr);
fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
if (fd < 0 && errno != EINTR) {
perror("accept");
return;
} else if (fd >= 0) {
break;
}
}
/* set short latency */
val = 1;
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
s = &gdbserver_state;
memset (s, 0, sizeof (GDBState));
s->env = first_cpu; /* XXX: allow to change CPU */
s->fd = fd;
gdb_syscall_state = s;
fcntl(fd, F_SETFL, O_NONBLOCK);
}
static int gdbserver_open(int port)
{
struct sockaddr_in sockaddr;
int fd, val, ret;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
/* allow fast reuse */
val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(port);
sockaddr.sin_addr.s_addr = 0;
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
perror("bind");
return -1;
}
ret = listen(fd, 0);
if (ret < 0) {
perror("listen");
return -1;
}
return fd;
}
int gdbserver_start(int port)
{
gdbserver_fd = gdbserver_open(port);
if (gdbserver_fd < 0)
return -1;
/* accept connections */
gdb_accept (NULL);
return 0;
}
#else
static int gdb_chr_can_receive(void *opaque)
{
return 1;
}
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
{
GDBState *s = opaque;
int i;
for (i = 0; i < size; i++) {
gdb_read_byte(s, buf[i]);
}
}
static void gdb_chr_event(void *opaque, int event)
{
switch (event) {
case CHR_EVENT_RESET:
vm_stop(EXCP_INTERRUPT);
gdb_syscall_state = opaque;
break;
default:
break;
}
}
int gdbserver_start(const char *port)
{
GDBState *s;
char gdbstub_port_name[128];
int port_num;
char *p;
CharDriverState *chr;
if (!port || !*port)
return -1;
port_num = strtol(port, &p, 10);
if (*p == 0) {
/* A numeric value is interpreted as a port number. */
snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
"tcp::%d,nowait,nodelay,server", port_num);
port = gdbstub_port_name;
}
chr = qemu_chr_open(port);
if (!chr)
return -1;
s = qemu_mallocz(sizeof(GDBState));
if (!s) {
return -1;
}
s->env = first_cpu; /* XXX: allow to change CPU */
s->chr = chr;
qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
gdb_chr_event, s);
qemu_add_vm_stop_handler(gdb_vm_stopped, s);
return 0;
}
#endif