qemu/target-cris/op_helper.c

637 lines
12 KiB
C
Raw Normal View History

/*
* CRIS helper routines
*
* Copyright (c) 2007 AXIS Communications
* Written by Edgar E. Iglesias
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <assert.h>
#include "exec.h"
#include "mmu.h"
#include "helper.h"
#define D(x)
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* Try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
D(fprintf(logfile, "%s pc=%x tpc=%x ra=%x\n", __func__,
env->pc, env->debug1, retaddr));
ret = cpu_cris_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (unlikely(ret)) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
/* Evaluate flags after retranslation. */
helper_top_evaluate_flags();
}
}
cpu_loop_exit();
}
env = saved_env;
}
#endif
void helper_raise_exception(uint32_t index)
{
env->exception_index = index;
cpu_loop_exit();
}
void helper_tlb_flush_pid(uint32_t pid)
{
#if !defined(CONFIG_USER_ONLY)
cris_mmu_flush_pid(env, pid);
#endif
}
void helper_dump(uint32_t a0, uint32_t a1, uint32_t a2)
{
(fprintf(logfile, "%s: a0=%x a1=%x\n", __func__, a0, a1));
}
void helper_dummy(void)
{
}
/* Used by the tlb decoder. */
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
void helper_movl_sreg_reg (uint32_t sreg, uint32_t reg)
{
uint32_t srs;
srs = env->pregs[PR_SRS];
srs &= 3;
env->sregs[srs][sreg] = env->regs[reg];
#if !defined(CONFIG_USER_ONLY)
if (srs == 1 || srs == 2) {
if (sreg == 6) {
/* Writes to tlb-hi write to mm_cause as a side
effect. */
env->sregs[SFR_RW_MM_TLB_HI] = env->regs[reg];
env->sregs[SFR_R_MM_CAUSE] = env->regs[reg];
}
else if (sreg == 5) {
uint32_t set;
uint32_t idx;
uint32_t lo, hi;
uint32_t vaddr;
int tlb_v;
idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
set >>= 4;
set &= 3;
idx &= 15;
/* We've just made a write to tlb_lo. */
lo = env->sregs[SFR_RW_MM_TLB_LO];
/* Writes are done via r_mm_cause. */
hi = env->sregs[SFR_R_MM_CAUSE];
vaddr = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].hi,
13, 31);
vaddr <<= TARGET_PAGE_BITS;
tlb_v = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].lo,
3, 3);
env->tlbsets[srs - 1][set][idx].lo = lo;
env->tlbsets[srs - 1][set][idx].hi = hi;
D(fprintf(logfile,
"tlb flush vaddr=%x v=%d pc=%x\n",
vaddr, tlb_v, env->pc));
tlb_flush_page(env, vaddr);
}
}
#endif
}
void helper_movl_reg_sreg (uint32_t reg, uint32_t sreg)
{
uint32_t srs;
env->pregs[PR_SRS] &= 3;
srs = env->pregs[PR_SRS];
#if !defined(CONFIG_USER_ONLY)
if (srs == 1 || srs == 2)
{
uint32_t set;
uint32_t idx;
uint32_t lo, hi;
idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
set >>= 4;
set &= 3;
idx &= 15;
/* Update the mirror regs. */
hi = env->tlbsets[srs - 1][set][idx].hi;
lo = env->tlbsets[srs - 1][set][idx].lo;
env->sregs[SFR_RW_MM_TLB_HI] = hi;
env->sregs[SFR_RW_MM_TLB_LO] = lo;
}
#endif
env->regs[reg] = env->sregs[srs][sreg];
RETURN();
}
static void cris_ccs_rshift(CPUState *env)
{
uint32_t ccs;
/* Apply the ccs shift. */
ccs = env->pregs[PR_CCS];
ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
if (ccs & U_FLAG)
{
/* Enter user mode. */
env->ksp = env->regs[R_SP];
env->regs[R_SP] = env->pregs[PR_USP];
}
env->pregs[PR_CCS] = ccs;
}
void helper_rfe(void)
{
int rflag = env->pregs[PR_CCS] & R_FLAG;
D(fprintf(logfile, "rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
env->pregs[PR_ERP], env->pregs[PR_PID],
env->pregs[PR_CCS],
env->btarget));
cris_ccs_rshift(env);
/* RFE sets the P_FLAG only if the R_FLAG is not set. */
if (!rflag)
env->pregs[PR_CCS] |= P_FLAG;
}
void helper_rfn(void)
{
int rflag = env->pregs[PR_CCS] & R_FLAG;
D(fprintf(logfile, "rfn: erp=%x pid=%x ccs=%x btarget=%x\n",
env->pregs[PR_ERP], env->pregs[PR_PID],
env->pregs[PR_CCS],
env->btarget));
cris_ccs_rshift(env);
/* Set the P_FLAG only if the R_FLAG is not set. */
if (!rflag)
env->pregs[PR_CCS] |= P_FLAG;
/* Always set the M flag. */
env->pregs[PR_CCS] |= M_FLAG;
}
void helper_store(uint32_t a0)
{
if (env->pregs[PR_CCS] & P_FLAG )
{
cpu_abort(env, "cond_store_failed! pc=%x a0=%x\n",
env->pc, a0);
}
}
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int is_asi)
{
D(printf("%s addr=%x w=%d ex=%d asi=%d\n",
__func__, addr, is_write, is_exec, is_asi));
}
static void evaluate_flags_writeback(uint32_t flags)
{
int x;
/* Extended arithmetics, leave the z flag alone. */
x = env->cc_x;
if ((x || env->cc_op == CC_OP_ADDC)
&& flags & Z_FLAG)
env->cc_mask &= ~Z_FLAG;
/* all insn clear the x-flag except setf or clrf. */
env->pregs[PR_CCS] &= ~(env->cc_mask | X_FLAG);
flags &= env->cc_mask;
env->pregs[PR_CCS] |= flags;
}
void helper_evaluate_flags_muls(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
int64_t tmp;
int32_t mof;
int dneg;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
dneg = ((int32_t)res) < 0;
mof = env->pregs[PR_MOF];
tmp = mof;
tmp <<= 32;
tmp |= res;
if (tmp == 0)
flags |= Z_FLAG;
else if (tmp < 0)
flags |= N_FLAG;
if ((dneg && mof != -1)
|| (!dneg && mof != 0))
flags |= V_FLAG;
evaluate_flags_writeback(flags);
}
void helper_evaluate_flags_mulu(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
uint64_t tmp;
uint32_t mof;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
mof = env->pregs[PR_MOF];
tmp = mof;
tmp <<= 32;
tmp |= res;
if (tmp == 0)
flags |= Z_FLAG;
else if (tmp >> 63)
flags |= N_FLAG;
if (mof)
flags |= V_FLAG;
evaluate_flags_writeback(flags);
}
void helper_evaluate_flags_mcp(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= R_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= R_FLAG;
}
evaluate_flags_writeback(flags);
}
void helper_evaluate_flags_alu_4(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
/* Reconstruct the result. */
switch (env->cc_op)
{
case CC_OP_SUB:
res = dst - src;
break;
case CC_OP_ADD:
res = dst + src;
break;
default:
res = env->cc_result;
break;
}
if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
src = ~src;
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= C_FLAG;
}
if (env->cc_op == CC_OP_SUB
|| env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
evaluate_flags_writeback(flags);
}
void helper_evaluate_flags_move_4 (void)
{
uint32_t res;
uint32_t flags = 0;
res = env->cc_result;
if ((int32_t)res < 0)
flags |= N_FLAG;
else if (res == 0L)
flags |= Z_FLAG;
evaluate_flags_writeback(flags);
}
void helper_evaluate_flags_move_2 (void)
{
uint32_t src;
uint32_t flags = 0;
uint16_t res;
src = env->cc_src;
res = env->cc_result;
if ((int16_t)res < 0L)
flags |= N_FLAG;
else if (res == 0)
flags |= Z_FLAG;
evaluate_flags_writeback(flags);
}
/* TODO: This is expensive. We could split things up and only evaluate part of
CCR on a need to know basis. For now, we simply re-evaluate everything. */
void helper_evaluate_flags (void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
src = ~src;
/* Now, evaluate the flags. This stuff is based on
Per Zander's CRISv10 simulator. */
switch (env->cc_size)
{
case 1:
if ((res & 0x80L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80L) == 0L)
&& ((dst & 0x80L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80L) != 0L)
&& ((dst & 0x80L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if ((res & 0xFFL) == 0L)
{
flags |= Z_FLAG;
}
if (((src & 0x80L) != 0L)
&& ((dst & 0x80L) != 0L))
{
flags |= V_FLAG;
}
if ((dst & 0x80L) != 0L
|| (src & 0x80L) != 0L)
{
flags |= C_FLAG;
}
}
break;
case 2:
if ((res & 0x8000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x8000L) == 0L)
&& ((dst & 0x8000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x8000L) != 0L)
&& ((dst & 0x8000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if ((res & 0xFFFFL) == 0L)
{
flags |= Z_FLAG;
}
if (((src & 0x8000L) != 0L)
&& ((dst & 0x8000L) != 0L))
{
flags |= V_FLAG;
}
if ((dst & 0x8000L) != 0L
|| (src & 0x8000L) != 0L)
{
flags |= C_FLAG;
}
}
break;
case 4:
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= C_FLAG;
}
break;
default:
break;
}
if (env->cc_op == CC_OP_SUB
|| env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
evaluate_flags_writeback(flags);
}
void helper_top_evaluate_flags(void)
{
switch (env->cc_op)
{
case CC_OP_MCP:
helper_evaluate_flags_mcp();
break;
case CC_OP_MULS:
helper_evaluate_flags_muls();
break;
case CC_OP_MULU:
helper_evaluate_flags_mulu();
break;
case CC_OP_MOVE:
case CC_OP_AND:
case CC_OP_OR:
case CC_OP_XOR:
case CC_OP_ASR:
case CC_OP_LSR:
case CC_OP_LSL:
switch (env->cc_size)
{
case 4:
helper_evaluate_flags_move_4();
break;
case 2:
helper_evaluate_flags_move_2();
break;
default:
helper_evaluate_flags();
break;
}
break;
case CC_OP_FLAGS:
/* live. */
break;
default:
{
switch (env->cc_size)
{
case 4:
helper_evaluate_flags_alu_4();
break;
default:
helper_evaluate_flags();
break;
}
}
break;
}
}