qemu/hw/openrisc/virt.c

566 lines
20 KiB
C
Raw Normal View History

/*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* OpenRISC QEMU virtual machine.
*
* (c) 2022 Stafford Horne <shorne@gmail.com>
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "cpu.h"
#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "hw/boards.h"
#include "hw/char/serial.h"
#include "hw/core/split-irq.h"
#include "hw/openrisc/boot.h"
#include "hw/misc/sifive_test.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include "hw/qdev-properties.h"
#include "hw/rtc/goldfish_rtc.h"
#include "hw/sysbus.h"
#include "hw/virtio/virtio-mmio.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include <libfdt.h>
#define VIRT_CPUS_MAX 4
#define VIRT_CLK_MHZ 20000000
#define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
#define VIRT_MACHINE(obj) \
OBJECT_CHECK(OR1KVirtState, (obj), TYPE_VIRT_MACHINE)
typedef struct OR1KVirtState {
/*< private >*/
MachineState parent_obj;
/*< public >*/
void *fdt;
int fdt_size;
} OR1KVirtState;
enum {
VIRT_DRAM,
VIRT_ECAM,
VIRT_MMIO,
VIRT_PIO,
VIRT_TEST,
VIRT_RTC,
VIRT_VIRTIO,
VIRT_UART,
VIRT_OMPIC,
};
enum {
VIRT_OMPIC_IRQ = 1,
VIRT_UART_IRQ = 2,
VIRT_RTC_IRQ = 3,
VIRT_VIRTIO_IRQ = 4, /* to 12 */
VIRTIO_COUNT = 8,
VIRT_PCI_IRQ_BASE = 13, /* to 17 */
};
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} virt_memmap[] = {
[VIRT_DRAM] = { 0x00000000, 0 },
[VIRT_UART] = { 0x90000000, 0x100 },
[VIRT_TEST] = { 0x96000000, 0x8 },
[VIRT_RTC] = { 0x96005000, 0x1000 },
[VIRT_VIRTIO] = { 0x97000000, 0x1000 },
[VIRT_OMPIC] = { 0x98000000, VIRT_CPUS_MAX * 8 },
[VIRT_ECAM] = { 0x9e000000, 0x1000000 },
[VIRT_PIO] = { 0x9f000000, 0x1000000 },
[VIRT_MMIO] = { 0xa0000000, 0x10000000 },
};
static struct openrisc_boot_info {
uint32_t bootstrap_pc;
uint32_t fdt_addr;
} boot_info;
static void main_cpu_reset(void *opaque)
{
OpenRISCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(CPU(cpu));
cpu_set_pc(cs, boot_info.bootstrap_pc);
cpu_set_gpr(&cpu->env, 3, boot_info.fdt_addr);
}
static qemu_irq get_cpu_irq(OpenRISCCPU *cpus[], int cpunum, int irq_pin)
{
return qdev_get_gpio_in_named(DEVICE(cpus[cpunum]), "IRQ", irq_pin);
}
static qemu_irq get_per_cpu_irq(OpenRISCCPU *cpus[], int num_cpus, int irq_pin)
{
int i;
if (num_cpus > 1) {
DeviceState *splitter = qdev_new(TYPE_SPLIT_IRQ);
qdev_prop_set_uint32(splitter, "num-lines", num_cpus);
qdev_realize_and_unref(splitter, NULL, &error_fatal);
for (i = 0; i < num_cpus; i++) {
qdev_connect_gpio_out(splitter, i, get_cpu_irq(cpus, i, irq_pin));
}
return qdev_get_gpio_in(splitter, 0);
} else {
return get_cpu_irq(cpus, 0, irq_pin);
}
}
static void openrisc_create_fdt(OR1KVirtState *state,
const struct MemmapEntry *memmap,
int num_cpus, uint64_t mem_size,
const char *cmdline,
int32_t *pic_phandle)
{
void *fdt;
int cpu;
char *nodename;
fdt = state->fdt = create_device_tree(&state->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "compatible", "opencores,or1ksim");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
nodename = g_strdup_printf("/memory@%" HWADDR_PRIx,
memmap[VIRT_DRAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
memmap[VIRT_DRAM].base, mem_size);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
g_free(nodename);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = 0; cpu < num_cpus; cpu++) {
nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"opencores,or1200-rtlsvn481");
qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
VIRT_CLK_MHZ);
g_free(nodename);
}
nodename = (char *)"/pic";
qemu_fdt_add_subnode(fdt, nodename);
*pic_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"opencores,or1k-pic-level");
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", *pic_phandle);
qemu_fdt_setprop_cell(fdt, "/", "interrupt-parent", *pic_phandle);
qemu_fdt_add_subnode(fdt, "/chosen");
if (cmdline) {
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
}
/* Create aliases node for use by devices. */
qemu_fdt_add_subnode(fdt, "/aliases");
}
static void openrisc_virt_ompic_init(OR1KVirtState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin)
{
void *fdt = state->fdt;
DeviceState *dev;
SysBusDevice *s;
char *nodename;
int i;
dev = qdev_new("or1k-ompic");
qdev_prop_set_uint32(dev, "num-cpus", num_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < num_cpus; i++) {
sysbus_connect_irq(s, i, get_cpu_irq(cpus, i, irq_pin));
}
sysbus_mmio_map(s, 0, base);
/* Add device tree node for ompic. */
nodename = g_strdup_printf("/ompic@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "openrisc,ompic");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 0);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
g_free(nodename);
}
static void openrisc_virt_serial_init(OR1KVirtState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin)
{
void *fdt = state->fdt;
char *nodename;
qemu_irq serial_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
serial_mm_init(get_system_memory(), base, 0, serial_irq, 115200,
serial_hd(0), DEVICE_NATIVE_ENDIAN);
/* Add device tree node for serial. */
nodename = g_strdup_printf("/serial@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", VIRT_CLK_MHZ);
qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
/* The /chosen node is created during fdt creation. */
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
qemu_fdt_setprop_string(fdt, "/aliases", "uart0", nodename);
g_free(nodename);
}
static void openrisc_virt_test_init(OR1KVirtState *state, hwaddr base,
hwaddr size)
{
void *fdt = state->fdt;
int test_ph;
char *nodename;
/* SiFive Test MMIO device */
sifive_test_create(base);
/* SiFive Test MMIO Reset device FDT */
nodename = g_strdup_printf("/soc/test@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon");
test_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", test_ph);
qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
g_free(nodename);
nodename = g_strdup_printf("/soc/reboot");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_RESET);
g_free(nodename);
nodename = g_strdup_printf("/soc/poweroff");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_PASS);
g_free(nodename);
}
static void openrisc_virt_rtc_init(OR1KVirtState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin)
{
void *fdt = state->fdt;
char *nodename;
qemu_irq rtc_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
/* Goldfish RTC */
sysbus_create_simple(TYPE_GOLDFISH_RTC, base, rtc_irq);
/* Goldfish RTC FDT */
nodename = g_strdup_printf("/soc/rtc@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
g_free(nodename);
}
static void create_pcie_irq_map(void *fdt, char *nodename, int irq_base,
uint32_t irqchip_phandle)
{
int pin, dev;
uint32_t irq_map_stride = 0;
uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * 6] = {};
uint32_t *irq_map = full_irq_map;
/*
* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev << 3;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = irq_base + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
/* Fill PCI address cells */
irq_map[i++] = cpu_to_be32(devfn << 8);
irq_map[i++] = 0;
irq_map[i++] = 0;
/* Fill PCI Interrupt cells */
irq_map[i++] = cpu_to_be32(pin + 1);
/* Fill interrupt controller phandle and cells */
irq_map[i++] = cpu_to_be32(irqchip_phandle);
irq_map[i++] = cpu_to_be32(irq_nr);
if (!irq_map_stride) {
irq_map_stride = i;
}
irq_map += irq_map_stride;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
GPEX_NUM_IRQS * GPEX_NUM_IRQS *
irq_map_stride * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void openrisc_virt_pcie_init(OR1KVirtState *state,
hwaddr ecam_base, hwaddr ecam_size,
hwaddr pio_base, hwaddr pio_size,
hwaddr mmio_base, hwaddr mmio_size,
int num_cpus, OpenRISCCPU *cpus[],
int irq_base, int32_t pic_phandle)
{
void *fdt = state->fdt;
char *nodename;
MemoryRegion *alias;
MemoryRegion *reg;
DeviceState *dev;
qemu_irq pcie_irq;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
/* Map ECAM space. */
alias = g_new0(MemoryRegion, 1);
reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(alias, OBJECT(dev), "pcie-ecam",
reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, alias);
/*
* Map the MMIO window into system address space so as to expose
* the section of PCI MMIO space which starts at the same base address
* (ie 1:1 mapping for that part of PCI MMIO space visible through
* the window).
*/
alias = g_new0(MemoryRegion, 1);
reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(alias, OBJECT(dev), "pcie-mmio",
reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, alias);
/* Map IO port space. */
alias = g_new0(MemoryRegion, 1);
reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 2);
memory_region_init_alias(alias, OBJECT(dev), "pcie-pio",
reg, 0, pio_size);
memory_region_add_subregion(get_system_memory(), pio_base, alias);
/* Connect IRQ lines. */
for (i = 0; i < GPEX_NUM_IRQS; i++) {
pcie_irq = get_per_cpu_irq(cpus, num_cpus, irq_base + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pcie_irq);
gpex_set_irq_num(GPEX_HOST(dev), i, irq_base + i);
}
nodename = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, ecam_base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 3);
qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 2);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci");
qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0,
ecam_size / PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
qemu_fdt_setprop_cells(fdt, nodename, "reg", ecam_base, ecam_size);
/* pci-address(3) cpu-address(1) pci-size(2) */
qemu_fdt_setprop_cells(fdt, nodename, "ranges",
FDT_PCI_RANGE_IOPORT, 0, 0,
pio_base, 0, pio_size,
FDT_PCI_RANGE_MMIO, 0, mmio_base,
mmio_base, 0, mmio_size);
create_pcie_irq_map(fdt, nodename, irq_base, pic_phandle);
g_free(nodename);
}
static void openrisc_virt_virtio_init(OR1KVirtState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin)
{
void *fdt = state->fdt;
char *nodename;
DeviceState *dev;
SysBusDevice *sysbus;
qemu_irq virtio_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
/* VirtIO MMIO devices */
dev = qdev_new(TYPE_VIRTIO_MMIO);
qdev_prop_set_bit(dev, "force-legacy", false);
sysbus = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(sysbus, &error_fatal);
sysbus_connect_irq(sysbus, 0, virtio_irq);
sysbus_mmio_map(sysbus, 0, base);
/* VirtIO MMIO devices FDT */
nodename = g_strdup_printf("/soc/virtio_mmio@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
g_free(nodename);
}
static void openrisc_virt_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *kernel_filename = machine->kernel_filename;
OpenRISCCPU *cpus[VIRT_CPUS_MAX] = {};
OR1KVirtState *state = VIRT_MACHINE(machine);
MemoryRegion *ram;
hwaddr load_addr;
int n;
unsigned int smp_cpus = machine->smp.cpus;
int32_t pic_phandle;
assert(smp_cpus >= 1 && smp_cpus <= VIRT_CPUS_MAX);
for (n = 0; n < smp_cpus; n++) {
cpus[n] = OPENRISC_CPU(cpu_create(machine->cpu_type));
if (cpus[n] == NULL) {
fprintf(stderr, "Unable to find CPU definition!\n");
exit(1);
}
cpu_openrisc_clock_init(cpus[n]);
qemu_register_reset(main_cpu_reset, cpus[n]);
}
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, NULL, "openrisc.ram", ram_size, &error_fatal);
memory_region_add_subregion(get_system_memory(), 0, ram);
openrisc_create_fdt(state, virt_memmap, smp_cpus, machine->ram_size,
machine->kernel_cmdline, &pic_phandle);
if (smp_cpus > 1) {
openrisc_virt_ompic_init(state, virt_memmap[VIRT_OMPIC].base,
virt_memmap[VIRT_OMPIC].size,
smp_cpus, cpus, VIRT_OMPIC_IRQ);
}
openrisc_virt_serial_init(state, virt_memmap[VIRT_UART].base,
virt_memmap[VIRT_UART].size,
smp_cpus, cpus, VIRT_UART_IRQ);
openrisc_virt_test_init(state, virt_memmap[VIRT_TEST].base,
virt_memmap[VIRT_TEST].size);
openrisc_virt_rtc_init(state, virt_memmap[VIRT_RTC].base,
virt_memmap[VIRT_RTC].size, smp_cpus, cpus,
VIRT_RTC_IRQ);
openrisc_virt_pcie_init(state, virt_memmap[VIRT_ECAM].base,
virt_memmap[VIRT_ECAM].size,
virt_memmap[VIRT_PIO].base,
virt_memmap[VIRT_PIO].size,
virt_memmap[VIRT_MMIO].base,
virt_memmap[VIRT_MMIO].size,
smp_cpus, cpus,
VIRT_PCI_IRQ_BASE, pic_phandle);
for (n = 0; n < VIRTIO_COUNT; n++) {
openrisc_virt_virtio_init(state, virt_memmap[VIRT_VIRTIO].base
+ n * virt_memmap[VIRT_VIRTIO].size,
virt_memmap[VIRT_VIRTIO].size,
smp_cpus, cpus, VIRT_VIRTIO_IRQ + n);
}
load_addr = openrisc_load_kernel(ram_size, kernel_filename,
&boot_info.bootstrap_pc);
if (load_addr > 0) {
if (machine->initrd_filename) {
load_addr = openrisc_load_initrd(state->fdt,
machine->initrd_filename,
load_addr, machine->ram_size);
}
boot_info.fdt_addr = openrisc_load_fdt(state->fdt, load_addr,
machine->ram_size);
}
}
static void openrisc_virt_machine_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "or1k virtual machine";
mc->init = openrisc_virt_init;
mc->max_cpus = VIRT_CPUS_MAX;
mc->is_default = false;
mc->default_cpu_type = OPENRISC_CPU_TYPE_NAME("or1200");
}
static const TypeInfo or1ksim_machine_typeinfo = {
.name = TYPE_VIRT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = openrisc_virt_machine_init,
.instance_size = sizeof(OR1KVirtState),
};
static void or1ksim_machine_init_register_types(void)
{
type_register_static(&or1ksim_machine_typeinfo);
}
type_init(or1ksim_machine_init_register_types)