qemu/hw/nseries.c

1426 lines
44 KiB
C
Raw Normal View History

/*
* Nokia N-series internet tablets.
*
* Copyright (C) 2007 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "sysemu.h"
#include "omap.h"
#include "arm-misc.h"
#include "irq.h"
#include "console.h"
#include "boards.h"
#include "i2c.h"
#include "devices.h"
#include "flash.h"
#include "hw.h"
#include "bt.h"
#include "loader.h"
#include "blockdev.h"
#include "sysbus.h"
#include "exec-memory.h"
/* Nokia N8x0 support */
struct n800_s {
struct omap_mpu_state_s *mpu;
struct rfbi_chip_s blizzard;
struct {
void *opaque;
uint32_t (*txrx)(void *opaque, uint32_t value, int len);
uWireSlave *chip;
} ts;
int keymap[0x80];
DeviceState *kbd;
DeviceState *usb;
void *retu;
void *tahvo;
DeviceState *nand;
};
/* GPIO pins */
#define N8X0_TUSB_ENABLE_GPIO 0
#define N800_MMC2_WP_GPIO 8
#define N800_UNKNOWN_GPIO0 9 /* out */
#define N810_MMC2_VIOSD_GPIO 9
#define N810_HEADSET_AMP_GPIO 10
#define N800_CAM_TURN_GPIO 12
#define N810_GPS_RESET_GPIO 12
#define N800_BLIZZARD_POWERDOWN_GPIO 15
#define N800_MMC1_WP_GPIO 23
#define N810_MMC2_VSD_GPIO 23
#define N8X0_ONENAND_GPIO 26
#define N810_BLIZZARD_RESET_GPIO 30
#define N800_UNKNOWN_GPIO2 53 /* out */
#define N8X0_TUSB_INT_GPIO 58
#define N8X0_BT_WKUP_GPIO 61
#define N8X0_STI_GPIO 62
#define N8X0_CBUS_SEL_GPIO 64
#define N8X0_CBUS_DAT_GPIO 65
#define N8X0_CBUS_CLK_GPIO 66
#define N8X0_WLAN_IRQ_GPIO 87
#define N8X0_BT_RESET_GPIO 92
#define N8X0_TEA5761_CS_GPIO 93
#define N800_UNKNOWN_GPIO 94
#define N810_TSC_RESET_GPIO 94
#define N800_CAM_ACT_GPIO 95
#define N810_GPS_WAKEUP_GPIO 95
#define N8X0_MMC_CS_GPIO 96
#define N8X0_WLAN_PWR_GPIO 97
#define N8X0_BT_HOST_WKUP_GPIO 98
#define N810_SPEAKER_AMP_GPIO 101
#define N810_KB_LOCK_GPIO 102
#define N800_TSC_TS_GPIO 103
#define N810_TSC_TS_GPIO 106
#define N8X0_HEADPHONE_GPIO 107
#define N8X0_RETU_GPIO 108
#define N800_TSC_KP_IRQ_GPIO 109
#define N810_KEYBOARD_GPIO 109
#define N800_BAT_COVER_GPIO 110
#define N810_SLIDE_GPIO 110
#define N8X0_TAHVO_GPIO 111
#define N800_UNKNOWN_GPIO4 112 /* out */
#define N810_SLEEPX_LED_GPIO 112
#define N800_TSC_RESET_GPIO 118 /* ? */
#define N810_AIC33_RESET_GPIO 118
#define N800_TSC_UNKNOWN_GPIO 119 /* out */
#define N8X0_TMP105_GPIO 125
/* Config */
#define BT_UART 0
#define XLDR_LL_UART 1
/* Addresses on the I2C bus 0 */
#define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */
#define N8X0_TCM825x_ADDR 0x29 /* Camera */
#define N810_LP5521_ADDR 0x32 /* LEDs */
#define N810_TSL2563_ADDR 0x3d /* Light sensor */
#define N810_LM8323_ADDR 0x45 /* Keyboard */
/* Addresses on the I2C bus 1 */
#define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */
#define N8X0_MENELAUS_ADDR 0x72 /* Power management */
/* Chipselects on GPMC NOR interface */
#define N8X0_ONENAND_CS 0
#define N8X0_USB_ASYNC_CS 1
#define N8X0_USB_SYNC_CS 4
#define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81
static void n800_mmc_cs_cb(void *opaque, int line, int level)
{
/* TODO: this seems to actually be connected to the menelaus, to
* which also both MMC slots connect. */
omap_mmc_enable((struct omap_mmc_s *) opaque, !level);
printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1);
}
static void n8x0_gpio_setup(struct n800_s *s)
{
qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->mpu->mmc, 1);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO, mmc_cs[0]);
qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO));
}
#define MAEMO_CAL_HEADER(...) \
'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \
__VA_ARGS__, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
static const uint8_t n8x0_cal_wlan_mac[] = {
MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c')
0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3,
0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00,
0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00,
0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00,
};
static const uint8_t n8x0_cal_bt_id[] = {
MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0)
0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96,
0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00,
N8X0_BD_ADDR,
};
static void n8x0_nand_setup(struct n800_s *s)
{
char *otp_region;
DriveInfo *dinfo;
s->nand = qdev_create(NULL, "onenand");
qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG);
/* Either 0x40 or 0x48 are OK for the device ID */
qdev_prop_set_uint16(s->nand, "device_id", 0x48);
qdev_prop_set_uint16(s->nand, "version_id", 0);
qdev_prop_set_int32(s->nand, "shift", 1);
dinfo = drive_get(IF_MTD, 0, 0);
if (dinfo && dinfo->bdrv) {
qdev_prop_set_drive_nofail(s->nand, "drive", dinfo->bdrv);
}
qdev_init_nofail(s->nand);
sysbus_connect_irq(sysbus_from_qdev(s->nand), 0,
qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO));
omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS,
sysbus_mmio_get_region(sysbus_from_qdev(s->nand), 0));
otp_region = onenand_raw_otp(s->nand);
memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac));
memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id));
/* XXX: in theory should also update the OOB for both pages */
}
static void n8x0_i2c_setup(struct n800_s *s)
{
DeviceState *dev;
qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO);
i2c_bus *i2c = omap_i2c_bus(s->mpu->i2c[0]);
/* Attach a menelaus PM chip */
dev = i2c_create_slave(i2c, "twl92230", N8X0_MENELAUS_ADDR);
qdev_connect_gpio_out(dev, 3,
qdev_get_gpio_in(s->mpu->ih[0],
OMAP_INT_24XX_SYS_NIRQ));
qemu_system_powerdown = qdev_get_gpio_in(dev, 3);
/* Attach a TMP105 PM chip (A0 wired to ground) */
dev = i2c_create_slave(i2c, "tmp105", N8X0_TMP105_ADDR);
qdev_connect_gpio_out(dev, 0, tmp_irq);
}
/* Touchscreen and keypad controller */
static MouseTransformInfo n800_pointercal = {
.x = 800,
.y = 480,
.a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 },
};
static MouseTransformInfo n810_pointercal = {
.x = 800,
.y = 480,
.a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 },
};
#define RETU_KEYCODE 61 /* F3 */
static void n800_key_event(void *opaque, int keycode)
{
struct n800_s *s = (struct n800_s *) opaque;
int code = s->keymap[keycode & 0x7f];
if (code == -1) {
if ((keycode & 0x7f) == RETU_KEYCODE)
retu_key_event(s->retu, !(keycode & 0x80));
return;
}
tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80));
}
static const int n800_keys[16] = {
-1,
72, /* Up */
63, /* Home (F5) */
-1,
75, /* Left */
28, /* Enter */
77, /* Right */
-1,
1, /* Cycle (ESC) */
80, /* Down */
62, /* Menu (F4) */
-1,
66, /* Zoom- (F8) */
64, /* FullScreen (F6) */
65, /* Zoom+ (F7) */
-1,
};
static void n800_tsc_kbd_setup(struct n800_s *s)
{
int i;
/* XXX: are the three pins inverted inside the chip between the
* tsc and the cpu (N4111)? */
qemu_irq penirq = NULL; /* NC */
qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO);
qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO);
s->ts.chip = tsc2301_init(penirq, kbirq, dav);
s->ts.opaque = s->ts.chip->opaque;
s->ts.txrx = tsc210x_txrx;
for (i = 0; i < 0x80; i ++)
s->keymap[i] = -1;
for (i = 0; i < 0x10; i ++)
if (n800_keys[i] >= 0)
s->keymap[n800_keys[i]] = i;
qemu_add_kbd_event_handler(n800_key_event, s);
tsc210x_set_transform(s->ts.chip, &n800_pointercal);
}
static void n810_tsc_setup(struct n800_s *s)
{
qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO);
s->ts.opaque = tsc2005_init(pintdav);
s->ts.txrx = tsc2005_txrx;
tsc2005_set_transform(s->ts.opaque, &n810_pointercal);
}
/* N810 Keyboard controller */
static void n810_key_event(void *opaque, int keycode)
{
struct n800_s *s = (struct n800_s *) opaque;
int code = s->keymap[keycode & 0x7f];
if (code == -1) {
if ((keycode & 0x7f) == RETU_KEYCODE)
retu_key_event(s->retu, !(keycode & 0x80));
return;
}
lm832x_key_event(s->kbd, code, !(keycode & 0x80));
}
#define M 0
static int n810_keys[0x80] = {
[0x01] = 16, /* Q */
[0x02] = 37, /* K */
[0x03] = 24, /* O */
[0x04] = 25, /* P */
[0x05] = 14, /* Backspace */
[0x06] = 30, /* A */
[0x07] = 31, /* S */
[0x08] = 32, /* D */
[0x09] = 33, /* F */
[0x0a] = 34, /* G */
[0x0b] = 35, /* H */
[0x0c] = 36, /* J */
[0x11] = 17, /* W */
[0x12] = 62, /* Menu (F4) */
[0x13] = 38, /* L */
[0x14] = 40, /* ' (Apostrophe) */
[0x16] = 44, /* Z */
[0x17] = 45, /* X */
[0x18] = 46, /* C */
[0x19] = 47, /* V */
[0x1a] = 48, /* B */
[0x1b] = 49, /* N */
[0x1c] = 42, /* Shift (Left shift) */
[0x1f] = 65, /* Zoom+ (F7) */
[0x21] = 18, /* E */
[0x22] = 39, /* ; (Semicolon) */
[0x23] = 12, /* - (Minus) */
[0x24] = 13, /* = (Equal) */
[0x2b] = 56, /* Fn (Left Alt) */
[0x2c] = 50, /* M */
[0x2f] = 66, /* Zoom- (F8) */
[0x31] = 19, /* R */
[0x32] = 29 | M, /* Right Ctrl */
[0x34] = 57, /* Space */
[0x35] = 51, /* , (Comma) */
[0x37] = 72 | M, /* Up */
[0x3c] = 82 | M, /* Compose (Insert) */
[0x3f] = 64, /* FullScreen (F6) */
[0x41] = 20, /* T */
[0x44] = 52, /* . (Dot) */
[0x46] = 77 | M, /* Right */
[0x4f] = 63, /* Home (F5) */
[0x51] = 21, /* Y */
[0x53] = 80 | M, /* Down */
[0x55] = 28, /* Enter */
[0x5f] = 1, /* Cycle (ESC) */
[0x61] = 22, /* U */
[0x64] = 75 | M, /* Left */
[0x71] = 23, /* I */
#if 0
[0x75] = 28 | M, /* KP Enter (KP Enter) */
#else
[0x75] = 15, /* KP Enter (Tab) */
#endif
};
#undef M
static void n810_kbd_setup(struct n800_s *s)
{
qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO);
int i;
for (i = 0; i < 0x80; i ++)
s->keymap[i] = -1;
for (i = 0; i < 0x80; i ++)
if (n810_keys[i] > 0)
s->keymap[n810_keys[i]] = i;
qemu_add_kbd_event_handler(n810_key_event, s);
/* Attach the LM8322 keyboard to the I2C bus,
* should happen in n8x0_i2c_setup and s->kbd be initialised here. */
s->kbd = i2c_create_slave(omap_i2c_bus(s->mpu->i2c[0]),
"lm8323", N810_LM8323_ADDR);
qdev_connect_gpio_out(s->kbd, 0, kbd_irq);
}
/* LCD MIPI DBI-C controller (URAL) */
struct mipid_s {
int resp[4];
int param[4];
int p;
int pm;
int cmd;
int sleep;
int booster;
int te;
int selfcheck;
int partial;
int normal;
int vscr;
int invert;
int onoff;
int gamma;
uint32_t id;
};
static void mipid_reset(struct mipid_s *s)
{
if (!s->sleep)
fprintf(stderr, "%s: Display off\n", __FUNCTION__);
s->pm = 0;
s->cmd = 0;
s->sleep = 1;
s->booster = 0;
s->selfcheck =
(1 << 7) | /* Register loading OK. */
(1 << 5) | /* The chip is attached. */
(1 << 4); /* Display glass still in one piece. */
s->te = 0;
s->partial = 0;
s->normal = 1;
s->vscr = 0;
s->invert = 0;
s->onoff = 1;
s->gamma = 0;
}
static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len)
{
struct mipid_s *s = (struct mipid_s *) opaque;
uint8_t ret;
if (len > 9)
hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len);
if (s->p >= ARRAY_SIZE(s->resp))
ret = 0;
else
ret = s->resp[s->p ++];
if (s->pm --> 0)
s->param[s->pm] = cmd;
else
s->cmd = cmd;
switch (s->cmd) {
case 0x00: /* NOP */
break;
case 0x01: /* SWRESET */
mipid_reset(s);
break;
case 0x02: /* BSTROFF */
s->booster = 0;
break;
case 0x03: /* BSTRON */
s->booster = 1;
break;
case 0x04: /* RDDID */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
s->resp[1] = (s->id >> 8) & 0xff;
s->resp[2] = (s->id >> 0) & 0xff;
break;
case 0x06: /* RD_RED */
case 0x07: /* RD_GREEN */
/* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so
* for the bootloader one needs to change this. */
case 0x08: /* RD_BLUE */
s->p = 0;
/* TODO: return first pixel components */
s->resp[0] = 0x01;
break;
case 0x09: /* RDDST */
s->p = 0;
s->resp[0] = s->booster << 7;
s->resp[1] = (5 << 4) | (s->partial << 2) |
(s->sleep << 1) | s->normal;
s->resp[2] = (s->vscr << 7) | (s->invert << 5) |
(s->onoff << 2) | (s->te << 1) | (s->gamma >> 2);
s->resp[3] = s->gamma << 6;
break;
case 0x0a: /* RDDPM */
s->p = 0;
s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) |
(s->partial << 5) | (s->sleep << 6) | (s->booster << 7);
break;
case 0x0b: /* RDDMADCTR */
s->p = 0;
s->resp[0] = 0;
break;
case 0x0c: /* RDDCOLMOD */
s->p = 0;
s->resp[0] = 5; /* 65K colours */
break;
case 0x0d: /* RDDIM */
s->p = 0;
s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma;
break;
case 0x0e: /* RDDSM */
s->p = 0;
s->resp[0] = s->te << 7;
break;
case 0x0f: /* RDDSDR */
s->p = 0;
s->resp[0] = s->selfcheck;
break;
case 0x10: /* SLPIN */
s->sleep = 1;
break;
case 0x11: /* SLPOUT */
s->sleep = 0;
s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */
break;
case 0x12: /* PTLON */
s->partial = 1;
s->normal = 0;
s->vscr = 0;
break;
case 0x13: /* NORON */
s->partial = 0;
s->normal = 1;
s->vscr = 0;
break;
case 0x20: /* INVOFF */
s->invert = 0;
break;
case 0x21: /* INVON */
s->invert = 1;
break;
case 0x22: /* APOFF */
case 0x23: /* APON */
goto bad_cmd;
case 0x25: /* WRCNTR */
if (s->pm < 0)
s->pm = 1;
goto bad_cmd;
case 0x26: /* GAMSET */
if (!s->pm)
s->gamma = ffs(s->param[0] & 0xf) - 1;
else if (s->pm < 0)
s->pm = 1;
break;
case 0x28: /* DISPOFF */
s->onoff = 0;
fprintf(stderr, "%s: Display off\n", __FUNCTION__);
break;
case 0x29: /* DISPON */
s->onoff = 1;
fprintf(stderr, "%s: Display on\n", __FUNCTION__);
break;
case 0x2a: /* CASET */
case 0x2b: /* RASET */
case 0x2c: /* RAMWR */
case 0x2d: /* RGBSET */
case 0x2e: /* RAMRD */
case 0x30: /* PTLAR */
case 0x33: /* SCRLAR */
goto bad_cmd;
case 0x34: /* TEOFF */
s->te = 0;
break;
case 0x35: /* TEON */
if (!s->pm)
s->te = 1;
else if (s->pm < 0)
s->pm = 1;
break;
case 0x36: /* MADCTR */
goto bad_cmd;
case 0x37: /* VSCSAD */
s->partial = 0;
s->normal = 0;
s->vscr = 1;
break;
case 0x38: /* IDMOFF */
case 0x39: /* IDMON */
case 0x3a: /* COLMOD */
goto bad_cmd;
case 0xb0: /* CLKINT / DISCTL */
case 0xb1: /* CLKEXT */
if (s->pm < 0)
s->pm = 2;
break;
case 0xb4: /* FRMSEL */
break;
case 0xb5: /* FRM8SEL */
case 0xb6: /* TMPRNG / INIESC */
case 0xb7: /* TMPHIS / NOP2 */
case 0xb8: /* TMPREAD / MADCTL */
case 0xba: /* DISTCTR */
case 0xbb: /* EPVOL */
goto bad_cmd;
case 0xbd: /* Unknown */
s->p = 0;
s->resp[0] = 0;
s->resp[1] = 1;
break;
case 0xc2: /* IFMOD */
if (s->pm < 0)
s->pm = 2;
break;
case 0xc6: /* PWRCTL */
case 0xc7: /* PPWRCTL */
case 0xd0: /* EPWROUT */
case 0xd1: /* EPWRIN */
case 0xd4: /* RDEV */
case 0xd5: /* RDRR */
goto bad_cmd;
case 0xda: /* RDID1 */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
break;
case 0xdb: /* RDID2 */
s->p = 0;
s->resp[0] = (s->id >> 8) & 0xff;
break;
case 0xdc: /* RDID3 */
s->p = 0;
s->resp[0] = (s->id >> 0) & 0xff;
break;
default:
bad_cmd:
fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd);
break;
}
return ret;
}
static void *mipid_init(void)
{
struct mipid_s *s = (struct mipid_s *) g_malloc0(sizeof(*s));
s->id = 0x838f03;
mipid_reset(s);
return s;
}
static void n8x0_spi_setup(struct n800_s *s)
{
void *tsc = s->ts.opaque;
void *mipid = mipid_init();
omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0);
omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1);
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to enable the Blizzard ourselves. */
static void n800_dss_init(struct rfbi_chip_s *chip)
{
uint8_t *fb_blank;
chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */
chip->write(chip->opaque, 1, 0x64);
chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */
chip->write(chip->opaque, 1, 0x1e);
chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */
chip->write(chip->opaque, 1, 0xe0);
chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */
chip->write(chip->opaque, 1, 0x01);
chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */
chip->write(chip->opaque, 1, 0x06);
chip->write(chip->opaque, 0, 0x68); /* Display Mode register */
chip->write(chip->opaque, 1, 1); /* Enable bit */
chip->write(chip->opaque, 0, 0x6c);
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */
chip->write(chip->opaque, 1, 0x03); /* Input X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */
chip->write(chip->opaque, 1, 0x03); /* Output X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Data Format */
chip->write(chip->opaque, 1, 0x01); /* Data Source Select */
fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2);
/* Display Memory Data Port */
chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800);
g_free(fb_blank);
}
static void n8x0_dss_setup(struct n800_s *s)
{
s->blizzard.opaque = s1d13745_init(NULL);
s->blizzard.block = s1d13745_write_block;
s->blizzard.write = s1d13745_write;
s->blizzard.read = s1d13745_read;
omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard);
}
static void n8x0_cbus_setup(struct n800_s *s)
{
qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO);
qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO);
qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO);
CBus *cbus = cbus_init(dat_out);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel);
cbus_attach(cbus, s->retu = retu_init(retu_irq, 1));
cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1));
}
static void n8x0_uart_setup(struct n800_s *s)
{
CharDriverState *radio = uart_hci_init(
qdev_get_gpio_in(s->mpu->gpio, N8X0_BT_HOST_WKUP_GPIO));
qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_RESET_GPIO,
csrhci_pins_get(radio)[csrhci_pin_reset]);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_WKUP_GPIO,
csrhci_pins_get(radio)[csrhci_pin_wakeup]);
omap_uart_attach(s->mpu->uart[BT_UART], radio);
}
static void n8x0_usb_setup(struct n800_s *s)
{
SysBusDevice *dev;
s->usb = qdev_create(NULL, "tusb6010");
dev = sysbus_from_qdev(s->usb);
qdev_init_nofail(s->usb);
sysbus_connect_irq(dev, 0,
qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO));
/* Using the NOR interface */
omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS,
sysbus_mmio_get_region(dev, 0));
omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS,
sysbus_mmio_get_region(dev, 1));
qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO,
qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */
}
/* Setup done before the main bootloader starts by some early setup code
* - used when we want to run the main bootloader in emulation. This
* isn't documented. */
static uint32_t n800_pinout[104] = {
0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0,
0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808,
0x08080808, 0x180800c4, 0x00b80000, 0x08080808,
0x080800bc, 0x00cc0808, 0x08081818, 0x18180128,
0x01241800, 0x18181818, 0x000000f0, 0x01300000,
0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b,
0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080,
0x007c0000, 0x00000000, 0x00000088, 0x00840000,
0x00000000, 0x00000094, 0x00980300, 0x0f180003,
0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c,
0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008,
0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f,
0x181800f4, 0x00f81818, 0x00000018, 0x000000fc,
0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008,
0x00000000, 0x00000038, 0x00340000, 0x00000000,
0x1a080070, 0x00641a1a, 0x08080808, 0x08080060,
0x005c0808, 0x08080808, 0x08080058, 0x00540808,
0x08080808, 0x0808006c, 0x00680808, 0x08080808,
0x000000a8, 0x00b00000, 0x08080808, 0x000000a0,
0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808,
0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff,
0x000000ac, 0x01040800, 0x08080b0f, 0x18180100,
0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a,
0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00,
0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118,
0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b,
};
static void n800_setup_nolo_tags(void *sram_base)
{
int i;
uint32_t *p = sram_base + 0x8000;
uint32_t *v = sram_base + 0xa000;
memset(p, 0, 0x3000);
strcpy((void *) (p + 0), "QEMU N800");
strcpy((void *) (p + 8), "F5");
stl_raw(p + 10, 0x04f70000);
strcpy((void *) (p + 9), "RX-34");
/* RAM size in MB? */
stl_raw(p + 12, 0x80);
/* Pointer to the list of tags */
stl_raw(p + 13, OMAP2_SRAM_BASE + 0x9000);
/* The NOLO tags start here */
p = sram_base + 0x9000;
#define ADD_TAG(tag, len) \
stw_raw((uint16_t *) p + 0, tag); \
stw_raw((uint16_t *) p + 1, len); p ++; \
stl_raw(p ++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff));
/* OMAP STI console? Pin out settings? */
ADD_TAG(0x6e01, 414);
for (i = 0; i < ARRAY_SIZE(n800_pinout); i ++)
stl_raw(v ++, n800_pinout[i]);
/* Kernel memsize? */
ADD_TAG(0x6e05, 1);
stl_raw(v ++, 2);
/* NOLO serial console */
ADD_TAG(0x6e02, 4);
stl_raw(v ++, XLDR_LL_UART); /* UART number (1 - 3) */
#if 0
/* CBUS settings (Retu/AVilma) */
ADD_TAG(0x6e03, 6);
stw_raw((uint16_t *) v + 0, 65); /* CBUS GPIO0 */
stw_raw((uint16_t *) v + 1, 66); /* CBUS GPIO1 */
stw_raw((uint16_t *) v + 2, 64); /* CBUS GPIO2 */
v += 2;
#endif
/* Nokia ASIC BB5 (Retu/Tahvo) */
ADD_TAG(0x6e0a, 4);
stw_raw((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */
stw_raw((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */
v ++;
/* LCD console? */
ADD_TAG(0x6e04, 4);
stw_raw((uint16_t *) v + 0, 30); /* ??? */
stw_raw((uint16_t *) v + 1, 24); /* ??? */
v ++;
#if 0
/* LCD settings */
ADD_TAG(0x6e06, 2);
stw_raw((uint16_t *) (v ++), 15); /* ??? */
#endif
/* I^2C (Menelaus) */
ADD_TAG(0x6e07, 4);
stl_raw(v ++, 0x00720000); /* ??? */
/* Unknown */
ADD_TAG(0x6e0b, 6);
stw_raw((uint16_t *) v + 0, 94); /* ??? */
stw_raw((uint16_t *) v + 1, 23); /* ??? */
stw_raw((uint16_t *) v + 2, 0); /* ??? */
v += 2;
/* OMAP gpio switch info */
ADD_TAG(0x6e0c, 80);
strcpy((void *) v, "bat_cover"); v += 3;
stw_raw((uint16_t *) v + 0, 110); /* GPIO num ??? */
stw_raw((uint16_t *) v + 1, 1); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "cam_act"); v += 3;
stw_raw((uint16_t *) v + 0, 95); /* GPIO num ??? */
stw_raw((uint16_t *) v + 1, 32); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "cam_turn"); v += 3;
stw_raw((uint16_t *) v + 0, 12); /* GPIO num ??? */
stw_raw((uint16_t *) v + 1, 33); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "headphone"); v += 3;
stw_raw((uint16_t *) v + 0, 107); /* GPIO num ??? */
stw_raw((uint16_t *) v + 1, 17); /* GPIO num ??? */
v += 2;
/* Bluetooth */
ADD_TAG(0x6e0e, 12);
stl_raw(v ++, 0x5c623d01); /* ??? */
stl_raw(v ++, 0x00000201); /* ??? */
stl_raw(v ++, 0x00000000); /* ??? */
/* CX3110x WLAN settings */
ADD_TAG(0x6e0f, 8);
stl_raw(v ++, 0x00610025); /* ??? */
stl_raw(v ++, 0xffff0057); /* ??? */
/* MMC host settings */
ADD_TAG(0x6e10, 12);
stl_raw(v ++, 0xffff000f); /* ??? */
stl_raw(v ++, 0xffffffff); /* ??? */
stl_raw(v ++, 0x00000060); /* ??? */
/* OneNAND chip select */
ADD_TAG(0x6e11, 10);
stl_raw(v ++, 0x00000401); /* ??? */
stl_raw(v ++, 0x0002003a); /* ??? */
stl_raw(v ++, 0x00000002); /* ??? */
/* TEA5761 sensor settings */
ADD_TAG(0x6e12, 2);
stl_raw(v ++, 93); /* GPIO num ??? */
#if 0
/* Unknown tag */
ADD_TAG(6e09, 0);
/* Kernel UART / console */
ADD_TAG(6e12, 0);
#endif
/* End of the list */
stl_raw(p ++, 0x00000000);
stl_raw(p ++, 0x00000000);
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to set up GPMC mappings ourselves. */
static void n800_gpmc_init(struct n800_s *s)
{
uint32_t config7 =
(0xf << 8) | /* MASKADDRESS */
(1 << 6) | /* CSVALID */
(4 << 0); /* BASEADDRESS */
cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */
(void *) &config7, sizeof(config7));
}
/* Setup sequence done by the bootloader */
static void n8x0_boot_init(void *opaque)
{
struct n800_s *s = (struct n800_s *) opaque;
uint32_t buf;
/* PRCM setup */
#define omap_writel(addr, val) \
buf = (val); \
cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf))
omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */
omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */
omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */
omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */
omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */
omap_writel(0x48008098, 0); /* PRCM_POLCTRL */
omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */
omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */
omap_writel(0x48008158, 1); /* RM_RSTST_MPU */
omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */
omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */
omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */
omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */
omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */
omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */
omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */
omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */
omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */
omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */
omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */
omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */
omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */
omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */
omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */
omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */
omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */
omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */
omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */
omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */
omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */
omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */
omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */
omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */
omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */
omap_writel(0x48008540, /* CM_CLKSEL1_PLL */
(0x78 << 12) | (6 << 8));
omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */
/* GPMC setup */
n800_gpmc_init(s);
/* Video setup */
n800_dss_init(&s->blizzard);
/* CPU setup */
s->mpu->cpu->env.GE = 0x5;
/* If the machine has a slided keyboard, open it */
if (s->kbd)
qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO));
}
#define OMAP_TAG_NOKIA_BT 0x4e01
#define OMAP_TAG_WLAN_CX3110X 0x4e02
#define OMAP_TAG_CBUS 0x4e03
#define OMAP_TAG_EM_ASIC_BB5 0x4e04
static struct omap_gpiosw_info_s {
const char *name;
int line;
int type;
} n800_gpiosw_info[] = {
{
"bat_cover", N800_BAT_COVER_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
}, {
"cam_act", N800_CAM_ACT_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY,
}, {
"cam_turn", N800_CAM_TURN_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED,
}, {
"headphone", N8X0_HEADPHONE_GPIO,
OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
},
{ NULL }
}, n810_gpiosw_info[] = {
{
"gps_reset", N810_GPS_RESET_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
}, {
"gps_wakeup", N810_GPS_WAKEUP_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
}, {
"headphone", N8X0_HEADPHONE_GPIO,
OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
}, {
"kb_lock", N810_KB_LOCK_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
}, {
"sleepx_led", N810_SLEEPX_LED_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT,
}, {
"slide", N810_SLIDE_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
},
{ NULL }
};
static struct omap_partition_info_s {
uint32_t offset;
uint32_t size;
int mask;
const char *name;
} n800_part_info[] = {
{ 0x00000000, 0x00020000, 0x3, "bootloader" },
{ 0x00020000, 0x00060000, 0x0, "config" },
{ 0x00080000, 0x00200000, 0x0, "kernel" },
{ 0x00280000, 0x00200000, 0x3, "initfs" },
{ 0x00480000, 0x0fb80000, 0x3, "rootfs" },
{ 0, 0, 0, NULL }
}, n810_part_info[] = {
{ 0x00000000, 0x00020000, 0x3, "bootloader" },
{ 0x00020000, 0x00060000, 0x0, "config" },
{ 0x00080000, 0x00220000, 0x0, "kernel" },
{ 0x002a0000, 0x00400000, 0x0, "initfs" },
{ 0x006a0000, 0x0f960000, 0x0, "rootfs" },
{ 0, 0, 0, NULL }
};
static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }};
static int n8x0_atag_setup(void *p, int model)
{
uint8_t *b;
uint16_t *w;
uint32_t *l;
struct omap_gpiosw_info_s *gpiosw;
struct omap_partition_info_s *partition;
const char *tag;
w = p;
stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */
w ++;
#if 0
stw_raw(w ++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, XLDR_LL_UART + 1); /* u8 console_uart */
stw_raw(w ++, 115200); /* u32 console_speed */
#endif
stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */
stw_raw(w ++, 36); /* u16 len */
strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */
w += 8;
strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */
w += 8;
stw_raw(w ++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */
stw_raw(w ++, 24); /* u8 data_lines */
stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */
stw_raw(w ++, 8); /* u16 len */
stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */
stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */
stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */
w ++;
stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */
stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */
gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info;
for (; gpiosw->name; gpiosw ++) {
stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_raw(w ++, 20); /* u16 len */
strcpy((void *) w, gpiosw->name); /* char name[12] */
w += 6;
stw_raw(w ++, gpiosw->line); /* u16 gpio */
stw_raw(w ++, gpiosw->type);
stw_raw(w ++, 0);
stw_raw(w ++, 0);
}
stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */
stw_raw(w ++, 12); /* u16 len */
b = (void *) w;
stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */
stb_raw(b ++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */
stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */
stb_raw(b ++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */
stb_raw(b ++, BT_UART + 1); /* u8 bt_uart */
memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */
b += 6;
stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */
w = (void *) b;
stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */
stw_raw(w ++, 8); /* u16 len */
stw_raw(w ++, 0x25); /* u8 chip_type */
stw_raw(w ++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */
stw_raw(w ++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */
stw_raw(w ++, -1); /* s16 spi_cs_gpio */
stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */
stw_raw(w ++, 16); /* u16 len */
if (model == 810) {
stw_raw(w ++, 0x23f); /* unsigned flags */
stw_raw(w ++, -1); /* s16 power_pin */
stw_raw(w ++, -1); /* s16 switch_pin */
stw_raw(w ++, -1); /* s16 wp_pin */
stw_raw(w ++, 0x240); /* unsigned flags */
stw_raw(w ++, 0xc000); /* s16 power_pin */
stw_raw(w ++, 0x0248); /* s16 switch_pin */
stw_raw(w ++, 0xc000); /* s16 wp_pin */
} else {
stw_raw(w ++, 0xf); /* unsigned flags */
stw_raw(w ++, -1); /* s16 power_pin */
stw_raw(w ++, -1); /* s16 switch_pin */
stw_raw(w ++, -1); /* s16 wp_pin */
stw_raw(w ++, 0); /* unsigned flags */
stw_raw(w ++, 0); /* s16 power_pin */
stw_raw(w ++, 0); /* s16 switch_pin */
stw_raw(w ++, 0); /* s16 wp_pin */
}
stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */
w ++;
partition = (model == 810) ? n810_part_info : n800_part_info;
for (; partition->name; partition ++) {
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, partition->name); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, partition->size); /* unsigned int size */
stl_raw(l ++, partition->offset); /* unsigned int offset */
stl_raw(l ++, partition->mask); /* unsigned int mask_flags */
w = (void *) l;
}
stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */
stw_raw(w ++, 12); /* u16 len */
#if 0
strcpy((void *) w, "por"); /* char reason_str[12] */
strcpy((void *) w, "charger"); /* char reason_str[12] */
strcpy((void *) w, "32wd_to"); /* char reason_str[12] */
strcpy((void *) w, "sw_rst"); /* char reason_str[12] */
strcpy((void *) w, "mbus"); /* char reason_str[12] */
strcpy((void *) w, "unknown"); /* char reason_str[12] */
strcpy((void *) w, "swdg_to"); /* char reason_str[12] */
strcpy((void *) w, "sec_vio"); /* char reason_str[12] */
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */
#else
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
#endif
w += 6;
tag = (model == 810) ? "RX-44" : "RX-34";
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "product"); /* char component[12] */
w += 6;
strcpy((void *) w, tag); /* char version[12] */
w += 6;
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "hw-build"); /* char component[12] */
w += 6;
strcpy((void *) w, "QEMU " QEMU_VERSION); /* char version[12] */
w += 6;
tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu";
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "nolo"); /* char component[12] */
w += 6;
strcpy((void *) w, tag); /* char version[12] */
w += 6;
return (void *) w - p;
}
static int n800_atag_setup(const struct arm_boot_info *info, void *p)
{
return n8x0_atag_setup(p, 800);
}
static int n810_atag_setup(const struct arm_boot_info *info, void *p)
{
return n8x0_atag_setup(p, 810);
}
static void n8x0_init(ram_addr_t ram_size, const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline, const char *initrd_filename,
const char *cpu_model, struct arm_boot_info *binfo, int model)
{
MemoryRegion *sysmem = get_system_memory();
struct n800_s *s = (struct n800_s *) g_malloc0(sizeof(*s));
int sdram_size = binfo->ram_size;
DisplayState *ds;
s->mpu = omap2420_mpu_init(sysmem, sdram_size, cpu_model);
/* Setup peripherals
*
* Believed external peripherals layout in the N810:
* (spi bus 1)
* tsc2005
* lcd_mipid
* (spi bus 2)
* Conexant cx3110x (WLAN)
* optional: pc2400m (WiMAX)
* (i2c bus 0)
* TLV320AIC33 (audio codec)
* TCM825x (camera by Toshiba)
* lp5521 (clever LEDs)
* tsl2563 (light sensor, hwmon, model 7, rev. 0)
* lm8323 (keypad, manf 00, rev 04)
* (i2c bus 1)
* tmp105 (temperature sensor, hwmon)
* menelaus (pm)
* (somewhere on i2c - maybe N800-only)
* tea5761 (FM tuner)
* (serial 0)
* GPS
* (some serial port)
* csr41814 (Bluetooth)
*/
n8x0_gpio_setup(s);
n8x0_nand_setup(s);
n8x0_i2c_setup(s);
if (model == 800)
n800_tsc_kbd_setup(s);
else if (model == 810) {
n810_tsc_setup(s);
n810_kbd_setup(s);
}
n8x0_spi_setup(s);
n8x0_dss_setup(s);
n8x0_cbus_setup(s);
n8x0_uart_setup(s);
if (usb_enabled)
n8x0_usb_setup(s);
if (kernel_filename) {
/* Or at the linux loader. */
binfo->kernel_filename = kernel_filename;
binfo->kernel_cmdline = kernel_cmdline;
binfo->initrd_filename = initrd_filename;
arm_load_kernel(&s->mpu->cpu->env, binfo);
qemu_register_reset(n8x0_boot_init, s);
}
if (option_rom[0].name && (boot_device[0] == 'n' || !kernel_filename)) {
int rom_size;
uint8_t nolo_tags[0x10000];
/* No, wait, better start at the ROM. */
s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000;
/* This is intended for loading the `secondary.bin' program from
* Nokia images (the NOLO bootloader). The entry point seems
* to be at OMAP2_Q2_BASE + 0x400000.
*
* The `2nd.bin' files contain some kind of earlier boot code and
* for them the entry point needs to be set to OMAP2_SRAM_BASE.
*
* The code above is for loading the `zImage' file from Nokia
* images. */
rom_size = load_image_targphys(option_rom[0].name,
OMAP2_Q2_BASE + 0x400000,
sdram_size - 0x400000);
printf("%i bytes of image loaded\n", rom_size);
n800_setup_nolo_tags(nolo_tags);
cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000);
}
/* FIXME: We shouldn't really be doing this here. The LCD controller
will set the size once configured, so this just sets an initial
size until the guest activates the display. */
ds = get_displaystate();
DisplayAllocator interface (Stefano Stabellini) Hi all, this patch adds a DisplayAllocator interface that allows display frontends (sdl in particular) to provide a preallocated display buffer for the graphical backend to use. Whenever a graphical backend cannot use qemu_create_displaysurface_from because its own internal pixel format cannot be exported directly (text mode or graphical mode with color depth 8 or 24), it creates another display buffer in memory using qemu_create_displaysurface and does the conversion. This new buffer needs to be blitted into the sdl surface buffer every time we need to update portions of the screen. We can avoid this using the DisplayAllocator interace: sdl provides its own implementation of qemu_create_displaysurface, giving back the sdl surface buffer directly (as we used to do before the DisplayState changes). Since the buffer returned by sdl could be in bgr format we need to put back in the handlers of that case. This approach is good if the two following conditions are true: 1) the sdl surface is a software surface that resides in main memory; 2) the host display color depth is either 16 or 32 bpp. If first condition is false we can have bad performances using sdl and vnc together. If the second condition is false performances are certainly not going to improve but they shouldn't get worse either. The first condition is always true, at least on linux/X11 systems; but I believe is true also on other platforms. The second condition is true in the vast majority of the cases. This patch should also have the good side effect of solving the sdl 2D slowness malc was reporting on MacOS, because SDL_BlitSurface is not going to be called anymore when the guest is in text mode or 24bpp. However the root problem is still present so I suspect we may still see some slowness on MacOS when the guest is in 32 or 16 bpp. Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6839 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-13 18:02:13 +03:00
ds->surface = qemu_resize_displaysurface(ds, 800, 480);
DisplayState interface change (Stefano Stabellini) This patch changes the DisplayState interface adding support for multiple frontends at the same time (sdl and vnc) and implements most of the benefit of the shared_buf patch without the added complexity. Currently DisplayState is managed by sdl (or vnc) and sdl (or vnc) is also responsible for allocating the data and setting the depth. Vga.c (or another backend) will do any necessary conversion. The idea is to change it so that is vga.c (or another backend) together with console.c that fully manage the DisplayState interface allocating data and setting the depth (either 16 or 32 bit, if the guest uses a different resolution or is in text mode, vga.c (or another backend) is in charge of doing the conversion seamlessly). The other idea is that DisplayState supports *multiple* frontends like sdl and vnc; each of them can register some callbacks to be called when a display event occurs. The interesting changes are: - the new structures and related functions in console.h and console.c in particular the following functions are very helpful to manage a DisplaySurface: qemu_create_displaysurface qemu_resize_displaysurface qemu_create_displaysurface_from qemu_free_displaysurface - console_select and qemu_console_resize in console.c this two functions manage multiple consoles on a single host display - moving code around in hw/vga.c as for the shared_buf patch this is necessary to be able to handle a dynamic DisplaySurface bpp - changes to vga_draw_graphic in hw/vga.c this is the place where the DisplaySurface buffer is shared with the videoram, when possible; Compared to the last version the only changes are: - do not remove support to dpy_copy in cirrus_vga - change the name of the displaysurface handling functions Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6336 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-16 01:14:11 +03:00
dpy_resize(ds);
}
static struct arm_boot_info n800_binfo = {
.loader_start = OMAP2_Q2_BASE,
/* Actually two chips of 0x4000000 bytes each */
.ram_size = 0x08000000,
.board_id = 0x4f7,
.atag_board = n800_atag_setup,
};
static struct arm_boot_info n810_binfo = {
.loader_start = OMAP2_Q2_BASE,
/* Actually two chips of 0x4000000 bytes each */
.ram_size = 0x08000000,
/* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not
* used by some older versions of the bootloader and 5555 is used
* instead (including versions that shipped with many devices). */
.board_id = 0x60c,
.atag_board = n810_atag_setup,
};
static void n800_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
return n8x0_init(ram_size, boot_device,
kernel_filename, kernel_cmdline, initrd_filename,
cpu_model, &n800_binfo, 800);
}
static void n810_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
return n8x0_init(ram_size, boot_device,
kernel_filename, kernel_cmdline, initrd_filename,
cpu_model, &n810_binfo, 810);
}
static QEMUMachine n800_machine = {
.name = "n800",
.desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)",
.init = n800_init,
};
static QEMUMachine n810_machine = {
.name = "n810",
.desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)",
.init = n810_init,
};
static void nseries_machine_init(void)
{
qemu_register_machine(&n800_machine);
qemu_register_machine(&n810_machine);
}
machine_init(nseries_machine_init);