qemu/hw/arm/sbsa-ref.c

272 lines
8.7 KiB
C
Raw Normal View History

hw/arm: Add arm SBSA reference machine, skeleton part For AArch64, the existing "virt" machine is primarily meant to run on KVM and execute virtualization workloads, but we need an environment as faithful as possible to physical hardware, for supporting firmware and OS development for physical Aarch64 machines. This patch introduces new machine type 'sbsa-ref' with main features: - Based on 'virt' machine type. - A new memory map. - CPU type cortex-a57. - EL2 and EL3 are enabled. - GIC version 3. - System bus AHCI controller. - System bus EHCI controller. - CDROM and hard disc on AHCI bus. - E1000E ethernet card on PCIE bus. - VGA display adaptor on PCIE bus. - No virtio devices. - No fw_cfg device. - No ACPI table supplied. - Only minimal device tree nodes. Arm Trusted Firmware and UEFI porting to this are done accordingly, and the firmware should supply ACPI tables to the guest OS. The minimal device tree nodes supplied by QEMU for this platform are only to pass the dynamic info reflecting command line input to firmware, not for loading the guest OS. To make the review easier, this task is split into two patches, the fundamental skeleton part and the peripheral devices part; this patch is the first part. Signed-off-by: Hongbo Zhang <hongbo.zhang@linaro.org> Message-id: 1561890034-15921-2-git-send-email-hongbo.zhang@linaro.org [PMM: commit message tweaks; moved some bits between patch 1 and 2 to ensure patch 1 builds cleanly; removed unneeded lines from Kconfig stanza; only provide board for qemu-system-aarch64, not qemu-system-arm; added MAINTAINERS entry] Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2019-07-01 19:26:18 +03:00
/*
* ARM SBSA Reference Platform emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Hongbo Zhang <hongbo.zhang@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/units.h"
#include "sysemu/numa.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "exec/hwaddr.h"
#include "kvm_arm.h"
#include "hw/arm/boot.h"
#include "hw/boards.h"
#include "hw/intc/arm_gicv3_common.h"
#define RAMLIMIT_GB 8192
#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
enum {
SBSA_FLASH,
SBSA_MEM,
SBSA_CPUPERIPHS,
SBSA_GIC_DIST,
SBSA_GIC_REDIST,
SBSA_SMMU,
SBSA_UART,
SBSA_RTC,
SBSA_PCIE,
SBSA_PCIE_MMIO,
SBSA_PCIE_MMIO_HIGH,
SBSA_PCIE_PIO,
SBSA_PCIE_ECAM,
SBSA_GPIO,
SBSA_SECURE_UART,
SBSA_SECURE_UART_MM,
SBSA_SECURE_MEM,
SBSA_AHCI,
SBSA_EHCI,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct {
MachineState parent;
struct arm_boot_info bootinfo;
int smp_cpus;
void *fdt;
int fdt_size;
int psci_conduit;
} SBSAMachineState;
#define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
#define SBSA_MACHINE(obj) \
OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
static const MemMapEntry sbsa_ref_memmap[] = {
/* 512M boot ROM */
[SBSA_FLASH] = { 0, 0x20000000 },
/* 512M secure memory */
[SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
/* Space reserved for CPU peripheral devices */
[SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
[SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
[SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
[SBSA_UART] = { 0x60000000, 0x00001000 },
[SBSA_RTC] = { 0x60010000, 0x00001000 },
[SBSA_GPIO] = { 0x60020000, 0x00001000 },
[SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
[SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
[SBSA_SMMU] = { 0x60050000, 0x00020000 },
/* Space here reserved for more SMMUs */
[SBSA_AHCI] = { 0x60100000, 0x00010000 },
[SBSA_EHCI] = { 0x60110000, 0x00010000 },
/* Space here reserved for other devices */
[SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
/* 32-bit address PCIE MMIO space */
[SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
/* 256M PCIE ECAM space */
[SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
/* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
[SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
[SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
};
static void sbsa_ref_init(MachineState *machine)
{
SBSAMachineState *sms = SBSA_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = NULL;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const CPUArchIdList *possible_cpus;
int n, sbsa_max_cpus;
if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
error_report("sbsa-ref: CPU type other than the built-in "
"cortex-a57 not supported");
exit(1);
}
if (kvm_enabled()) {
error_report("sbsa-ref: KVM is not supported for this machine");
exit(1);
}
/*
* This machine has EL3 enabled, external firmware should supply PSCI
* implementation, so the QEMU's internal PSCI is disabled.
*/
sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
if (max_cpus > sbsa_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'sbsa-ref' (%d)",
max_cpus, sbsa_max_cpus);
exit(1);
}
sms->smp_cpus = smp_cpus;
if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
for (n = 0; n < possible_cpus->len; n++) {
Object *cpuobj;
CPUState *cs;
if (n >= smp_cpus) {
break;
}
cpuobj = object_new(possible_cpus->cpus[n].type);
object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
"mp-affinity", NULL);
cs = CPU(cpuobj);
cs->cpu_index = n;
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
&error_fatal);
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj,
sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
&error_abort);
object_property_set_link(cpuobj, OBJECT(secure_sysmem),
"secure-memory", &error_abort);
object_property_set_bool(cpuobj, true, "realized", &error_fatal);
object_unref(cpuobj);
}
memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
sms->bootinfo.ram_size = machine->ram_size;
sms->bootinfo.kernel_filename = machine->kernel_filename;
sms->bootinfo.nb_cpus = smp_cpus;
sms->bootinfo.board_id = -1;
sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
}
static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
{
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
return arm_cpu_mp_affinity(idx, clustersz);
}
static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
{
SBSAMachineState *sms = SBSA_MACHINE(ms);
int n;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id =
sbsa_ref_cpu_mp_affinity(sms, n);
ms->possible_cpus->cpus[n].props.has_thread_id = true;
ms->possible_cpus->cpus[n].props.thread_id = n;
}
return ms->possible_cpus;
}
static CpuInstanceProperties
sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t
sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx % nb_numa_nodes;
}
static void sbsa_ref_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = sbsa_ref_init;
mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
mc->max_cpus = 512;
mc->pci_allow_0_address = true;
mc->minimum_page_bits = 12;
mc->block_default_type = IF_IDE;
mc->no_cdrom = 1;
mc->default_ram_size = 1 * GiB;
mc->default_cpus = 4;
mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
}
static const TypeInfo sbsa_ref_info = {
.name = TYPE_SBSA_MACHINE,
.parent = TYPE_MACHINE,
.class_init = sbsa_ref_class_init,
.instance_size = sizeof(SBSAMachineState),
};
static void sbsa_ref_machine_init(void)
{
type_register_static(&sbsa_ref_info);
}
type_init(sbsa_ref_machine_init);