qemu/target/hppa/cpu.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

356 lines
12 KiB
C
Raw Normal View History

/*
* PA-RISC emulation cpu definitions for qemu.
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HPPA_CPU_H
#define HPPA_CPU_H
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "qemu/cpu-float.h"
/* PA-RISC 1.x processors have a strong memory model. */
/* ??? While we do not yet implement PA-RISC 2.0, those processors have
a weak memory model, but with TLB bits that force ordering on a per-page
basis. It's probably easier to fall back to a strong memory model. */
#define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
#define MMU_KERNEL_IDX 11
#define MMU_PL1_IDX 12
#define MMU_PL2_IDX 13
#define MMU_USER_IDX 14
#define MMU_PHYS_IDX 15
#define PRIV_TO_MMU_IDX(priv) (MMU_KERNEL_IDX + (priv))
#define MMU_IDX_TO_PRIV(mmu_idx) ((mmu_idx) - MMU_KERNEL_IDX)
#define TARGET_INSN_START_EXTRA_WORDS 1
/* No need to flush MMU_PHYS_IDX */
#define HPPA_MMU_FLUSH_MASK \
(1 << MMU_KERNEL_IDX | 1 << MMU_PL1_IDX | \
1 << MMU_PL2_IDX | 1 << MMU_USER_IDX)
/* Hardware exceptions, interrupts, faults, and traps. */
#define EXCP_HPMC 1 /* high priority machine check */
#define EXCP_POWER_FAIL 2
#define EXCP_RC 3 /* recovery counter */
#define EXCP_EXT_INTERRUPT 4 /* external interrupt */
#define EXCP_LPMC 5 /* low priority machine check */
#define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
#define EXCP_IMP 7 /* instruction memory protection trap */
#define EXCP_ILL 8 /* illegal instruction trap */
#define EXCP_BREAK 9 /* break instruction */
#define EXCP_PRIV_OPR 10 /* privileged operation trap */
#define EXCP_PRIV_REG 11 /* privileged register trap */
#define EXCP_OVERFLOW 12 /* signed overflow trap */
#define EXCP_COND 13 /* trap-on-condition */
#define EXCP_ASSIST 14 /* assist exception trap */
#define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
#define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
#define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
#define EXCP_DMP 18 /* data memory protection trap */
#define EXCP_DMB 19 /* data memory break trap */
#define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
#define EXCP_PAGE_REF 21 /* page reference trap */
#define EXCP_ASSIST_EMU 22 /* assist emulation trap */
#define EXCP_HPT 23 /* high-privilege transfer trap */
#define EXCP_LPT 24 /* low-privilege transfer trap */
#define EXCP_TB 25 /* taken branch trap */
#define EXCP_DMAR 26 /* data memory access rights trap */
#define EXCP_DMPI 27 /* data memory protection id trap */
#define EXCP_UNALIGN 28 /* unaligned data reference trap */
#define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
/* Exceptions for linux-user emulation. */
#define EXCP_SYSCALL 30
#define EXCP_SYSCALL_LWS 31
hppa: Add support for an emulated TOC/NMI button. Almost all PA-RISC machines have either a button that is labeled with 'TOC' or a BMC/GSP function to trigger a TOC. TOC is a non-maskable interrupt that is sent to the processor. This can be used for diagnostic purposes like obtaining a stack trace/register dump or to enter KDB/KGDB in Linux. This patch adds support for such an emulated TOC button. It wires up the qemu monitor "nmi" command to trigger a TOC. For that it provides the hppa_nmi function which is assigned to the nmi_monitor_handler function pointer. When called it raises the EXCP_TOC hardware interrupt in the hppa_cpu_do_interrupt() function. The interrupt function then calls the architecturally defined TOC function in SeaBIOS-hppa firmware (at fixed address 0xf0000000). According to the PA-RISC PDC specification, the SeaBIOS firmware then writes the CPU registers into PIM (processor internal memmory) for later analysis. In order to write all registers it needs to know the contents of the CPU "shadow registers" and the IASQ- and IAOQ-back values. The IAOQ/IASQ values are provided by qemu in shadow registers when entering the SeaBIOS TOC function. This patch adds a new aritificial opcode "getshadowregs" (0xfffdead2) which restores the original values of the shadow registers. With this opcode SeaBIOS can store those registers as well into PIM before calling an OS-provided TOC handler. To trigger a TOC, switch to the qemu monitor with Ctrl-A C, and type in the command "nmi". After the TOC started the OS-debugger, exit the qemu monitor with Ctrl-A C. Signed-off-by: Helge Deller <deller@gmx.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2022-01-06 01:09:04 +03:00
/* Emulated hardware TOC button */
#define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */
#define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */
/* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
#define PSW_I 0x00000001
#define PSW_D 0x00000002
#define PSW_P 0x00000004
#define PSW_Q 0x00000008
#define PSW_R 0x00000010
#define PSW_F 0x00000020
#define PSW_G 0x00000040 /* PA1.x only */
#define PSW_O 0x00000080 /* PA2.0 only */
#define PSW_CB 0x0000ff00
#define PSW_M 0x00010000
#define PSW_V 0x00020000
#define PSW_C 0x00040000
#define PSW_B 0x00080000
#define PSW_X 0x00100000
#define PSW_N 0x00200000
#define PSW_L 0x00400000
#define PSW_H 0x00800000
#define PSW_T 0x01000000
#define PSW_S 0x02000000
#define PSW_E 0x04000000
#ifdef TARGET_HPPA64
#define PSW_W 0x08000000 /* PA2.0 only */
#else
#define PSW_W 0
#endif
#define PSW_Z 0x40000000 /* PA1.x only */
#define PSW_Y 0x80000000 /* PA1.x only */
#define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
| PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
/* ssm/rsm instructions number PSW_W and PSW_E differently */
#define PSW_SM_I PSW_I /* Enable External Interrupts */
#define PSW_SM_D PSW_D
#define PSW_SM_P PSW_P
#define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
#define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
#ifdef TARGET_HPPA64
#define PSW_SM_E 0x100
#define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
#else
#define PSW_SM_E 0
#define PSW_SM_W 0
#endif
#define CR_RC 0
#define CR_PID1 8
#define CR_PID2 9
#define CR_PID3 12
#define CR_PID4 13
#define CR_SCRCCR 10
#define CR_SAR 11
#define CR_IVA 14
#define CR_EIEM 15
#define CR_IT 16
#define CR_IIASQ 17
#define CR_IIAOQ 18
#define CR_IIR 19
#define CR_ISR 20
#define CR_IOR 21
#define CR_IPSW 22
#define CR_EIRR 23
#if TARGET_REGISTER_BITS == 32
typedef uint32_t target_ureg;
typedef int32_t target_sreg;
#define TREG_FMT_lx "%08"PRIx32
#define TREG_FMT_ld "%"PRId32
#else
typedef uint64_t target_ureg;
typedef int64_t target_sreg;
#define TREG_FMT_lx "%016"PRIx64
#define TREG_FMT_ld "%"PRId64
#endif
typedef struct {
uint64_t va_b;
uint64_t va_e;
target_ureg pa;
unsigned u : 1;
unsigned t : 1;
unsigned d : 1;
unsigned b : 1;
unsigned page_size : 4;
unsigned ar_type : 3;
unsigned ar_pl1 : 2;
unsigned ar_pl2 : 2;
unsigned entry_valid : 1;
unsigned access_id : 16;
} hppa_tlb_entry;
typedef struct CPUArchState {
target_ureg iaoq_f; /* front */
target_ureg iaoq_b; /* back, aka next instruction */
target_ureg gr[32];
uint64_t fr[32];
uint64_t sr[8]; /* stored shifted into place for gva */
target_ureg psw; /* All psw bits except the following: */
target_ureg psw_n; /* boolean */
target_sreg psw_v; /* in most significant bit */
/* Splitting the carry-borrow field into the MSB and "the rest", allows
* for "the rest" to be deleted when it is unused, but the MSB is in use.
* In addition, it's easier to compute carry-in for bit B+1 than it is to
* compute carry-out for bit B (3 vs 4 insns for addition, assuming the
* host has the appropriate add-with-carry insn to compute the msb).
* Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
*/
target_ureg psw_cb; /* in least significant bit of next nibble */
target_ureg psw_cb_msb; /* boolean */
uint64_t iasq_f;
uint64_t iasq_b;
uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
float_status fp_status;
target_ureg cr[32]; /* control registers */
target_ureg cr_back[2]; /* back of cr17/cr18 */
target_ureg shadow[7]; /* shadow registers */
/* ??? The number of entries isn't specified by the architecture. */
#define HPPA_TLB_ENTRIES 256
#define HPPA_BTLB_ENTRIES 0
/* ??? Implement a unified itlb/dtlb for the moment. */
/* ??? We should use a more intelligent data structure. */
hppa_tlb_entry tlb[HPPA_TLB_ENTRIES];
uint32_t tlb_last;
} CPUHPPAState;
/**
* HPPACPU:
* @env: #CPUHPPAState
*
* An HPPA CPU.
*/
struct ArchCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPUHPPAState env;
QEMUTimer *alarm_timer;
};
#include "exec/cpu-all.h"
static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
{
#ifdef CONFIG_USER_ONLY
return MMU_USER_IDX;
#else
if (env->psw & (ifetch ? PSW_C : PSW_D)) {
return PRIV_TO_MMU_IDX(env->iaoq_f & 3);
}
return MMU_PHYS_IDX; /* mmu disabled */
#endif
}
void hppa_translate_init(void);
#define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
target_ureg off)
{
#ifdef CONFIG_USER_ONLY
return off;
#else
off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
return spc | off;
#endif
}
static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
target_ureg off)
{
return hppa_form_gva_psw(env->psw, spc, off);
}
/*
* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
* TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
* same value.
*/
#define TB_FLAG_SR_SAME PSW_I
#define TB_FLAG_PRIV_SHIFT 8
#define TB_FLAG_UNALIGN 0x400
static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
uint64_t *cs_base, uint32_t *pflags)
{
uint32_t flags = env->psw_n * PSW_N;
/* TB lookup assumes that PC contains the complete virtual address.
If we leave space+offset separate, we'll get ITLB misses to an
incomplete virtual address. This also means that we must separate
out current cpu privilege from the low bits of IAOQ_F. */
#ifdef CONFIG_USER_ONLY
*pc = env->iaoq_f & -4;
*cs_base = env->iaoq_b & -4;
flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
#else
/* ??? E, T, H, L, B, P bits need to be here, when implemented. */
flags |= env->psw & (PSW_W | PSW_C | PSW_D);
flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
*pc = (env->psw & PSW_C
? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
: env->iaoq_f & -4);
*cs_base = env->iasq_f;
/* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
low 32-bits of CS_BASE. This will succeed for all direct branches,
which is the primary case we care about -- using goto_tb within a page.
Failure is indicated by a zero difference. */
if (env->iasq_f == env->iasq_b) {
target_sreg diff = env->iaoq_b - env->iaoq_f;
if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
*cs_base |= (uint32_t)diff;
}
}
if ((env->sr[4] == env->sr[5])
& (env->sr[4] == env->sr[6])
& (env->sr[4] == env->sr[7])) {
flags |= TB_FLAG_SR_SAME;
}
#endif
*pflags = flags;
}
target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
void cpu_hppa_loaded_fr0(CPUHPPAState *env);
#ifdef CONFIG_USER_ONLY
static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
#else
void cpu_hppa_change_prot_id(CPUHPPAState *env);
#endif
int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
#ifndef CONFIG_USER_ONLY
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
void hppa_cpu_do_interrupt(CPUState *cpu);
bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
int type, hwaddr *pphys, int *pprot);
extern const MemoryRegionOps hppa_io_eir_ops;
extern const VMStateDescription vmstate_hppa_cpu;
void hppa_cpu_alarm_timer(void *);
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
#endif
G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
#endif /* HPPA_CPU_H */