2010-05-14 11:29:02 +04:00
|
|
|
/*
|
|
|
|
* ACPI implementation
|
|
|
|
*
|
|
|
|
* Copyright (c) 2006 Fabrice Bellard
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License version 2 as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>
|
2012-01-13 20:44:23 +04:00
|
|
|
*
|
|
|
|
* Contributions after 2012-01-13 are licensed under the terms of the
|
|
|
|
* GNU GPL, version 2 or (at your option) any later version.
|
2010-05-14 11:29:02 +04:00
|
|
|
*/
|
2013-02-04 18:40:22 +04:00
|
|
|
#include "hw/hw.h"
|
2013-02-05 20:06:20 +04:00
|
|
|
#include "hw/i386/pc.h"
|
|
|
|
#include "hw/isa/apm.h"
|
|
|
|
#include "hw/i2c/pm_smbus.h"
|
2013-02-04 18:40:22 +04:00
|
|
|
#include "hw/pci/pci.h"
|
2013-02-05 20:06:20 +04:00
|
|
|
#include "hw/acpi/acpi.h"
|
2012-12-17 21:20:04 +04:00
|
|
|
#include "sysemu/sysemu.h"
|
2012-12-17 21:20:00 +04:00
|
|
|
#include "qemu/range.h"
|
2012-12-17 21:19:49 +04:00
|
|
|
#include "exec/ioport.h"
|
2013-02-05 20:06:20 +04:00
|
|
|
#include "hw/nvram/fw_cfg.h"
|
2012-12-17 21:19:49 +04:00
|
|
|
#include "exec/address-spaces.h"
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
//#define DEBUG
|
|
|
|
|
2010-05-14 11:29:22 +04:00
|
|
|
#ifdef DEBUG
|
|
|
|
# define PIIX4_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
|
|
|
|
#else
|
|
|
|
# define PIIX4_DPRINTF(format, ...) do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
2010-05-14 11:29:20 +04:00
|
|
|
#define GPE_BASE 0xafe0
|
2011-03-25 13:54:41 +03:00
|
|
|
#define GPE_LEN 4
|
2012-11-23 19:03:19 +04:00
|
|
|
|
|
|
|
#define PCI_HOTPLUG_ADDR 0xae00
|
|
|
|
#define PCI_HOTPLUG_SIZE 0x000f
|
2012-04-05 21:07:08 +04:00
|
|
|
#define PCI_UP_BASE 0xae00
|
|
|
|
#define PCI_DOWN_BASE 0xae04
|
2010-05-14 11:29:20 +04:00
|
|
|
#define PCI_EJ_BASE 0xae08
|
2011-01-11 19:20:39 +03:00
|
|
|
#define PCI_RMV_BASE 0xae0c
|
2010-05-14 11:29:20 +04:00
|
|
|
|
2013-04-25 18:05:25 +04:00
|
|
|
#define PIIX4_PROC_BASE 0xaf00
|
|
|
|
#define PIIX4_PROC_LEN 32
|
|
|
|
|
2010-10-17 13:45:24 +04:00
|
|
|
#define PIIX4_PCI_HOTPLUG_STATUS 2
|
2013-04-25 18:05:25 +04:00
|
|
|
#define PIIX4_CPU_HOTPLUG_STATUS 4
|
2010-10-17 13:45:24 +04:00
|
|
|
|
2010-05-14 11:29:20 +04:00
|
|
|
struct pci_status {
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
uint32_t up; /* deprecated, maintained for migration compatibility */
|
2010-05-14 11:29:20 +04:00
|
|
|
uint32_t down;
|
|
|
|
};
|
|
|
|
|
2013-04-25 18:05:25 +04:00
|
|
|
typedef struct CPUStatus {
|
|
|
|
uint8_t sts[PIIX4_PROC_LEN];
|
|
|
|
} CPUStatus;
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
typedef struct PIIX4PMState {
|
2013-06-30 16:40:37 +04:00
|
|
|
/*< private >*/
|
|
|
|
PCIDevice parent_obj;
|
|
|
|
/*< public >*/
|
2012-12-11 12:40:45 +04:00
|
|
|
|
2012-11-22 14:34:44 +04:00
|
|
|
MemoryRegion io;
|
2012-11-23 18:35:13 +04:00
|
|
|
MemoryRegion io_gpe;
|
2012-11-23 19:03:19 +04:00
|
|
|
MemoryRegion io_pci;
|
2013-04-25 18:05:25 +04:00
|
|
|
MemoryRegion io_cpu;
|
2012-02-23 16:45:16 +04:00
|
|
|
ACPIREGS ar;
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
APMState apm;
|
|
|
|
|
|
|
|
PMSMBus smb;
|
2010-05-14 11:29:18 +04:00
|
|
|
uint32_t smb_io_base;
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
qemu_irq irq;
|
|
|
|
qemu_irq smi_irq;
|
|
|
|
int kvm_enabled;
|
2011-07-15 19:10:15 +04:00
|
|
|
Notifier machine_ready;
|
2012-09-06 01:06:22 +04:00
|
|
|
Notifier powerdown_notifier;
|
2010-05-14 11:29:20 +04:00
|
|
|
|
|
|
|
/* for pci hotplug */
|
|
|
|
struct pci_status pci0_status;
|
2011-01-11 19:20:39 +03:00
|
|
|
uint32_t pci0_hotplug_enable;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
uint32_t pci0_slot_device_present;
|
2012-06-04 15:31:55 +04:00
|
|
|
|
|
|
|
uint8_t disable_s3;
|
|
|
|
uint8_t disable_s4;
|
|
|
|
uint8_t s4_val;
|
2013-04-25 18:05:25 +04:00
|
|
|
|
|
|
|
CPUStatus gpe_cpu;
|
|
|
|
Notifier cpu_added_notifier;
|
2010-05-14 11:29:02 +04:00
|
|
|
} PIIX4PMState;
|
|
|
|
|
2013-06-24 10:57:14 +04:00
|
|
|
#define TYPE_PIIX4_PM "PIIX4_PM"
|
|
|
|
|
|
|
|
#define PIIX4_PM(obj) \
|
|
|
|
OBJECT_CHECK(PIIX4PMState, (obj), TYPE_PIIX4_PM)
|
|
|
|
|
2012-12-11 12:40:45 +04:00
|
|
|
static void piix4_acpi_system_hot_add_init(MemoryRegion *parent,
|
|
|
|
PCIBus *bus, PIIX4PMState *s);
|
2010-05-14 11:29:20 +04:00
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
#define ACPI_ENABLE 0xf1
|
|
|
|
#define ACPI_DISABLE 0xf0
|
|
|
|
|
|
|
|
static void pm_update_sci(PIIX4PMState *s)
|
|
|
|
{
|
|
|
|
int sci_level, pmsts;
|
|
|
|
|
2012-02-23 16:45:17 +04:00
|
|
|
pmsts = acpi_pm1_evt_get_sts(&s->ar);
|
2012-02-23 16:45:16 +04:00
|
|
|
sci_level = (((pmsts & s->ar.pm1.evt.en) &
|
2010-05-14 11:29:02 +04:00
|
|
|
(ACPI_BITMASK_RT_CLOCK_ENABLE |
|
|
|
|
ACPI_BITMASK_POWER_BUTTON_ENABLE |
|
|
|
|
ACPI_BITMASK_GLOBAL_LOCK_ENABLE |
|
2010-10-17 13:45:25 +04:00
|
|
|
ACPI_BITMASK_TIMER_ENABLE)) != 0) ||
|
2013-04-25 18:05:25 +04:00
|
|
|
(((s->ar.gpe.sts[0] & s->ar.gpe.en[0]) &
|
|
|
|
(PIIX4_PCI_HOTPLUG_STATUS | PIIX4_CPU_HOTPLUG_STATUS)) != 0);
|
2010-10-17 13:45:25 +04:00
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
qemu_set_irq(s->irq, sci_level);
|
|
|
|
/* schedule a timer interruption if needed */
|
2012-02-23 16:45:16 +04:00
|
|
|
acpi_pm_tmr_update(&s->ar, (s->ar.pm1.evt.en & ACPI_BITMASK_TIMER_ENABLE) &&
|
2011-03-25 13:54:38 +03:00
|
|
|
!(pmsts & ACPI_BITMASK_TIMER_STATUS));
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2012-02-23 16:45:16 +04:00
|
|
|
static void pm_tmr_timer(ACPIREGS *ar)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2012-02-23 16:45:16 +04:00
|
|
|
PIIX4PMState *s = container_of(ar, PIIX4PMState, ar);
|
2010-05-14 11:29:02 +04:00
|
|
|
pm_update_sci(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void apm_ctrl_changed(uint32_t val, void *arg)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = arg;
|
2013-06-30 16:40:37 +04:00
|
|
|
PCIDevice *d = PCI_DEVICE(s);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
/* ACPI specs 3.0, 4.7.2.5 */
|
2012-02-23 16:45:16 +04:00
|
|
|
acpi_pm1_cnt_update(&s->ar, val == ACPI_ENABLE, val == ACPI_DISABLE);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2013-06-30 16:40:37 +04:00
|
|
|
if (d->config[0x5b] & (1 << 1)) {
|
2010-05-14 11:29:02 +04:00
|
|
|
if (s->smi_irq) {
|
|
|
|
qemu_irq_raise(s->smi_irq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pm_io_space_update(PIIX4PMState *s)
|
|
|
|
{
|
2013-06-30 16:40:37 +04:00
|
|
|
PCIDevice *d = PCI_DEVICE(s);
|
2010-05-14 11:29:02 +04:00
|
|
|
uint32_t pm_io_base;
|
|
|
|
|
2013-06-30 16:40:37 +04:00
|
|
|
pm_io_base = le32_to_cpu(*(uint32_t *)(d->config + 0x40));
|
2012-11-22 14:34:44 +04:00
|
|
|
pm_io_base &= 0xffc0;
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-11-22 14:34:44 +04:00
|
|
|
memory_region_transaction_begin();
|
2013-06-30 16:40:37 +04:00
|
|
|
memory_region_set_enabled(&s->io, d->config[0x80] & 1);
|
2012-11-22 14:34:44 +04:00
|
|
|
memory_region_set_address(&s->io, pm_io_base);
|
|
|
|
memory_region_transaction_commit();
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2012-11-23 17:58:04 +04:00
|
|
|
static void smbus_io_space_update(PIIX4PMState *s)
|
|
|
|
{
|
2013-06-30 16:40:37 +04:00
|
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
|
|
|
|
|
|
s->smb_io_base = le32_to_cpu(*(uint32_t *)(d->config + 0x90));
|
2012-11-23 17:58:04 +04:00
|
|
|
s->smb_io_base &= 0xffc0;
|
|
|
|
|
|
|
|
memory_region_transaction_begin();
|
2013-06-30 16:40:37 +04:00
|
|
|
memory_region_set_enabled(&s->smb.io, d->config[0xd2] & 1);
|
2012-11-23 17:58:04 +04:00
|
|
|
memory_region_set_address(&s->smb.io, s->smb_io_base);
|
|
|
|
memory_region_transaction_commit();
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pm_write_config(PCIDevice *d,
|
|
|
|
uint32_t address, uint32_t val, int len)
|
|
|
|
{
|
|
|
|
pci_default_write_config(d, address, val, len);
|
2012-11-23 17:58:04 +04:00
|
|
|
if (range_covers_byte(address, len, 0x80) ||
|
|
|
|
ranges_overlap(address, len, 0x40, 4)) {
|
2010-05-14 11:29:02 +04:00
|
|
|
pm_io_space_update((PIIX4PMState *)d);
|
2012-11-23 17:58:04 +04:00
|
|
|
}
|
|
|
|
if (range_covers_byte(address, len, 0xd2) ||
|
|
|
|
ranges_overlap(address, len, 0x90, 4)) {
|
|
|
|
smbus_io_space_update((PIIX4PMState *)d);
|
|
|
|
}
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
static void vmstate_pci_status_pre_save(void *opaque)
|
|
|
|
{
|
|
|
|
struct pci_status *pci0_status = opaque;
|
|
|
|
PIIX4PMState *s = container_of(pci0_status, PIIX4PMState, pci0_status);
|
|
|
|
|
|
|
|
/* We no longer track up, so build a safe value for migrating
|
|
|
|
* to a version that still does... of course these might get lost
|
|
|
|
* by an old buggy implementation, but we try. */
|
|
|
|
pci0_status->up = s->pci0_slot_device_present & s->pci0_hotplug_enable;
|
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
static int vmstate_acpi_post_load(void *opaque, int version_id)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = opaque;
|
|
|
|
|
|
|
|
pm_io_space_update(s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-03-25 13:54:41 +03:00
|
|
|
#define VMSTATE_GPE_ARRAY(_field, _state) \
|
|
|
|
{ \
|
|
|
|
.name = (stringify(_field)), \
|
|
|
|
.version_id = 0, \
|
|
|
|
.info = &vmstate_info_uint16, \
|
|
|
|
.size = sizeof(uint16_t), \
|
2012-10-31 03:14:19 +04:00
|
|
|
.flags = VMS_SINGLE | VMS_POINTER, \
|
2011-03-25 13:54:41 +03:00
|
|
|
.offset = vmstate_offset_pointer(_state, _field, uint8_t), \
|
|
|
|
}
|
|
|
|
|
2010-06-02 20:58:29 +04:00
|
|
|
static const VMStateDescription vmstate_gpe = {
|
|
|
|
.name = "gpe",
|
|
|
|
.version_id = 1,
|
|
|
|
.minimum_version_id = 1,
|
|
|
|
.minimum_version_id_old = 1,
|
|
|
|
.fields = (VMStateField []) {
|
2011-03-25 13:54:41 +03:00
|
|
|
VMSTATE_GPE_ARRAY(sts, ACPIGPE),
|
|
|
|
VMSTATE_GPE_ARRAY(en, ACPIGPE),
|
2010-06-02 20:58:29 +04:00
|
|
|
VMSTATE_END_OF_LIST()
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static const VMStateDescription vmstate_pci_status = {
|
|
|
|
.name = "pci_status",
|
|
|
|
.version_id = 1,
|
|
|
|
.minimum_version_id = 1,
|
|
|
|
.minimum_version_id_old = 1,
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
.pre_save = vmstate_pci_status_pre_save,
|
2010-06-02 20:58:29 +04:00
|
|
|
.fields = (VMStateField []) {
|
|
|
|
VMSTATE_UINT32(up, struct pci_status),
|
|
|
|
VMSTATE_UINT32(down, struct pci_status),
|
|
|
|
VMSTATE_END_OF_LIST()
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2012-10-31 03:14:19 +04:00
|
|
|
static int acpi_load_old(QEMUFile *f, void *opaque, int version_id)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = opaque;
|
|
|
|
int ret, i;
|
|
|
|
uint16_t temp;
|
|
|
|
|
2013-06-30 16:40:37 +04:00
|
|
|
ret = pci_device_load(PCI_DEVICE(s), f);
|
2012-10-31 03:14:19 +04:00
|
|
|
if (ret < 0) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
qemu_get_be16s(f, &s->ar.pm1.evt.sts);
|
|
|
|
qemu_get_be16s(f, &s->ar.pm1.evt.en);
|
|
|
|
qemu_get_be16s(f, &s->ar.pm1.cnt.cnt);
|
|
|
|
|
2013-02-04 20:07:51 +04:00
|
|
|
ret = vmstate_load_state(f, &vmstate_apm, &s->apm, 1);
|
2012-10-31 03:14:19 +04:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-08-21 19:03:02 +04:00
|
|
|
timer_get(f, s->ar.tmr.timer);
|
2012-10-31 03:14:19 +04:00
|
|
|
qemu_get_sbe64s(f, &s->ar.tmr.overflow_time);
|
|
|
|
|
|
|
|
qemu_get_be16s(f, (uint16_t *)s->ar.gpe.sts);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
qemu_get_be16s(f, &temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
qemu_get_be16s(f, (uint16_t *)s->ar.gpe.en);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
qemu_get_be16s(f, &temp);
|
|
|
|
}
|
|
|
|
|
2013-02-04 20:07:51 +04:00
|
|
|
ret = vmstate_load_state(f, &vmstate_pci_status, &s->pci0_status, 1);
|
2012-10-31 03:14:19 +04:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* qemu-kvm 1.2 uses version 3 but advertised as 2
|
|
|
|
* To support incoming qemu-kvm 1.2 migration, change version_id
|
|
|
|
* and minimum_version_id to 2 below (which breaks migration from
|
|
|
|
* qemu 1.2).
|
|
|
|
*
|
|
|
|
*/
|
2010-05-14 11:29:02 +04:00
|
|
|
static const VMStateDescription vmstate_acpi = {
|
|
|
|
.name = "piix4_pm",
|
2012-10-31 03:14:19 +04:00
|
|
|
.version_id = 3,
|
|
|
|
.minimum_version_id = 3,
|
2010-05-14 11:29:02 +04:00
|
|
|
.minimum_version_id_old = 1,
|
2012-10-31 03:14:19 +04:00
|
|
|
.load_state_old = acpi_load_old,
|
2010-05-14 11:29:02 +04:00
|
|
|
.post_load = vmstate_acpi_post_load,
|
|
|
|
.fields = (VMStateField []) {
|
2013-06-30 16:40:37 +04:00
|
|
|
VMSTATE_PCI_DEVICE(parent_obj, PIIX4PMState),
|
2012-02-23 16:45:16 +04:00
|
|
|
VMSTATE_UINT16(ar.pm1.evt.sts, PIIX4PMState),
|
|
|
|
VMSTATE_UINT16(ar.pm1.evt.en, PIIX4PMState),
|
|
|
|
VMSTATE_UINT16(ar.pm1.cnt.cnt, PIIX4PMState),
|
2010-05-14 11:29:02 +04:00
|
|
|
VMSTATE_STRUCT(apm, PIIX4PMState, 0, vmstate_apm, APMState),
|
2012-02-23 16:45:16 +04:00
|
|
|
VMSTATE_TIMER(ar.tmr.timer, PIIX4PMState),
|
|
|
|
VMSTATE_INT64(ar.tmr.overflow_time, PIIX4PMState),
|
|
|
|
VMSTATE_STRUCT(ar.gpe, PIIX4PMState, 2, vmstate_gpe, ACPIGPE),
|
2010-06-02 20:58:29 +04:00
|
|
|
VMSTATE_STRUCT(pci0_status, PIIX4PMState, 2, vmstate_pci_status,
|
|
|
|
struct pci_status),
|
2010-05-14 11:29:02 +04:00
|
|
|
VMSTATE_END_OF_LIST()
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
static void acpi_piix_eject_slot(PIIX4PMState *s, unsigned slots)
|
|
|
|
{
|
2011-12-24 01:34:39 +04:00
|
|
|
BusChild *kid, *next;
|
2013-06-24 10:57:14 +04:00
|
|
|
BusState *bus = qdev_get_parent_bus(DEVICE(s));
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
int slot = ffs(slots) - 1;
|
2012-04-15 13:00:52 +04:00
|
|
|
bool slot_free = true;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
|
|
|
|
/* Mark request as complete */
|
|
|
|
s->pci0_status.down &= ~(1U << slot);
|
|
|
|
|
2011-12-24 01:34:39 +04:00
|
|
|
QTAILQ_FOREACH_SAFE(kid, &bus->children, sibling, next) {
|
|
|
|
DeviceState *qdev = kid->child;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
PCIDevice *dev = PCI_DEVICE(qdev);
|
|
|
|
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
|
2012-04-15 13:00:52 +04:00
|
|
|
if (PCI_SLOT(dev->devfn) == slot) {
|
|
|
|
if (pc->no_hotplug) {
|
|
|
|
slot_free = false;
|
|
|
|
} else {
|
|
|
|
qdev_free(qdev);
|
|
|
|
}
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
}
|
|
|
|
}
|
2012-04-15 13:00:52 +04:00
|
|
|
if (slot_free) {
|
|
|
|
s->pci0_slot_device_present &= ~(1U << slot);
|
|
|
|
}
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
}
|
|
|
|
|
2011-01-11 19:20:39 +03:00
|
|
|
static void piix4_update_hotplug(PIIX4PMState *s)
|
|
|
|
{
|
2013-06-24 10:57:14 +04:00
|
|
|
BusState *bus = qdev_get_parent_bus(DEVICE(s));
|
2011-12-24 01:34:39 +04:00
|
|
|
BusChild *kid, *next;
|
2011-01-11 19:20:39 +03:00
|
|
|
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
/* Execute any pending removes during reset */
|
|
|
|
while (s->pci0_status.down) {
|
|
|
|
acpi_piix_eject_slot(s, s->pci0_status.down);
|
|
|
|
}
|
|
|
|
|
2011-01-11 19:20:39 +03:00
|
|
|
s->pci0_hotplug_enable = ~0;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
s->pci0_slot_device_present = 0;
|
2011-01-11 19:20:39 +03:00
|
|
|
|
2011-12-24 01:34:39 +04:00
|
|
|
QTAILQ_FOREACH_SAFE(kid, &bus->children, sibling, next) {
|
|
|
|
DeviceState *qdev = kid->child;
|
2011-12-04 22:22:06 +04:00
|
|
|
PCIDevice *pdev = PCI_DEVICE(qdev);
|
|
|
|
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pdev);
|
2011-01-11 19:20:39 +03:00
|
|
|
int slot = PCI_SLOT(pdev->devfn);
|
|
|
|
|
2011-12-04 22:22:06 +04:00
|
|
|
if (pc->no_hotplug) {
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
s->pci0_hotplug_enable &= ~(1U << slot);
|
2011-01-11 19:20:39 +03:00
|
|
|
}
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
|
|
|
|
s->pci0_slot_device_present |= (1U << slot);
|
2011-01-11 19:20:39 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
static void piix4_reset(void *opaque)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = opaque;
|
2013-06-30 16:40:37 +04:00
|
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
|
|
uint8_t *pci_conf = d->config;
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
pci_conf[0x58] = 0;
|
|
|
|
pci_conf[0x59] = 0;
|
|
|
|
pci_conf[0x5a] = 0;
|
|
|
|
pci_conf[0x5b] = 0;
|
|
|
|
|
2012-08-07 16:52:03 +04:00
|
|
|
pci_conf[0x40] = 0x01; /* PM io base read only bit */
|
|
|
|
pci_conf[0x80] = 0;
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
if (s->kvm_enabled) {
|
|
|
|
/* Mark SMM as already inited (until KVM supports SMM). */
|
|
|
|
pci_conf[0x5B] = 0x02;
|
|
|
|
}
|
2011-01-11 19:20:39 +03:00
|
|
|
piix4_update_hotplug(s);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2012-09-06 01:06:22 +04:00
|
|
|
static void piix4_pm_powerdown_req(Notifier *n, void *opaque)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2012-09-06 01:06:22 +04:00
|
|
|
PIIX4PMState *s = container_of(n, PIIX4PMState, powerdown_notifier);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-02-23 16:45:16 +04:00
|
|
|
assert(s != NULL);
|
|
|
|
acpi_pm1_evt_power_down(&s->ar);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2011-06-20 16:06:26 +04:00
|
|
|
static void piix4_pm_machine_ready(Notifier *n, void *opaque)
|
2011-07-15 19:10:15 +04:00
|
|
|
{
|
|
|
|
PIIX4PMState *s = container_of(n, PIIX4PMState, machine_ready);
|
2013-06-30 16:40:37 +04:00
|
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
|
|
MemoryRegion *io_as = pci_address_space_io(d);
|
2011-07-15 19:10:15 +04:00
|
|
|
uint8_t *pci_conf;
|
|
|
|
|
2013-06-30 16:40:37 +04:00
|
|
|
pci_conf = d->config;
|
2013-06-22 10:07:01 +04:00
|
|
|
pci_conf[0x5f] = 0x10 |
|
2013-07-02 15:40:48 +04:00
|
|
|
(memory_region_present(io_as, 0x378) ? 0x80 : 0);
|
2011-07-15 19:10:15 +04:00
|
|
|
pci_conf[0x63] = 0x60;
|
2013-07-02 15:40:48 +04:00
|
|
|
pci_conf[0x67] = (memory_region_present(io_as, 0x3f8) ? 0x08 : 0) |
|
|
|
|
(memory_region_present(io_as, 0x2f8) ? 0x90 : 0);
|
2011-07-15 19:10:15 +04:00
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:18 +04:00
|
|
|
static int piix4_pm_initfn(PCIDevice *dev)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2013-06-24 10:57:14 +04:00
|
|
|
PIIX4PMState *s = PIIX4_PM(dev);
|
2010-05-14 11:29:02 +04:00
|
|
|
uint8_t *pci_conf;
|
|
|
|
|
2013-06-30 16:40:37 +04:00
|
|
|
pci_conf = dev->config;
|
2010-05-14 11:29:02 +04:00
|
|
|
pci_conf[0x06] = 0x80;
|
|
|
|
pci_conf[0x07] = 0x02;
|
|
|
|
pci_conf[0x09] = 0x00;
|
|
|
|
pci_conf[0x3d] = 0x01; // interrupt pin 1
|
|
|
|
|
|
|
|
/* APM */
|
2012-09-19 15:50:03 +04:00
|
|
|
apm_init(dev, &s->apm, apm_ctrl_changed, s);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
|
|
|
if (s->kvm_enabled) {
|
|
|
|
/* Mark SMM as already inited to prevent SMM from running. KVM does not
|
|
|
|
* support SMM mode. */
|
|
|
|
pci_conf[0x5B] = 0x02;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: which specification is used ? The i82731AB has different
|
|
|
|
mappings */
|
2010-05-14 11:29:18 +04:00
|
|
|
pci_conf[0x90] = s->smb_io_base | 1;
|
|
|
|
pci_conf[0x91] = s->smb_io_base >> 8;
|
2010-05-14 11:29:02 +04:00
|
|
|
pci_conf[0xd2] = 0x09;
|
2013-06-24 10:57:14 +04:00
|
|
|
pm_smbus_init(DEVICE(dev), &s->smb);
|
2012-11-23 17:58:04 +04:00
|
|
|
memory_region_set_enabled(&s->smb.io, pci_conf[0xd2] & 1);
|
2012-12-11 12:40:45 +04:00
|
|
|
memory_region_add_subregion(pci_address_space_io(dev),
|
|
|
|
s->smb_io_base, &s->smb.io);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2013-06-07 05:25:08 +04:00
|
|
|
memory_region_init(&s->io, OBJECT(s), "piix4-pm", 64);
|
2012-11-22 14:34:44 +04:00
|
|
|
memory_region_set_enabled(&s->io, false);
|
2012-12-11 12:40:45 +04:00
|
|
|
memory_region_add_subregion(pci_address_space_io(dev),
|
|
|
|
0, &s->io);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-11-22 15:12:30 +04:00
|
|
|
acpi_pm_tmr_init(&s->ar, pm_tmr_timer, &s->io);
|
2012-11-22 16:25:10 +04:00
|
|
|
acpi_pm1_evt_init(&s->ar, pm_tmr_timer, &s->io);
|
2013-04-02 22:41:40 +04:00
|
|
|
acpi_pm1_cnt_init(&s->ar, &s->io, s->s4_val);
|
2012-02-23 16:45:16 +04:00
|
|
|
acpi_gpe_init(&s->ar, GPE_LEN);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-09-06 01:06:22 +04:00
|
|
|
s->powerdown_notifier.notify = piix4_pm_powerdown_req;
|
|
|
|
qemu_register_powerdown_notifier(&s->powerdown_notifier);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2011-07-15 19:10:15 +04:00
|
|
|
s->machine_ready.notify = piix4_pm_machine_ready;
|
|
|
|
qemu_add_machine_init_done_notifier(&s->machine_ready);
|
2010-05-14 11:29:18 +04:00
|
|
|
qemu_register_reset(piix4_reset, s);
|
2012-12-11 12:40:45 +04:00
|
|
|
|
|
|
|
piix4_acpi_system_hot_add_init(pci_address_space_io(dev), dev->bus, s);
|
2010-05-14 11:29:18 +04:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
i2c_bus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base,
|
2012-02-23 16:45:20 +04:00
|
|
|
qemu_irq sci_irq, qemu_irq smi_irq,
|
2013-04-16 04:24:08 +04:00
|
|
|
int kvm_enabled, FWCfgState *fw_cfg)
|
2010-05-14 11:29:18 +04:00
|
|
|
{
|
2013-06-24 10:57:14 +04:00
|
|
|
DeviceState *dev;
|
2010-05-14 11:29:18 +04:00
|
|
|
PIIX4PMState *s;
|
|
|
|
|
2013-06-24 10:57:14 +04:00
|
|
|
dev = DEVICE(pci_create(bus, devfn, TYPE_PIIX4_PM));
|
|
|
|
qdev_prop_set_uint32(dev, "smb_io_base", smb_io_base);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2013-06-24 10:57:14 +04:00
|
|
|
s = PIIX4_PM(dev);
|
2010-05-14 11:29:02 +04:00
|
|
|
s->irq = sci_irq;
|
|
|
|
s->smi_irq = smi_irq;
|
2010-05-14 11:29:18 +04:00
|
|
|
s->kvm_enabled = kvm_enabled;
|
|
|
|
|
2013-06-24 10:57:14 +04:00
|
|
|
qdev_init_nofail(dev);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-06-04 15:31:55 +04:00
|
|
|
if (fw_cfg) {
|
|
|
|
uint8_t suspend[6] = {128, 0, 0, 129, 128, 128};
|
|
|
|
suspend[3] = 1 | ((!s->disable_s3) << 7);
|
|
|
|
suspend[4] = s->s4_val | ((!s->disable_s4) << 7);
|
|
|
|
|
|
|
|
fw_cfg_add_file(fw_cfg, "etc/system-states", g_memdup(suspend, 6), 6);
|
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
return s->smb.smbus;
|
|
|
|
}
|
|
|
|
|
2011-12-04 22:22:06 +04:00
|
|
|
static Property piix4_pm_properties[] = {
|
|
|
|
DEFINE_PROP_UINT32("smb_io_base", PIIX4PMState, smb_io_base, 0),
|
2012-06-04 15:31:55 +04:00
|
|
|
DEFINE_PROP_UINT8("disable_s3", PIIX4PMState, disable_s3, 0),
|
|
|
|
DEFINE_PROP_UINT8("disable_s4", PIIX4PMState, disable_s4, 0),
|
|
|
|
DEFINE_PROP_UINT8("s4_val", PIIX4PMState, s4_val, 2),
|
2011-12-04 22:22:06 +04:00
|
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
|
|
};
|
|
|
|
|
|
|
|
static void piix4_pm_class_init(ObjectClass *klass, void *data)
|
|
|
|
{
|
2011-12-08 07:34:16 +04:00
|
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
2011-12-04 22:22:06 +04:00
|
|
|
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
|
|
|
|
|
|
|
|
k->no_hotplug = 1;
|
|
|
|
k->init = piix4_pm_initfn;
|
|
|
|
k->config_write = pm_write_config;
|
|
|
|
k->vendor_id = PCI_VENDOR_ID_INTEL;
|
|
|
|
k->device_id = PCI_DEVICE_ID_INTEL_82371AB_3;
|
|
|
|
k->revision = 0x03;
|
|
|
|
k->class_id = PCI_CLASS_BRIDGE_OTHER;
|
2011-12-08 07:34:16 +04:00
|
|
|
dc->desc = "PM";
|
|
|
|
dc->no_user = 1;
|
|
|
|
dc->vmsd = &vmstate_acpi;
|
|
|
|
dc->props = piix4_pm_properties;
|
2011-12-04 22:22:06 +04:00
|
|
|
}
|
|
|
|
|
2013-01-10 19:19:07 +04:00
|
|
|
static const TypeInfo piix4_pm_info = {
|
2013-06-24 10:57:14 +04:00
|
|
|
.name = TYPE_PIIX4_PM,
|
2011-12-08 07:34:16 +04:00
|
|
|
.parent = TYPE_PCI_DEVICE,
|
|
|
|
.instance_size = sizeof(PIIX4PMState),
|
|
|
|
.class_init = piix4_pm_class_init,
|
2010-05-14 11:29:18 +04:00
|
|
|
};
|
|
|
|
|
2012-02-09 18:20:55 +04:00
|
|
|
static void piix4_pm_register_types(void)
|
2010-05-14 11:29:18 +04:00
|
|
|
{
|
2011-12-08 07:34:16 +04:00
|
|
|
type_register_static(&piix4_pm_info);
|
2010-05-14 11:29:18 +04:00
|
|
|
}
|
|
|
|
|
2012-02-09 18:20:55 +04:00
|
|
|
type_init(piix4_pm_register_types)
|
2010-05-14 11:29:18 +04:00
|
|
|
|
2012-11-23 18:35:13 +04:00
|
|
|
static uint64_t gpe_readb(void *opaque, hwaddr addr, unsigned width)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2010-10-17 13:45:25 +04:00
|
|
|
PIIX4PMState *s = opaque;
|
2012-02-23 16:45:16 +04:00
|
|
|
uint32_t val = acpi_gpe_ioport_readb(&s->ar, addr);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("gpe read %" HWADDR_PRIx " == %" PRIu32 "\n", addr, val);
|
2010-05-14 11:29:02 +04:00
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
2012-11-23 18:35:13 +04:00
|
|
|
static void gpe_writeb(void *opaque, hwaddr addr, uint64_t val,
|
|
|
|
unsigned width)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2010-10-17 13:45:25 +04:00
|
|
|
PIIX4PMState *s = opaque;
|
|
|
|
|
2012-02-23 16:45:16 +04:00
|
|
|
acpi_gpe_ioport_writeb(&s->ar, addr, val);
|
2010-10-17 13:45:25 +04:00
|
|
|
pm_update_sci(s);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("gpe write %" HWADDR_PRIx " <== %" PRIu64 "\n", addr, val);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2012-11-23 18:35:13 +04:00
|
|
|
static const MemoryRegionOps piix4_gpe_ops = {
|
|
|
|
.read = gpe_readb,
|
|
|
|
.write = gpe_writeb,
|
|
|
|
.valid.min_access_size = 1,
|
|
|
|
.valid.max_access_size = 4,
|
|
|
|
.impl.min_access_size = 1,
|
|
|
|
.impl.max_access_size = 1,
|
|
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
|
|
};
|
|
|
|
|
2013-01-05 01:29:41 +04:00
|
|
|
static uint64_t pci_read(void *opaque, hwaddr addr, unsigned int size)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2012-04-05 21:07:08 +04:00
|
|
|
PIIX4PMState *s = opaque;
|
2013-01-05 01:29:41 +04:00
|
|
|
uint32_t val = 0;
|
|
|
|
|
|
|
|
switch (addr) {
|
|
|
|
case PCI_UP_BASE - PCI_HOTPLUG_ADDR:
|
|
|
|
/* Manufacture an "up" value to cause a device check on any hotplug
|
|
|
|
* slot with a device. Extra device checks are harmless. */
|
|
|
|
val = s->pci0_slot_device_present & s->pci0_hotplug_enable;
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("pci_up_read %" PRIu32 "\n", val);
|
2013-01-05 01:29:41 +04:00
|
|
|
break;
|
|
|
|
case PCI_DOWN_BASE - PCI_HOTPLUG_ADDR:
|
|
|
|
val = s->pci0_status.down;
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("pci_down_read %" PRIu32 "\n", val);
|
2013-01-05 01:29:41 +04:00
|
|
|
break;
|
|
|
|
case PCI_EJ_BASE - PCI_HOTPLUG_ADDR:
|
|
|
|
/* No feature defined yet */
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("pci_features_read %" PRIu32 "\n", val);
|
2013-01-05 01:29:41 +04:00
|
|
|
break;
|
|
|
|
case PCI_RMV_BASE - PCI_HOTPLUG_ADDR:
|
|
|
|
val = s->pci0_hotplug_enable;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2012-04-05 21:07:08 +04:00
|
|
|
|
|
|
|
return val;
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2013-01-05 01:29:41 +04:00
|
|
|
static void pci_write(void *opaque, hwaddr addr, uint64_t data,
|
|
|
|
unsigned int size)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2013-01-05 01:29:41 +04:00
|
|
|
switch (addr) {
|
|
|
|
case PCI_EJ_BASE - PCI_HOTPLUG_ADDR:
|
|
|
|
acpi_piix_eject_slot(opaque, (uint32_t)data);
|
2013-06-14 11:11:30 +04:00
|
|
|
PIIX4_DPRINTF("pciej write %" HWADDR_PRIx " <== %" PRIu64 "\n",
|
2013-01-05 01:29:41 +04:00
|
|
|
addr, data);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2011-01-11 19:20:39 +03:00
|
|
|
}
|
|
|
|
|
2012-11-23 19:03:19 +04:00
|
|
|
static const MemoryRegionOps piix4_pci_ops = {
|
2013-01-05 01:29:41 +04:00
|
|
|
.read = pci_read,
|
|
|
|
.write = pci_write,
|
2012-11-23 19:03:19 +04:00
|
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
2013-01-05 01:29:41 +04:00
|
|
|
.valid = {
|
|
|
|
.min_access_size = 4,
|
|
|
|
.max_access_size = 4,
|
|
|
|
},
|
2012-11-23 19:03:19 +04:00
|
|
|
};
|
|
|
|
|
2013-04-25 18:05:25 +04:00
|
|
|
static uint64_t cpu_status_read(void *opaque, hwaddr addr, unsigned int size)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = opaque;
|
|
|
|
CPUStatus *cpus = &s->gpe_cpu;
|
|
|
|
uint64_t val = cpus->sts[addr];
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpu_status_write(void *opaque, hwaddr addr, uint64_t data,
|
|
|
|
unsigned int size)
|
|
|
|
{
|
|
|
|
/* TODO: implement VCPU removal on guest signal that CPU can be removed */
|
|
|
|
}
|
|
|
|
|
|
|
|
static const MemoryRegionOps cpu_hotplug_ops = {
|
|
|
|
.read = cpu_status_read,
|
|
|
|
.write = cpu_status_write,
|
|
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
|
|
.valid = {
|
|
|
|
.min_access_size = 1,
|
|
|
|
.max_access_size = 1,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
PLUG,
|
|
|
|
UNPLUG,
|
|
|
|
} HotplugEventType;
|
|
|
|
|
|
|
|
static void piix4_cpu_hotplug_req(PIIX4PMState *s, CPUState *cpu,
|
|
|
|
HotplugEventType action)
|
|
|
|
{
|
|
|
|
CPUStatus *g = &s->gpe_cpu;
|
|
|
|
ACPIGPE *gpe = &s->ar.gpe;
|
|
|
|
CPUClass *k = CPU_GET_CLASS(cpu);
|
|
|
|
int64_t cpu_id;
|
|
|
|
|
|
|
|
assert(s != NULL);
|
|
|
|
|
|
|
|
*gpe->sts = *gpe->sts | PIIX4_CPU_HOTPLUG_STATUS;
|
|
|
|
cpu_id = k->get_arch_id(CPU(cpu));
|
|
|
|
if (action == PLUG) {
|
|
|
|
g->sts[cpu_id / 8] |= (1 << (cpu_id % 8));
|
|
|
|
} else {
|
|
|
|
g->sts[cpu_id / 8] &= ~(1 << (cpu_id % 8));
|
|
|
|
}
|
|
|
|
pm_update_sci(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void piix4_cpu_added_req(Notifier *n, void *opaque)
|
|
|
|
{
|
|
|
|
PIIX4PMState *s = container_of(n, PIIX4PMState, cpu_added_notifier);
|
|
|
|
|
|
|
|
piix4_cpu_hotplug_req(s, CPU(opaque), PLUG);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void piix4_init_cpu_status(CPUState *cpu, void *data)
|
|
|
|
{
|
|
|
|
CPUStatus *g = (CPUStatus *)data;
|
|
|
|
CPUClass *k = CPU_GET_CLASS(cpu);
|
|
|
|
int64_t id = k->get_arch_id(cpu);
|
|
|
|
|
|
|
|
g_assert((id / 8) < PIIX4_PROC_LEN);
|
|
|
|
g->sts[id / 8] |= (1 << (id % 8));
|
|
|
|
}
|
|
|
|
|
2010-11-12 10:21:35 +03:00
|
|
|
static int piix4_device_hotplug(DeviceState *qdev, PCIDevice *dev,
|
|
|
|
PCIHotplugState state);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2012-12-11 12:40:45 +04:00
|
|
|
static void piix4_acpi_system_hot_add_init(MemoryRegion *parent,
|
|
|
|
PCIBus *bus, PIIX4PMState *s)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2013-06-07 05:25:08 +04:00
|
|
|
memory_region_init_io(&s->io_gpe, OBJECT(s), &piix4_gpe_ops, s,
|
|
|
|
"acpi-gpe0", GPE_LEN);
|
2012-12-11 12:40:45 +04:00
|
|
|
memory_region_add_subregion(parent, GPE_BASE, &s->io_gpe);
|
2010-05-14 11:29:20 +04:00
|
|
|
|
2013-06-07 05:25:08 +04:00
|
|
|
memory_region_init_io(&s->io_pci, OBJECT(s), &piix4_pci_ops, s,
|
|
|
|
"acpi-pci-hotplug", PCI_HOTPLUG_SIZE);
|
2012-12-11 12:40:45 +04:00
|
|
|
memory_region_add_subregion(parent, PCI_HOTPLUG_ADDR,
|
2012-11-23 19:03:19 +04:00
|
|
|
&s->io_pci);
|
2013-06-24 10:57:14 +04:00
|
|
|
pci_bus_hotplug(bus, piix4_device_hotplug, DEVICE(s));
|
2013-04-25 18:05:25 +04:00
|
|
|
|
|
|
|
qemu_for_each_cpu(piix4_init_cpu_status, &s->gpe_cpu);
|
2013-06-07 05:25:08 +04:00
|
|
|
memory_region_init_io(&s->io_cpu, OBJECT(s), &cpu_hotplug_ops, s,
|
|
|
|
"acpi-cpu-hotplug", PIIX4_PROC_LEN);
|
2013-04-25 18:05:25 +04:00
|
|
|
memory_region_add_subregion(parent, PIIX4_PROC_BASE, &s->io_cpu);
|
|
|
|
s->cpu_added_notifier.notify = piix4_cpu_added_req;
|
|
|
|
qemu_register_cpu_added_notifier(&s->cpu_added_notifier);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:20 +04:00
|
|
|
static void enable_device(PIIX4PMState *s, int slot)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2012-02-23 16:45:16 +04:00
|
|
|
s->ar.gpe.sts[0] |= PIIX4_PCI_HOTPLUG_STATUS;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
s->pci0_slot_device_present |= (1U << slot);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2010-05-14 11:29:20 +04:00
|
|
|
static void disable_device(PIIX4PMState *s, int slot)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
2012-02-23 16:45:16 +04:00
|
|
|
s->ar.gpe.sts[0] |= PIIX4_PCI_HOTPLUG_STATUS;
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
s->pci0_status.down |= (1U << slot);
|
2010-05-14 11:29:02 +04:00
|
|
|
}
|
|
|
|
|
2010-11-12 10:21:35 +03:00
|
|
|
static int piix4_device_hotplug(DeviceState *qdev, PCIDevice *dev,
|
|
|
|
PCIHotplugState state)
|
2010-05-14 11:29:02 +04:00
|
|
|
{
|
|
|
|
int slot = PCI_SLOT(dev->devfn);
|
2013-06-24 10:57:14 +04:00
|
|
|
PIIX4PMState *s = PIIX4_PM(qdev);
|
2010-05-14 11:29:02 +04:00
|
|
|
|
2010-11-12 10:21:35 +03:00
|
|
|
/* Don't send event when device is enabled during qemu machine creation:
|
|
|
|
* it is present on boot, no hotplug event is necessary. We do send an
|
|
|
|
* event when the device is disabled later. */
|
|
|
|
if (state == PCI_COLDPLUG_ENABLED) {
|
acpi_piix4: Fix PCI hotplug race
As Michael Tsirkin demonstrated, current PCI hotplug is vulnerable
to a few races. The first is a race with other hotplug operations
because we clear the up & down registers at each event. If a new
event comes before the last is processed, up/down is cleared and
the event is lost.
To fix this for the down register, we create a life cycle for
the event request that starts with the hot unplug request in
piix4_device_hotplug() and ends when the device is ejected.
This allows us to mask and clear individual bits, preserving them
against races. For the up register, we have no clear end point
for when the event is finished. We could modify the BIOS to
acknowledge the bit and clear it, but this creates BIOS compatibiliy
issues without offering a complete solution. Instead we note that
gratuitous ACPI device checks are not harmful, which allows us to
issue a device check for every slot. We know which slots are present
and we know which slots are hotpluggable, so we can easily reduce
this to a more manageable set for the guest.
The other race Michael noted was that an unplug request followed
by reset may also lose the eject notification, which may also
result in the eject request being lost which a subsequent add
or remove. Once we're in reset, the device is unused and we can
flush the queue of device removals ourselves. Previously if a
device_del was issued to a guest without ACPI PCI hotplug support,
it was necessary to shutdown the guest to recover the device.
With this, a guest reboot is sufficient.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2012-04-05 21:07:15 +04:00
|
|
|
s->pci0_slot_device_present |= (1U << slot);
|
2010-09-06 11:46:18 +04:00
|
|
|
return 0;
|
2010-11-12 10:21:35 +03:00
|
|
|
}
|
2010-09-06 11:46:18 +04:00
|
|
|
|
2010-11-12 10:21:35 +03:00
|
|
|
if (state == PCI_HOTPLUG_ENABLED) {
|
2010-05-14 11:29:20 +04:00
|
|
|
enable_device(s, slot);
|
|
|
|
} else {
|
|
|
|
disable_device(s, slot);
|
|
|
|
}
|
2010-10-17 13:45:25 +04:00
|
|
|
|
|
|
|
pm_update_sci(s);
|
|
|
|
|
2010-05-14 11:29:02 +04:00
|
|
|
return 0;
|
|
|
|
}
|