qemu/hw/mips/mips_r4k.c

312 lines
9.5 KiB
C
Raw Normal View History

/*
* QEMU/MIPS pseudo-board
*
* emulates a simple machine with ISA-like bus.
* ISA IO space mapped to the 0x14000000 (PHYS) and
* ISA memory at the 0x10000000 (PHYS, 16Mb in size).
* All peripherial devices are attached to this "bus" with
* the standard PC ISA addresses.
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/mips/mips.h"
#include "hw/mips/cpudevs.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/isa/isa.h"
#include "net/net.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/block/flash.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "hw/ide.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "sysemu/block-backend.h"
#include "exec/address-spaces.h"
#include "sysemu/qtest.h"
#define MAX_IDE_BUS 2
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
static ISADevice *pit; /* PIT i8254 */
/* i8254 PIT is attached to the IRQ0 at PIC i8259 */
static struct _loaderparams {
int ram_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
} loaderparams;
static void mips_qemu_write (void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
if ((addr & 0xffff) == 0 && val == 42)
qemu_system_reset_request ();
else if ((addr & 0xffff) == 4 && val == 42)
qemu_system_shutdown_request ();
}
static uint64_t mips_qemu_read (void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static const MemoryRegionOps mips_qemu_ops = {
.read = mips_qemu_read,
.write = mips_qemu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
typedef struct ResetData {
MIPSCPU *cpu;
uint64_t vector;
} ResetData;
static int64_t load_kernel(void)
{
int64_t entry, kernel_high;
long kernel_size, initrd_size, params_size;
ram_addr_t initrd_offset;
uint32_t *params_buf;
int big_endian;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
kernel_size = load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys,
NULL, (uint64_t *)&entry, NULL,
(uint64_t *)&kernel_high, big_endian,
EM_MIPS, 1, 0);
if (kernel_size >= 0) {
if ((entry & ~0x7fffffffULL) == 0x80000000)
entry = (int32_t)entry;
} else {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
loaderparams.kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
initrd_size = get_image_size (loaderparams.initrd_filename);
if (initrd_size > 0) {
initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
if (initrd_offset + initrd_size > ram_size) {
fprintf(stderr,
"qemu: memory too small for initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
initrd_offset,
ram_size - initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
}
/* Store command line. */
params_size = 264;
params_buf = g_malloc(params_size);
params_buf[0] = tswap32(ram_size);
params_buf[1] = tswap32(0x12345678);
if (initrd_size > 0) {
snprintf((char *)params_buf + 8, 256, "rd_start=0x%" PRIx64 " rd_size=%li %s",
cpu_mips_phys_to_kseg0(NULL, initrd_offset),
initrd_size, loaderparams.kernel_cmdline);
} else {
snprintf((char *)params_buf + 8, 256, "%s", loaderparams.kernel_cmdline);
}
rom_add_blob_fixed("params", params_buf, params_size,
(16 << 20) - 264);
g_free(params_buf);
return entry;
}
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUMIPSState *env = &s->cpu->env;
cpu_reset(CPU(s->cpu));
env->active_tc.PC = s->vector;
}
static const int sector_len = 32 * 1024;
static
void mips_r4k_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *cpu_model = machine->cpu_model;
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
char *filename;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *bios;
MemoryRegion *iomem = g_new(MemoryRegion, 1);
MemoryRegion *isa_io = g_new(MemoryRegion, 1);
MemoryRegion *isa_mem = g_new(MemoryRegion, 1);
int bios_size;
MIPSCPU *cpu;
CPUMIPSState *env;
ResetData *reset_info;
int i;
qemu_irq *i8259;
ISABus *isa_bus;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *dinfo;
int be;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "R4000";
#else
cpu_model = "24Kf";
#endif
}
cpu = cpu_mips_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
env = &cpu->env;
reset_info = g_malloc0(sizeof(ResetData));
reset_info->cpu = cpu;
reset_info->vector = env->active_tc.PC;
qemu_register_reset(main_cpu_reset, reset_info);
/* allocate RAM */
if (ram_size > (256 << 20)) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
((unsigned int)ram_size / (1 << 20)));
exit(1);
}
memory_region_allocate_system_memory(ram, NULL, "mips_r4k.ram", ram_size);
memory_region_add_subregion(address_space_mem, 0, ram);
memory_region_init_io(iomem, NULL, &mips_qemu_ops, NULL, "mips-qemu", 0x10000);
memory_region_add_subregion(address_space_mem, 0x1fbf0000, iomem);
/* Try to load a BIOS image. If this fails, we continue regardless,
but initialize the hardware ourselves. When a kernel gets
preloaded we also initialize the hardware, since the BIOS wasn't
run. */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
#ifdef TARGET_WORDS_BIGENDIAN
be = 1;
#else
be = 0;
#endif
if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
bios = g_new(MemoryRegion, 1);
memory_region_init_ram(bios, NULL, "mips_r4k.bios", BIOS_SIZE,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
&error_fatal);
vmstate_register_ram_global(bios);
memory_region_set_readonly(bios, true);
memory_region_add_subregion(get_system_memory(), 0x1fc00000, bios);
load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
} else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
uint32_t mips_rom = 0x00400000;
if (!pflash_cfi01_register(0x1fc00000, NULL, "mips_r4k.bios", mips_rom,
blk_by_legacy_dinfo(dinfo),
sector_len, mips_rom / sector_len,
4, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
}
} else if (!qtest_enabled()) {
/* not fatal */
fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
bios_name);
}
g_free(filename);
if (kernel_filename) {
loaderparams.ram_size = ram_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
reset_info->vector = load_kernel();
}
/* Init CPU internal devices */
cpu_mips_irq_init_cpu(cpu);
cpu_mips_clock_init(cpu);
/* ISA bus: IO space at 0x14000000, mem space at 0x10000000 */
memory_region_init_alias(isa_io, NULL, "isa-io",
get_system_io(), 0, 0x00010000);
memory_region_init(isa_mem, NULL, "isa-mem", 0x01000000);
memory_region_add_subregion(get_system_memory(), 0x14000000, isa_io);
memory_region_add_subregion(get_system_memory(), 0x10000000, isa_mem);
isa: Clean up error handling around isa_bus_new() We can have at most one ISA bus. If you try to create another one, isa_bus_new() complains to stderr and returns null. isa_bus_new() is called in two contexts, machine's init() and device's realize() methods. Since complaining to stderr is not proper in the latter context, convert isa_bus_new() to Error. Machine's init(): * mips_jazz_init(), called from the init() methods of machines "magnum" and "pica" * mips_r4k_init(), the init() method of machine "mips" * pc_init1() called from the init() methods of non-q35 PC machines * typhoon_init(), called from clipper_init(), the init() method of machine "clipper" These callers always create the first ISA bus, hence isa_bus_new() can't fail. Simply pass &error_abort. Device's realize(): * i82378_realize(), of PCI device "i82378" * ich9_lpc_realize(), of PCI device "ICH9-LPC" * pci_ebus_realize(), of PCI device "ebus" * piix3_realize(), of PCI device "pci-piix3", abstract parent of "PIIX3" and "PIIX3-xen" * piix4_realize(), of PCI device "PIIX4" * vt82c686b_realize(), of PCI device "VT82C686B" Propagate the error. Note that these devices are typically created only by machine init() methods with qdev_init_nofail() or similar. If we screwed up and created an ISA bus before that call, we now give up right away. Before, we'd hobble on, and typically die in isa_bus_irqs(). Similar if someone finds a way to hot-plug one of these critters. Cc: Richard Henderson <rth@twiddle.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: "Hervé Poussineau" <hpoussin@reactos.org> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> Signed-off-by: Markus Armbruster <armbru@pond.sub.org> Reviewed-by: Marcel Apfelbaum <marcel@redhat.com> Reviewed-by: Hervé Poussineau <hpoussin@reactos.org> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Message-Id: <1450370121-5768-11-git-send-email-armbru@redhat.com>
2015-12-17 19:35:18 +03:00
isa_bus = isa_bus_new(NULL, isa_mem, get_system_io(), &error_abort);
/* The PIC is attached to the MIPS CPU INT0 pin */
i8259 = i8259_init(isa_bus, env->irq[2]);
isa_bus_irqs(isa_bus, i8259);
rtc_init(isa_bus, 2000, NULL);
pit = pit_init(isa_bus, 0x40, 0, NULL);
serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
isa_vga_init(isa_bus);
if (nd_table[0].used)
isa_ne2000_init(isa_bus, 0x300, 9, &nd_table[0]);
ide_drive_get(hd, ARRAY_SIZE(hd));
for(i = 0; i < MAX_IDE_BUS; i++)
isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i],
hd[MAX_IDE_DEVS * i],
hd[MAX_IDE_DEVS * i + 1]);
isa_create_simple(isa_bus, "i8042");
}
static void mips_machine_init(MachineClass *mc)
{
mc->desc = "mips r4k platform";
mc->init = mips_r4k_init;
}
DEFINE_MACHINE("mips", mips_machine_init)