qemu/monitor.c

5156 lines
142 KiB
C
Raw Normal View History

/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <dirent.h>
#include "hw/hw.h"
#include "hw/qdev.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/pci.h"
#include "hw/watchdog.h"
#include "hw/loader.h"
#include "gdbstub.h"
#include "net.h"
#include "net/slirp.h"
#include "qemu-char.h"
#include "ui/qemu-spice.h"
#include "sysemu.h"
#include "monitor.h"
#include "readline.h"
#include "console.h"
#include "blockdev.h"
#include "audio/audio.h"
#include "disas.h"
#include "balloon.h"
#include "qemu-timer.h"
#include "migration.h"
#include "kvm.h"
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
#include "acl.h"
#include "qint.h"
#include "qfloat.h"
#include "qlist.h"
#include "qbool.h"
#include "qstring.h"
#include "qjson.h"
#include "json-streamer.h"
#include "json-parser.h"
#include "osdep.h"
#include "cpu.h"
#include "trace/control.h"
#ifdef CONFIG_TRACE_SIMPLE
#include "trace/simple.h"
#endif
#include "trace/control.h"
#include "ui/qemu-spice.h"
#include "memory.h"
#include "qmp-commands.h"
#include "hmp.h"
//#define DEBUG
//#define DEBUG_COMPLETION
/*
* Supported types:
*
* 'F' filename
* 'B' block device name
* 's' string (accept optional quote)
* 'O' option string of the form NAME=VALUE,...
* parsed according to QemuOptsList given by its name
* Example: 'device:O' uses qemu_device_opts.
* Restriction: only lists with empty desc are supported
* TODO lift the restriction
* 'i' 32 bit integer
* 'l' target long (32 or 64 bit)
* 'M' just like 'l', except in user mode the value is
* multiplied by 2^20 (think Mebibyte)
* 'o' octets (aka bytes)
* user mode accepts an optional T, t, G, g, M, m, K, k
* suffix, which multiplies the value by 2^40 for
* suffixes T and t, 2^30 for suffixes G and g, 2^20 for
* M and m, 2^10 for K and k
* 'T' double
* user mode accepts an optional ms, us, ns suffix,
* which divides the value by 1e3, 1e6, 1e9, respectively
* '/' optional gdb-like print format (like "/10x")
*
* '?' optional type (for all types, except '/')
* '.' other form of optional type (for 'i' and 'l')
* 'b' boolean
* user mode accepts "on" or "off"
* '-' optional parameter (eg. '-f')
*
*/
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
typedef struct MonitorCompletionData MonitorCompletionData;
struct MonitorCompletionData {
Monitor *mon;
void (*user_print)(Monitor *mon, const QObject *data);
};
typedef struct mon_cmd_t {
const char *name;
const char *args_type;
const char *params;
const char *help;
void (*user_print)(Monitor *mon, const QObject *data);
union {
void (*info)(Monitor *mon);
void (*info_new)(Monitor *mon, QObject **ret_data);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
int (*info_async)(Monitor *mon, MonitorCompletion *cb, void *opaque);
void (*cmd)(Monitor *mon, const QDict *qdict);
int (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
int (*cmd_async)(Monitor *mon, const QDict *params,
MonitorCompletion *cb, void *opaque);
} mhandler;
bool qapi;
int flags;
} mon_cmd_t;
/* file descriptors passed via SCM_RIGHTS */
typedef struct mon_fd_t mon_fd_t;
struct mon_fd_t {
char *name;
int fd;
QLIST_ENTRY(mon_fd_t) next;
};
typedef struct MonitorControl {
QObject *id;
JSONMessageParser parser;
int command_mode;
} MonitorControl;
struct Monitor {
CharDriverState *chr;
int mux_out;
int reset_seen;
int flags;
int suspend_cnt;
uint8_t outbuf[1024];
int outbuf_index;
ReadLineState *rs;
MonitorControl *mc;
CPUState *mon_cpu;
BlockDriverCompletionFunc *password_completion_cb;
void *password_opaque;
#ifdef CONFIG_DEBUG_MONITOR
int print_calls_nr;
#endif
QError *error;
QLIST_HEAD(,mon_fd_t) fds;
QLIST_ENTRY(Monitor) entry;
};
#ifdef CONFIG_DEBUG_MONITOR
#define MON_DEBUG(fmt, ...) do { \
fprintf(stderr, "Monitor: "); \
fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
static inline void mon_print_count_inc(Monitor *mon)
{
mon->print_calls_nr++;
}
static inline void mon_print_count_init(Monitor *mon)
{
mon->print_calls_nr = 0;
}
static inline int mon_print_count_get(const Monitor *mon)
{
return mon->print_calls_nr;
}
#else /* !CONFIG_DEBUG_MONITOR */
#define MON_DEBUG(fmt, ...) do { } while (0)
static inline void mon_print_count_inc(Monitor *mon) { }
static inline void mon_print_count_init(Monitor *mon) { }
static inline int mon_print_count_get(const Monitor *mon) { return 0; }
#endif /* CONFIG_DEBUG_MONITOR */
/* QMP checker flags */
#define QMP_ACCEPT_UNKNOWNS 1
static QLIST_HEAD(mon_list, Monitor) mon_list;
static const mon_cmd_t mon_cmds[];
static const mon_cmd_t info_cmds[];
static const mon_cmd_t qmp_cmds[];
static const mon_cmd_t qmp_query_cmds[];
monitor: Separate "default monitor" and "current monitor" cleanly Commits 376253ec..731b0364 introduced global variable cur_mon, which points to the "default monitor" (if any), except during execution of monitor_read() or monitor_control_read() it points to the monitor from which we're reading instead (the "current monitor"). Monitor command handlers run within monitor_read() or monitor_control_read(). Default monitor and current monitor are really separate things, and squashing them together is confusing and error-prone. For instance, usb_host_scan() can run both in "info usbhost" and periodically via usb_host_auto_check(). It prints to cur_mon, which is what we want in the former case: the monitor executing "info usbhost". But since that's the default monitor in the latter case, it periodically spams the default monitor there. A few places use cur_mon to log stuff to the default monitor. If we ever log something while cur_mon points to current monitor instead of default monitor, the log temporarily "jumps" to another monitor. Whether that can or cannot happen isn't always obvious. Maybe logging to the default monitor (which may not even exist) is a bad idea, and we should log to stderr or a logfile instead. But that's outside the scope of this commit. Change cur_mon to point to the current monitor. Create new default_mon to point to the default monitor. Update users of cur_mon accordingly. This fixes the periodical spamming of the default monitor by usb_host_scan(). It also stops "log jumping", should that problem exist.
2010-02-18 13:41:55 +03:00
Monitor *cur_mon;
Monitor *default_mon;
static void monitor_command_cb(Monitor *mon, const char *cmdline,
void *opaque);
static inline int qmp_cmd_mode(const Monitor *mon)
{
return (mon->mc ? mon->mc->command_mode : 0);
}
/* Return true if in control mode, false otherwise */
static inline int monitor_ctrl_mode(const Monitor *mon)
{
return (mon->flags & MONITOR_USE_CONTROL);
}
2010-02-11 19:05:43 +03:00
/* Return non-zero iff we have a current monitor, and it is in QMP mode. */
int monitor_cur_is_qmp(void)
{
return cur_mon && monitor_ctrl_mode(cur_mon);
}
static void monitor_read_command(Monitor *mon, int show_prompt)
{
if (!mon->rs)
return;
readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
if (show_prompt)
readline_show_prompt(mon->rs);
}
static int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
void *opaque)
{
if (monitor_ctrl_mode(mon)) {
qerror_report(QERR_MISSING_PARAMETER, "password");
return -EINVAL;
} else if (mon->rs) {
readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
/* prompt is printed on return from the command handler */
return 0;
} else {
monitor_printf(mon, "terminal does not support password prompting\n");
return -ENOTTY;
}
}
void monitor_flush(Monitor *mon)
{
if (mon && mon->outbuf_index != 0 && !mon->mux_out) {
qemu_chr_fe_write(mon->chr, mon->outbuf, mon->outbuf_index);
mon->outbuf_index = 0;
}
}
/* flush at every end of line or if the buffer is full */
static void monitor_puts(Monitor *mon, const char *str)
{
char c;
for(;;) {
c = *str++;
if (c == '\0')
break;
if (c == '\n')
mon->outbuf[mon->outbuf_index++] = '\r';
mon->outbuf[mon->outbuf_index++] = c;
if (mon->outbuf_index >= (sizeof(mon->outbuf) - 1)
|| c == '\n')
monitor_flush(mon);
}
}
void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
{
char buf[4096];
if (!mon)
return;
mon_print_count_inc(mon);
if (monitor_ctrl_mode(mon)) {
return;
}
vsnprintf(buf, sizeof(buf), fmt, ap);
monitor_puts(mon, buf);
}
void monitor_printf(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
va_end(ap);
}
void monitor_print_filename(Monitor *mon, const char *filename)
{
int i;
for (i = 0; filename[i]; i++) {
switch (filename[i]) {
case ' ':
case '"':
case '\\':
monitor_printf(mon, "\\%c", filename[i]);
break;
case '\t':
monitor_printf(mon, "\\t");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
default:
monitor_printf(mon, "%c", filename[i]);
break;
}
}
}
static int GCC_FMT_ATTR(2, 3) monitor_fprintf(FILE *stream,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
static void monitor_user_noop(Monitor *mon, const QObject *data) { }
static inline int handler_is_qobject(const mon_cmd_t *cmd)
{
return cmd->user_print != NULL;
}
static inline bool handler_is_async(const mon_cmd_t *cmd)
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
{
return cmd->flags & MONITOR_CMD_ASYNC;
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
static inline int monitor_has_error(const Monitor *mon)
{
return mon->error != NULL;
}
static void monitor_json_emitter(Monitor *mon, const QObject *data)
{
QString *json;
json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) :
qobject_to_json(data);
assert(json != NULL);
qstring_append_chr(json, '\n');
monitor_puts(mon, qstring_get_str(json));
QDECREF(json);
}
static void monitor_protocol_emitter(Monitor *mon, QObject *data)
{
QDict *qmp;
qmp = qdict_new();
if (!monitor_has_error(mon)) {
/* success response */
if (data) {
qobject_incref(data);
qdict_put_obj(qmp, "return", data);
} else {
/* return an empty QDict by default */
qdict_put(qmp, "return", qdict_new());
}
} else {
/* error response */
qdict_put(mon->error->error, "desc", qerror_human(mon->error));
qdict_put(qmp, "error", mon->error->error);
QINCREF(mon->error->error);
QDECREF(mon->error);
mon->error = NULL;
}
if (mon->mc->id) {
qdict_put_obj(qmp, "id", mon->mc->id);
mon->mc->id = NULL;
}
monitor_json_emitter(mon, QOBJECT(qmp));
QDECREF(qmp);
}
static void timestamp_put(QDict *qdict)
{
int err;
QObject *obj;
qemu_timeval tv;
err = qemu_gettimeofday(&tv);
if (err < 0)
return;
obj = qobject_from_jsonf("{ 'seconds': %" PRId64 ", "
"'microseconds': %" PRId64 " }",
(int64_t) tv.tv_sec, (int64_t) tv.tv_usec);
qdict_put_obj(qdict, "timestamp", obj);
}
/**
* monitor_protocol_event(): Generate a Monitor event
*
* Event-specific data can be emitted through the (optional) 'data' parameter.
*/
void monitor_protocol_event(MonitorEvent event, QObject *data)
{
QDict *qmp;
const char *event_name;
Monitor *mon;
assert(event < QEVENT_MAX);
switch (event) {
case QEVENT_SHUTDOWN:
event_name = "SHUTDOWN";
break;
case QEVENT_RESET:
event_name = "RESET";
break;
case QEVENT_POWERDOWN:
event_name = "POWERDOWN";
break;
case QEVENT_STOP:
event_name = "STOP";
break;
case QEVENT_RESUME:
event_name = "RESUME";
break;
case QEVENT_VNC_CONNECTED:
event_name = "VNC_CONNECTED";
break;
case QEVENT_VNC_INITIALIZED:
event_name = "VNC_INITIALIZED";
break;
case QEVENT_VNC_DISCONNECTED:
event_name = "VNC_DISCONNECTED";
break;
case QEVENT_BLOCK_IO_ERROR:
event_name = "BLOCK_IO_ERROR";
break;
case QEVENT_RTC_CHANGE:
event_name = "RTC_CHANGE";
break;
case QEVENT_WATCHDOG:
event_name = "WATCHDOG";
break;
case QEVENT_SPICE_CONNECTED:
event_name = "SPICE_CONNECTED";
break;
case QEVENT_SPICE_INITIALIZED:
event_name = "SPICE_INITIALIZED";
break;
case QEVENT_SPICE_DISCONNECTED:
event_name = "SPICE_DISCONNECTED";
break;
default:
abort();
break;
}
qmp = qdict_new();
timestamp_put(qmp);
qdict_put(qmp, "event", qstring_from_str(event_name));
if (data) {
qobject_incref(data);
qdict_put_obj(qmp, "data", data);
}
QLIST_FOREACH(mon, &mon_list, entry) {
if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) {
monitor_json_emitter(mon, QOBJECT(qmp));
}
}
QDECREF(qmp);
}
static int do_qmp_capabilities(Monitor *mon, const QDict *params,
QObject **ret_data)
{
/* Will setup QMP capabilities in the future */
if (monitor_ctrl_mode(mon)) {
mon->mc->command_mode = 1;
}
return 0;
}
static int mon_set_cpu(int cpu_index);
static void handle_user_command(Monitor *mon, const char *cmdline);
static int do_hmp_passthrough(Monitor *mon, const QDict *params,
QObject **ret_data)
{
int ret = 0;
Monitor *old_mon, hmp;
CharDriverState mchar;
memset(&hmp, 0, sizeof(hmp));
qemu_chr_init_mem(&mchar);
hmp.chr = &mchar;
old_mon = cur_mon;
cur_mon = &hmp;
if (qdict_haskey(params, "cpu-index")) {
ret = mon_set_cpu(qdict_get_int(params, "cpu-index"));
if (ret < 0) {
cur_mon = old_mon;
qerror_report(QERR_INVALID_PARAMETER_VALUE, "cpu-index", "a CPU number");
goto out;
}
}
handle_user_command(&hmp, qdict_get_str(params, "command-line"));
cur_mon = old_mon;
if (qemu_chr_mem_osize(hmp.chr) > 0) {
*ret_data = QOBJECT(qemu_chr_mem_to_qs(hmp.chr));
}
out:
qemu_chr_close_mem(hmp.chr);
return ret;
}
static int compare_cmd(const char *name, const char *list)
{
const char *p, *pstart;
int len;
len = strlen(name);
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
if ((p - pstart) == len && !memcmp(pstart, name, len))
return 1;
if (*p == '\0')
break;
p++;
}
return 0;
}
static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
const char *prefix, const char *name)
{
const mon_cmd_t *cmd;
for(cmd = cmds; cmd->name != NULL; cmd++) {
if (!name || !strcmp(name, cmd->name))
monitor_printf(mon, "%s%s %s -- %s\n", prefix, cmd->name,
cmd->params, cmd->help);
}
}
static void help_cmd(Monitor *mon, const char *name)
{
if (name && !strcmp(name, "info")) {
help_cmd_dump(mon, info_cmds, "info ", NULL);
} else {
help_cmd_dump(mon, mon_cmds, "", name);
if (name && !strcmp(name, "log")) {
const CPULogItem *item;
monitor_printf(mon, "Log items (comma separated):\n");
monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
for(item = cpu_log_items; item->mask != 0; item++) {
monitor_printf(mon, "%-10s %s\n", item->name, item->help);
}
}
}
}
static void do_help_cmd(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, qdict_get_try_str(qdict, "name"));
}
static void do_trace_event_set_state(Monitor *mon, const QDict *qdict)
{
const char *tp_name = qdict_get_str(qdict, "name");
bool new_state = qdict_get_bool(qdict, "option");
int ret = trace_event_set_state(tp_name, new_state);
if (!ret) {
monitor_printf(mon, "unknown event name \"%s\"\n", tp_name);
}
}
trace: Add trace-file command to open/close/flush trace file This patch adds the trace-file command: trace-file [on|off|flush] Open, close, or flush the trace file. If no argument is given, the status of the trace file is displayed. The trace file is turned on by default but is only written out when the trace buffer becomes full. The flush operation can be used to force write out at any time. Turning off the trace file does not change the state of trace events; tracing will continue to the trace buffer. When the trace file is off, use "info trace" to display the contents of the trace buffer in memory. Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> This commit also contains the trace-file sub-command from the following commit: commit 5ce8d1a957afae2c52ad748944ce72848ccf57bd Author: Prerna Saxena <prerna@linux.vnet.ibm.com> Date: Wed Aug 4 16:23:54 2010 +0530 trace: Add options to specify trace file name at startup and runtime This patch adds an optional command line switch '-trace' to specify the filename to write traces to, when qemu starts. Eg, If compiled with the 'simple' trace backend, [temp@system]$ qemu -trace FILENAME IMAGE Allows the binary traces to be written to FILENAME instead of the option set at config-time. Also, this adds monitor sub-command 'set' to trace-file commands to dynamically change trace log file at runtime. Eg, (qemu)trace-file set FILENAME This allows one to set trace outputs to FILENAME from the default specified at startup. Signed-off-by: Prerna Saxena <prerna@linux.vnet.ibm.com> Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
2010-07-13 12:26:33 +04:00
#ifdef CONFIG_SIMPLE_TRACE
trace: Add trace-file command to open/close/flush trace file This patch adds the trace-file command: trace-file [on|off|flush] Open, close, or flush the trace file. If no argument is given, the status of the trace file is displayed. The trace file is turned on by default but is only written out when the trace buffer becomes full. The flush operation can be used to force write out at any time. Turning off the trace file does not change the state of trace events; tracing will continue to the trace buffer. When the trace file is off, use "info trace" to display the contents of the trace buffer in memory. Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> This commit also contains the trace-file sub-command from the following commit: commit 5ce8d1a957afae2c52ad748944ce72848ccf57bd Author: Prerna Saxena <prerna@linux.vnet.ibm.com> Date: Wed Aug 4 16:23:54 2010 +0530 trace: Add options to specify trace file name at startup and runtime This patch adds an optional command line switch '-trace' to specify the filename to write traces to, when qemu starts. Eg, If compiled with the 'simple' trace backend, [temp@system]$ qemu -trace FILENAME IMAGE Allows the binary traces to be written to FILENAME instead of the option set at config-time. Also, this adds monitor sub-command 'set' to trace-file commands to dynamically change trace log file at runtime. Eg, (qemu)trace-file set FILENAME This allows one to set trace outputs to FILENAME from the default specified at startup. Signed-off-by: Prerna Saxena <prerna@linux.vnet.ibm.com> Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
2010-07-13 12:26:33 +04:00
static void do_trace_file(Monitor *mon, const QDict *qdict)
{
const char *op = qdict_get_try_str(qdict, "op");
const char *arg = qdict_get_try_str(qdict, "arg");
if (!op) {
st_print_trace_file_status((FILE *)mon, &monitor_fprintf);
} else if (!strcmp(op, "on")) {
st_set_trace_file_enabled(true);
} else if (!strcmp(op, "off")) {
st_set_trace_file_enabled(false);
} else if (!strcmp(op, "flush")) {
st_flush_trace_buffer();
} else if (!strcmp(op, "set")) {
if (arg) {
st_set_trace_file(arg);
}
} else {
monitor_printf(mon, "unexpected argument \"%s\"\n", op);
help_cmd(mon, "trace-file");
}
}
#endif
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
static void user_monitor_complete(void *opaque, QObject *ret_data)
{
MonitorCompletionData *data = (MonitorCompletionData *)opaque;
if (ret_data) {
data->user_print(data->mon, ret_data);
}
monitor_resume(data->mon);
g_free(data);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
static void qmp_monitor_complete(void *opaque, QObject *ret_data)
{
monitor_protocol_emitter(opaque, ret_data);
}
static int qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
{
return cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
static void qmp_async_info_handler(Monitor *mon, const mon_cmd_t *cmd)
{
cmd->mhandler.info_async(mon, qmp_monitor_complete, mon);
}
static void user_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
MonitorCompletionData *cb_data = g_malloc(sizeof(*cb_data));
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
cb_data->mon = mon;
cb_data->user_print = cmd->user_print;
monitor_suspend(mon);
ret = cmd->mhandler.cmd_async(mon, params,
user_monitor_complete, cb_data);
if (ret < 0) {
monitor_resume(mon);
g_free(cb_data);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
}
static void user_async_info_handler(Monitor *mon, const mon_cmd_t *cmd)
{
int ret;
MonitorCompletionData *cb_data = g_malloc(sizeof(*cb_data));
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
cb_data->mon = mon;
cb_data->user_print = cmd->user_print;
monitor_suspend(mon);
ret = cmd->mhandler.info_async(mon, user_monitor_complete, cb_data);
if (ret < 0) {
monitor_resume(mon);
g_free(cb_data);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
}
static void do_info(Monitor *mon, const QDict *qdict)
{
const mon_cmd_t *cmd;
const char *item = qdict_get_try_str(qdict, "item");
if (!item) {
goto help;
}
for (cmd = info_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(item, cmd->name))
break;
}
if (cmd->name == NULL) {
goto help;
}
if (handler_is_async(cmd)) {
user_async_info_handler(mon, cmd);
} else if (handler_is_qobject(cmd)) {
QObject *info_data = NULL;
cmd->mhandler.info_new(mon, &info_data);
if (info_data) {
cmd->user_print(mon, info_data);
qobject_decref(info_data);
}
} else {
cmd->mhandler.info(mon);
}
return;
help:
help_cmd(mon, "info");
}
static CommandInfoList *alloc_cmd_entry(const char *cmd_name)
{
CommandInfoList *info;
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->name = g_strdup(cmd_name);
return info;
}
CommandInfoList *qmp_query_commands(Error **errp)
{
CommandInfoList *info, *cmd_list = NULL;
const mon_cmd_t *cmd;
for (cmd = qmp_cmds; cmd->name != NULL; cmd++) {
info = alloc_cmd_entry(cmd->name);
info->next = cmd_list;
cmd_list = info;
}
for (cmd = qmp_query_cmds; cmd->name != NULL; cmd++) {
char buf[128];
snprintf(buf, sizeof(buf), "query-%s", cmd->name);
info = alloc_cmd_entry(buf);
info->next = cmd_list;
cmd_list = info;
}
return cmd_list;
}
/* get the current CPU defined by the user */
static int mon_set_cpu(int cpu_index)
{
CPUState *env;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == cpu_index) {
cur_mon->mon_cpu = env;
return 0;
}
}
return -1;
}
static CPUState *mon_get_cpu(void)
{
if (!cur_mon->mon_cpu) {
mon_set_cpu(0);
}
cpu_synchronize_state(cur_mon->mon_cpu);
return cur_mon->mon_cpu;
}
static void do_info_registers(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
#ifdef TARGET_I386
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
X86_DUMP_FPU);
#else
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
0);
#endif
}
static void print_cpu_iter(QObject *obj, void *opaque)
{
QDict *cpu;
int active = ' ';
Monitor *mon = opaque;
assert(qobject_type(obj) == QTYPE_QDICT);
cpu = qobject_to_qdict(obj);
if (qdict_get_bool(cpu, "current")) {
active = '*';
}
monitor_printf(mon, "%c CPU #%d: ", active, (int)qdict_get_int(cpu, "CPU"));
#if defined(TARGET_I386)
monitor_printf(mon, "pc=0x" TARGET_FMT_lx,
(target_ulong) qdict_get_int(cpu, "pc"));
#elif defined(TARGET_PPC)
monitor_printf(mon, "nip=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "nip"));
#elif defined(TARGET_SPARC)
monitor_printf(mon, "pc=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "pc"));
monitor_printf(mon, "npc=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "npc"));
#elif defined(TARGET_MIPS)
monitor_printf(mon, "PC=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "PC"));
#endif
if (qdict_get_bool(cpu, "halted")) {
monitor_printf(mon, " (halted)");
}
monitor_printf(mon, " thread_id=%" PRId64 " ",
qdict_get_int(cpu, "thread_id"));
monitor_printf(mon, "\n");
}
static void monitor_print_cpus(Monitor *mon, const QObject *data)
{
QList *cpu_list;
assert(qobject_type(data) == QTYPE_QLIST);
cpu_list = qobject_to_qlist(data);
qlist_iter(cpu_list, print_cpu_iter, mon);
}
static void do_info_cpus(Monitor *mon, QObject **ret_data)
{
CPUState *env;
QList *cpu_list;
cpu_list = qlist_new();
/* just to set the default cpu if not already done */
mon_get_cpu();
for(env = first_cpu; env != NULL; env = env->next_cpu) {
QDict *cpu;
QObject *obj;
cpu_synchronize_state(env);
obj = qobject_from_jsonf("{ 'CPU': %d, 'current': %i, 'halted': %i }",
env->cpu_index, env == mon->mon_cpu,
env->halted);
cpu = qobject_to_qdict(obj);
#if defined(TARGET_I386)
qdict_put(cpu, "pc", qint_from_int(env->eip + env->segs[R_CS].base));
#elif defined(TARGET_PPC)
qdict_put(cpu, "nip", qint_from_int(env->nip));
#elif defined(TARGET_SPARC)
qdict_put(cpu, "pc", qint_from_int(env->pc));
qdict_put(cpu, "npc", qint_from_int(env->npc));
#elif defined(TARGET_MIPS)
qdict_put(cpu, "PC", qint_from_int(env->active_tc.PC));
#endif
qdict_put(cpu, "thread_id", qint_from_int(env->thread_id));
qlist_append(cpu_list, cpu);
}
*ret_data = QOBJECT(cpu_list);
}
static int do_cpu_set(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
int index = qdict_get_int(qdict, "index");
if (mon_set_cpu(index) < 0) {
qerror_report(QERR_INVALID_PARAMETER_VALUE, "index",
"a CPU number");
return -1;
}
return 0;
}
static void do_info_jit(Monitor *mon)
{
dump_exec_info((FILE *)mon, monitor_fprintf);
}
static void do_info_history(Monitor *mon)
{
int i;
const char *str;
if (!mon->rs)
return;
i = 0;
for(;;) {
str = readline_get_history(mon->rs, i);
if (!str)
break;
monitor_printf(mon, "%d: '%s'\n", i, str);
i++;
}
}
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
#if defined(TARGET_PPC)
/* XXX: not implemented in other targets */
static void do_info_cpu_stats(Monitor *mon)
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
{
CPUState *env;
env = mon_get_cpu();
cpu_dump_statistics(env, (FILE *)mon, &monitor_fprintf, 0);
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
}
#endif
#if defined(CONFIG_TRACE_SIMPLE)
static void do_info_trace(Monitor *mon)
{
st_print_trace((FILE *)mon, &monitor_fprintf);
}
#endif
static void do_trace_print_events(Monitor *mon)
{
trace_print_events((FILE *)mon, &monitor_fprintf);
}
#ifdef CONFIG_VNC
static int change_vnc_password(const char *password)
{
if (!password || !password[0]) {
if (vnc_display_disable_login(NULL)) {
qerror_report(QERR_SET_PASSWD_FAILED);
return -1;
}
return 0;
}
if (vnc_display_password(NULL, password) < 0) {
qerror_report(QERR_SET_PASSWD_FAILED);
return -1;
}
return 0;
}
static void change_vnc_password_cb(Monitor *mon, const char *password,
void *opaque)
{
change_vnc_password(password);
monitor_read_command(mon, 1);
}
static int do_change_vnc(Monitor *mon, const char *target, const char *arg)
{
if (strcmp(target, "passwd") == 0 ||
strcmp(target, "password") == 0) {
if (arg) {
char password[9];
strncpy(password, arg, sizeof(password));
password[sizeof(password) - 1] = '\0';
return change_vnc_password(password);
} else {
return monitor_read_password(mon, change_vnc_password_cb, NULL);
}
} else {
if (vnc_display_open(NULL, target) < 0) {
qerror_report(QERR_VNC_SERVER_FAILED, target);
return -1;
}
}
return 0;
}
#else
static int do_change_vnc(Monitor *mon, const char *target, const char *arg)
{
qerror_report(QERR_FEATURE_DISABLED, "vnc");
return -ENODEV;
}
#endif
/**
* do_change(): Change a removable medium, or VNC configuration
*/
static int do_change(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *device = qdict_get_str(qdict, "device");
const char *target = qdict_get_str(qdict, "target");
const char *arg = qdict_get_try_str(qdict, "arg");
int ret;
if (strcmp(device, "vnc") == 0) {
ret = do_change_vnc(mon, target, arg);
} else {
ret = do_change_block(mon, device, target, arg);
}
return ret;
}
static int set_password(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *password = qdict_get_str(qdict, "password");
const char *connected = qdict_get_try_str(qdict, "connected");
int disconnect_if_connected = 0;
int fail_if_connected = 0;
int rc;
if (connected) {
if (strcmp(connected, "fail") == 0) {
fail_if_connected = 1;
} else if (strcmp(connected, "disconnect") == 0) {
disconnect_if_connected = 1;
} else if (strcmp(connected, "keep") == 0) {
/* nothing */
} else {
qerror_report(QERR_INVALID_PARAMETER, "connected");
return -1;
}
}
if (strcmp(protocol, "spice") == 0) {
if (!using_spice) {
/* correct one? spice isn't a device ,,, */
qerror_report(QERR_DEVICE_NOT_ACTIVE, "spice");
return -1;
}
rc = qemu_spice_set_passwd(password, fail_if_connected,
disconnect_if_connected);
if (rc != 0) {
qerror_report(QERR_SET_PASSWD_FAILED);
return -1;
}
return 0;
}
if (strcmp(protocol, "vnc") == 0) {
if (fail_if_connected || disconnect_if_connected) {
/* vnc supports "connected=keep" only */
qerror_report(QERR_INVALID_PARAMETER, "connected");
return -1;
}
/* Note that setting an empty password will not disable login through
* this interface. */
return vnc_display_password(NULL, password);
}
qerror_report(QERR_INVALID_PARAMETER, "protocol");
return -1;
}
static int expire_password(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *whenstr = qdict_get_str(qdict, "time");
time_t when;
int rc;
if (strcmp(whenstr, "now") == 0) {
when = 0;
} else if (strcmp(whenstr, "never") == 0) {
when = TIME_MAX;
} else if (whenstr[0] == '+') {
when = time(NULL) + strtoull(whenstr+1, NULL, 10);
} else {
when = strtoull(whenstr, NULL, 10);
}
if (strcmp(protocol, "spice") == 0) {
if (!using_spice) {
/* correct one? spice isn't a device ,,, */
qerror_report(QERR_DEVICE_NOT_ACTIVE, "spice");
return -1;
}
rc = qemu_spice_set_pw_expire(when);
if (rc != 0) {
qerror_report(QERR_SET_PASSWD_FAILED);
return -1;
}
return 0;
}
if (strcmp(protocol, "vnc") == 0) {
return vnc_display_pw_expire(NULL, when);
}
qerror_report(QERR_INVALID_PARAMETER, "protocol");
return -1;
}
static int add_graphics_client(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *fdname = qdict_get_str(qdict, "fdname");
CharDriverState *s;
if (strcmp(protocol, "spice") == 0) {
if (!using_spice) {
/* correct one? spice isn't a device ,,, */
qerror_report(QERR_DEVICE_NOT_ACTIVE, "spice");
return -1;
}
qerror_report(QERR_ADD_CLIENT_FAILED);
return -1;
#ifdef CONFIG_VNC
} else if (strcmp(protocol, "vnc") == 0) {
int fd = monitor_get_fd(mon, fdname);
int skipauth = qdict_get_try_bool(qdict, "skipauth", 0);
vnc_display_add_client(NULL, fd, skipauth);
return 0;
#endif
} else if ((s = qemu_chr_find(protocol)) != NULL) {
int fd = monitor_get_fd(mon, fdname);
if (qemu_chr_add_client(s, fd) < 0) {
qerror_report(QERR_ADD_CLIENT_FAILED);
return -1;
}
return 0;
}
qerror_report(QERR_INVALID_PARAMETER, "protocol");
return -1;
}
static int client_migrate_info(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *hostname = qdict_get_str(qdict, "hostname");
const char *subject = qdict_get_try_str(qdict, "cert-subject");
int port = qdict_get_try_int(qdict, "port", -1);
int tls_port = qdict_get_try_int(qdict, "tls-port", -1);
int ret;
if (strcmp(protocol, "spice") == 0) {
if (!using_spice) {
qerror_report(QERR_DEVICE_NOT_ACTIVE, "spice");
return -1;
}
ret = qemu_spice_migrate_info(hostname, port, tls_port, subject);
if (ret != 0) {
qerror_report(QERR_UNDEFINED_ERROR);
return -1;
}
return 0;
}
qerror_report(QERR_INVALID_PARAMETER, "protocol");
return -1;
}
static int do_screen_dump(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
vga_hw_screen_dump(qdict_get_str(qdict, "filename"));
return 0;
}
static void do_logfile(Monitor *mon, const QDict *qdict)
{
cpu_set_log_filename(qdict_get_str(qdict, "filename"));
}
static void do_log(Monitor *mon, const QDict *qdict)
{
int mask;
const char *items = qdict_get_str(qdict, "items");
if (!strcmp(items, "none")) {
mask = 0;
} else {
mask = cpu_str_to_log_mask(items);
if (!mask) {
help_cmd(mon, "log");
return;
}
}
cpu_set_log(mask);
}
static void do_singlestep(Monitor *mon, const QDict *qdict)
{
const char *option = qdict_get_try_str(qdict, "option");
if (!option || !strcmp(option, "on")) {
singlestep = 1;
} else if (!strcmp(option, "off")) {
singlestep = 0;
} else {
monitor_printf(mon, "unexpected option %s\n", option);
}
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs);
struct bdrv_iterate_context {
Monitor *mon;
int err;
};
/**
* do_cont(): Resume emulation.
*/
static int do_cont(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
struct bdrv_iterate_context context = { mon, 0 };
if (runstate_check(RUN_STATE_INMIGRATE)) {
qerror_report(QERR_MIGRATION_EXPECTED);
return -1;
} else if (runstate_check(RUN_STATE_INTERNAL_ERROR) ||
runstate_check(RUN_STATE_SHUTDOWN)) {
qerror_report(QERR_RESET_REQUIRED);
return -1;
}
bdrv_iterate(encrypted_bdrv_it, &context);
/* only resume the vm if all keys are set and valid */
if (!context.err) {
vm_start();
return 0;
} else {
return -1;
}
}
static void bdrv_key_cb(void *opaque, int err)
{
Monitor *mon = opaque;
/* another key was set successfully, retry to continue */
if (!err)
do_cont(mon, NULL, NULL);
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs)
{
struct bdrv_iterate_context *context = opaque;
if (!context->err && bdrv_key_required(bs)) {
context->err = -EBUSY;
monitor_read_bdrv_key_start(context->mon, bs, bdrv_key_cb,
context->mon);
}
}
static void do_gdbserver(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_try_str(qdict, "device");
if (!device)
device = "tcp::" DEFAULT_GDBSTUB_PORT;
if (gdbserver_start(device) < 0) {
monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
device);
} else if (strcmp(device, "none") == 0) {
monitor_printf(mon, "Disabled gdbserver\n");
} else {
monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
device);
}
}
static void do_watchdog_action(Monitor *mon, const QDict *qdict)
{
const char *action = qdict_get_str(qdict, "action");
if (select_watchdog_action(action) == -1) {
monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
}
}
static void monitor_printc(Monitor *mon, int c)
{
monitor_printf(mon, "'");
switch(c) {
case '\'':
monitor_printf(mon, "\\'");
break;
case '\\':
monitor_printf(mon, "\\\\");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
default:
if (c >= 32 && c <= 126) {
monitor_printf(mon, "%c", c);
} else {
monitor_printf(mon, "\\x%02x", c);
}
break;
}
monitor_printf(mon, "'");
}
static void memory_dump(Monitor *mon, int count, int format, int wsize,
target_phys_addr_t addr, int is_physical)
{
CPUState *env;
int l, line_size, i, max_digits, len;
uint8_t buf[16];
uint64_t v;
if (format == 'i') {
int flags;
flags = 0;
env = mon_get_cpu();
#ifdef TARGET_I386
if (wsize == 2) {
flags = 1;
} else if (wsize == 4) {
flags = 0;
} else {
/* as default we use the current CS size */
flags = 0;
if (env) {
#ifdef TARGET_X86_64
if ((env->efer & MSR_EFER_LMA) &&
(env->segs[R_CS].flags & DESC_L_MASK))
flags = 2;
else
#endif
if (!(env->segs[R_CS].flags & DESC_B_MASK))
flags = 1;
}
}
#endif
monitor_disas(mon, env, addr, count, is_physical, flags);
return;
}
len = wsize * count;
if (wsize == 1)
line_size = 8;
else
line_size = 16;
max_digits = 0;
switch(format) {
case 'o':
max_digits = (wsize * 8 + 2) / 3;
break;
default:
case 'x':
max_digits = (wsize * 8) / 4;
break;
case 'u':
case 'd':
max_digits = (wsize * 8 * 10 + 32) / 33;
break;
case 'c':
wsize = 1;
break;
}
while (len > 0) {
if (is_physical)
monitor_printf(mon, TARGET_FMT_plx ":", addr);
else
monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
l = len;
if (l > line_size)
l = line_size;
if (is_physical) {
cpu_physical_memory_read(addr, buf, l);
} else {
env = mon_get_cpu();
if (cpu_memory_rw_debug(env, addr, buf, l, 0) < 0) {
monitor_printf(mon, " Cannot access memory\n");
break;
}
}
i = 0;
while (i < l) {
switch(wsize) {
default:
case 1:
v = ldub_raw(buf + i);
break;
case 2:
v = lduw_raw(buf + i);
break;
case 4:
v = (uint32_t)ldl_raw(buf + i);
break;
case 8:
v = ldq_raw(buf + i);
break;
}
monitor_printf(mon, " ");
switch(format) {
case 'o':
monitor_printf(mon, "%#*" PRIo64, max_digits, v);
break;
case 'x':
monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
break;
case 'u':
monitor_printf(mon, "%*" PRIu64, max_digits, v);
break;
case 'd':
monitor_printf(mon, "%*" PRId64, max_digits, v);
break;
case 'c':
monitor_printc(mon, v);
break;
}
i += wsize;
}
monitor_printf(mon, "\n");
addr += l;
len -= l;
}
}
static void do_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_long addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 0);
}
static void do_physical_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_phys_addr_t addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 1);
}
static void do_print(Monitor *mon, const QDict *qdict)
{
int format = qdict_get_int(qdict, "format");
target_phys_addr_t val = qdict_get_int(qdict, "val");
#if TARGET_PHYS_ADDR_BITS == 32
switch(format) {
case 'o':
monitor_printf(mon, "%#o", val);
break;
case 'x':
monitor_printf(mon, "%#x", val);
break;
case 'u':
monitor_printf(mon, "%u", val);
break;
default:
case 'd':
monitor_printf(mon, "%d", val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#else
switch(format) {
case 'o':
monitor_printf(mon, "%#" PRIo64, val);
break;
case 'x':
monitor_printf(mon, "%#" PRIx64, val);
break;
case 'u':
monitor_printf(mon, "%" PRIu64, val);
break;
default:
case 'd':
monitor_printf(mon, "%" PRId64, val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#endif
monitor_printf(mon, "\n");
}
static int do_memory_save(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
FILE *f;
uint32_t size = qdict_get_int(qdict, "size");
const char *filename = qdict_get_str(qdict, "filename");
target_long addr = qdict_get_int(qdict, "val");
uint32_t l;
CPUState *env;
uint8_t buf[1024];
int ret = -1;
env = mon_get_cpu();
f = fopen(filename, "wb");
if (!f) {
qerror_report(QERR_OPEN_FILE_FAILED, filename);
return -1;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_memory_rw_debug(env, addr, buf, l, 0);
if (fwrite(buf, 1, l, f) != l) {
monitor_printf(mon, "fwrite() error in do_memory_save\n");
goto exit;
}
addr += l;
size -= l;
}
ret = 0;
exit:
fclose(f);
return ret;
}
static int do_physical_memory_save(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
FILE *f;
uint32_t l;
uint8_t buf[1024];
uint32_t size = qdict_get_int(qdict, "size");
const char *filename = qdict_get_str(qdict, "filename");
target_phys_addr_t addr = qdict_get_int(qdict, "val");
int ret = -1;
f = fopen(filename, "wb");
if (!f) {
qerror_report(QERR_OPEN_FILE_FAILED, filename);
return -1;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_physical_memory_read(addr, buf, l);
if (fwrite(buf, 1, l, f) != l) {
monitor_printf(mon, "fwrite() error in do_physical_memory_save\n");
goto exit;
}
fflush(f);
addr += l;
size -= l;
}
ret = 0;
exit:
fclose(f);
return ret;
}
static void do_sum(Monitor *mon, const QDict *qdict)
{
uint32_t addr;
uint16_t sum;
uint32_t start = qdict_get_int(qdict, "start");
uint32_t size = qdict_get_int(qdict, "size");
sum = 0;
for(addr = start; addr < (start + size); addr++) {
uint8_t val = ldub_phys(addr);
/* BSD sum algorithm ('sum' Unix command) */
sum = (sum >> 1) | (sum << 15);
sum += val;
}
monitor_printf(mon, "%05d\n", sum);
}
typedef struct {
int keycode;
const char *name;
} KeyDef;
static const KeyDef key_defs[] = {
{ 0x2a, "shift" },
{ 0x36, "shift_r" },
{ 0x38, "alt" },
{ 0xb8, "alt_r" },
{ 0x64, "altgr" },
{ 0xe4, "altgr_r" },
{ 0x1d, "ctrl" },
{ 0x9d, "ctrl_r" },
{ 0xdd, "menu" },
{ 0x01, "esc" },
{ 0x02, "1" },
{ 0x03, "2" },
{ 0x04, "3" },
{ 0x05, "4" },
{ 0x06, "5" },
{ 0x07, "6" },
{ 0x08, "7" },
{ 0x09, "8" },
{ 0x0a, "9" },
{ 0x0b, "0" },
{ 0x0c, "minus" },
{ 0x0d, "equal" },
{ 0x0e, "backspace" },
{ 0x0f, "tab" },
{ 0x10, "q" },
{ 0x11, "w" },
{ 0x12, "e" },
{ 0x13, "r" },
{ 0x14, "t" },
{ 0x15, "y" },
{ 0x16, "u" },
{ 0x17, "i" },
{ 0x18, "o" },
{ 0x19, "p" },
{ 0x1a, "bracket_left" },
{ 0x1b, "bracket_right" },
{ 0x1c, "ret" },
{ 0x1e, "a" },
{ 0x1f, "s" },
{ 0x20, "d" },
{ 0x21, "f" },
{ 0x22, "g" },
{ 0x23, "h" },
{ 0x24, "j" },
{ 0x25, "k" },
{ 0x26, "l" },
{ 0x27, "semicolon" },
{ 0x28, "apostrophe" },
{ 0x29, "grave_accent" },
{ 0x2b, "backslash" },
{ 0x2c, "z" },
{ 0x2d, "x" },
{ 0x2e, "c" },
{ 0x2f, "v" },
{ 0x30, "b" },
{ 0x31, "n" },
{ 0x32, "m" },
{ 0x33, "comma" },
{ 0x34, "dot" },
{ 0x35, "slash" },
{ 0x37, "asterisk" },
{ 0x39, "spc" },
{ 0x3a, "caps_lock" },
{ 0x3b, "f1" },
{ 0x3c, "f2" },
{ 0x3d, "f3" },
{ 0x3e, "f4" },
{ 0x3f, "f5" },
{ 0x40, "f6" },
{ 0x41, "f7" },
{ 0x42, "f8" },
{ 0x43, "f9" },
{ 0x44, "f10" },
{ 0x45, "num_lock" },
{ 0x46, "scroll_lock" },
{ 0xb5, "kp_divide" },
{ 0x37, "kp_multiply" },
{ 0x4a, "kp_subtract" },
{ 0x4e, "kp_add" },
{ 0x9c, "kp_enter" },
{ 0x53, "kp_decimal" },
{ 0x54, "sysrq" },
{ 0x52, "kp_0" },
{ 0x4f, "kp_1" },
{ 0x50, "kp_2" },
{ 0x51, "kp_3" },
{ 0x4b, "kp_4" },
{ 0x4c, "kp_5" },
{ 0x4d, "kp_6" },
{ 0x47, "kp_7" },
{ 0x48, "kp_8" },
{ 0x49, "kp_9" },
{ 0x56, "<" },
{ 0x57, "f11" },
{ 0x58, "f12" },
{ 0xb7, "print" },
{ 0xc7, "home" },
{ 0xc9, "pgup" },
{ 0xd1, "pgdn" },
{ 0xcf, "end" },
{ 0xcb, "left" },
{ 0xc8, "up" },
{ 0xd0, "down" },
{ 0xcd, "right" },
{ 0xd2, "insert" },
{ 0xd3, "delete" },
#if defined(TARGET_SPARC) && !defined(TARGET_SPARC64)
{ 0xf0, "stop" },
{ 0xf1, "again" },
{ 0xf2, "props" },
{ 0xf3, "undo" },
{ 0xf4, "front" },
{ 0xf5, "copy" },
{ 0xf6, "open" },
{ 0xf7, "paste" },
{ 0xf8, "find" },
{ 0xf9, "cut" },
{ 0xfa, "lf" },
{ 0xfb, "help" },
{ 0xfc, "meta_l" },
{ 0xfd, "meta_r" },
{ 0xfe, "compose" },
#endif
{ 0, NULL },
};
static int get_keycode(const char *key)
{
const KeyDef *p;
char *endp;
int ret;
for(p = key_defs; p->name != NULL; p++) {
if (!strcmp(key, p->name))
return p->keycode;
}
if (strstart(key, "0x", NULL)) {
ret = strtoul(key, &endp, 0);
if (*endp == '\0' && ret >= 0x01 && ret <= 0xff)
return ret;
}
return -1;
}
#define MAX_KEYCODES 16
static uint8_t keycodes[MAX_KEYCODES];
static int nb_pending_keycodes;
static QEMUTimer *key_timer;
static void release_keys(void *opaque)
{
int keycode;
while (nb_pending_keycodes > 0) {
nb_pending_keycodes--;
keycode = keycodes[nb_pending_keycodes];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode | 0x80);
}
}
static void do_sendkey(Monitor *mon, const QDict *qdict)
{
char keyname_buf[16];
char *separator;
int keyname_len, keycode, i;
const char *string = qdict_get_str(qdict, "string");
int has_hold_time = qdict_haskey(qdict, "hold_time");
int hold_time = qdict_get_try_int(qdict, "hold_time", -1);
if (nb_pending_keycodes > 0) {
qemu_del_timer(key_timer);
release_keys(NULL);
}
if (!has_hold_time)
hold_time = 100;
i = 0;
while (1) {
separator = strchr(string, '-');
keyname_len = separator ? separator - string : strlen(string);
if (keyname_len > 0) {
pstrcpy(keyname_buf, sizeof(keyname_buf), string);
if (keyname_len > sizeof(keyname_buf) - 1) {
monitor_printf(mon, "invalid key: '%s...'\n", keyname_buf);
return;
}
if (i == MAX_KEYCODES) {
monitor_printf(mon, "too many keys\n");
return;
}
keyname_buf[keyname_len] = 0;
keycode = get_keycode(keyname_buf);
if (keycode < 0) {
monitor_printf(mon, "unknown key: '%s'\n", keyname_buf);
return;
}
keycodes[i++] = keycode;
}
if (!separator)
break;
string = separator + 1;
}
nb_pending_keycodes = i;
/* key down events */
for (i = 0; i < nb_pending_keycodes; i++) {
keycode = keycodes[i];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode & 0x7f);
}
/* delayed key up events */
qemu_mod_timer(key_timer, qemu_get_clock_ns(vm_clock) +
muldiv64(get_ticks_per_sec(), hold_time, 1000));
}
static int mouse_button_state;
static void do_mouse_move(Monitor *mon, const QDict *qdict)
{
int dx, dy, dz;
const char *dx_str = qdict_get_str(qdict, "dx_str");
const char *dy_str = qdict_get_str(qdict, "dy_str");
const char *dz_str = qdict_get_try_str(qdict, "dz_str");
dx = strtol(dx_str, NULL, 0);
dy = strtol(dy_str, NULL, 0);
dz = 0;
if (dz_str)
dz = strtol(dz_str, NULL, 0);
kbd_mouse_event(dx, dy, dz, mouse_button_state);
}
static void do_mouse_button(Monitor *mon, const QDict *qdict)
{
int button_state = qdict_get_int(qdict, "button_state");
mouse_button_state = button_state;
kbd_mouse_event(0, 0, 0, mouse_button_state);
}
static void do_ioport_read(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int has_index = qdict_haskey(qdict, "index");
uint32_t val;
int suffix;
if (has_index) {
int index = qdict_get_int(qdict, "index");
cpu_outb(addr & IOPORTS_MASK, index & 0xff);
addr++;
}
addr &= 0xffff;
switch(size) {
default:
case 1:
val = cpu_inb(addr);
suffix = 'b';
break;
case 2:
val = cpu_inw(addr);
suffix = 'w';
break;
case 4:
val = cpu_inl(addr);
suffix = 'l';
break;
}
monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
suffix, addr, size * 2, val);
}
static void do_ioport_write(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int val = qdict_get_int(qdict, "val");
addr &= IOPORTS_MASK;
switch (size) {
default:
case 1:
cpu_outb(addr, val);
break;
case 2:
cpu_outw(addr, val);
break;
case 4:
cpu_outl(addr, val);
break;
}
}
static void do_boot_set(Monitor *mon, const QDict *qdict)
{
int res;
const char *bootdevice = qdict_get_str(qdict, "bootdevice");
res = qemu_boot_set(bootdevice);
if (res == 0) {
monitor_printf(mon, "boot device list now set to %s\n", bootdevice);
} else if (res > 0) {
monitor_printf(mon, "setting boot device list failed\n");
} else {
monitor_printf(mon, "no function defined to set boot device list for "
"this architecture\n");
}
}
/**
* do_system_powerdown(): Issue a machine powerdown
*/
static int do_system_powerdown(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
qemu_system_powerdown_request();
return 0;
}
#if defined(TARGET_I386)
static void print_pte(Monitor *mon, target_phys_addr_t addr,
target_phys_addr_t pte,
target_phys_addr_t mask)
{
#ifdef TARGET_X86_64
if (addr & (1ULL << 47)) {
addr |= -1LL << 48;
}
#endif
monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
" %c%c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_NX_MASK ? 'X' : '-',
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info_32(Monitor *mon, CPUState *env)
{
unsigned int l1, l2;
uint32_t pgd, pde, pte;
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
/* 4M pages */
print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void tlb_info_pae32(Monitor *mon, CPUState *env)
{
unsigned int l1, l2, l3;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
pdp_addr = env->cr[3] & ~0x1f;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages with PAE, CR4.PSE is ignored */
print_pte(mon, (l1 << 30 ) + (l2 << 21), pde,
~((target_phys_addr_t)(1 << 20) - 1));
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 30 ) + (l2 << 21)
+ (l3 << 12),
pte & ~PG_PSE_MASK,
~(target_phys_addr_t)0xfff);
}
}
}
}
}
}
}
}
#ifdef TARGET_X86_64
static void tlb_info_64(Monitor *mon, CPUState *env)
{
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
/* 1G pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30), pdpe,
0x3ffffc0000000ULL);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30) +
(l3 << 21), pde,
0x3ffffffe00000ULL);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 39) +
(l2 << 30) +
(l3 << 21) + (l4 << 12),
pte & ~PG_PSE_MASK,
0x3fffffffff000ULL);
}
}
}
}
}
}
}
}
}
}
}
#endif
static void tlb_info(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
tlb_info_64(mon, env);
} else
#endif
{
tlb_info_pae32(mon, env);
}
} else {
tlb_info_32(mon, env);
}
}
static void mem_print(Monitor *mon, target_phys_addr_t *pstart,
int *plast_prot,
target_phys_addr_t end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
TARGET_FMT_plx " %c%c%c\n",
*pstart, end, end - *pstart,
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info_32(Monitor *mon, CPUState *env)
{
unsigned int l1, l2;
int prot, last_prot;
uint32_t pgd, pde, pte;
target_phys_addr_t start, end;
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde &
(PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (target_phys_addr_t)1 << 32, 0);
}
static void mem_info_pae32(Monitor *mon, CPUState *env)
{
unsigned int l1, l2, l3;
int prot, last_prot;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
target_phys_addr_t start, end;
pdp_addr = env->cr[3] & ~0x1f;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = l1 << 30;
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 30) + (l2 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 30) + (l2 << 21) + (l3 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (target_phys_addr_t)1 << 32, 0);
}
#ifdef TARGET_X86_64
static void mem_info_64(Monitor *mon, CPUState *env)
{
int prot, last_prot;
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
end = l1 << 39;
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = (l1 << 39) + (l2 << 30);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 39) + (l2 << 30) + (l3 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 39) + (l2 << 30) +
(l3 << 21) + (l4 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe & pde;
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (target_phys_addr_t)1 << 48, 0);
}
#endif
static void mem_info(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
mem_info_64(mon, env);
} else
#endif
{
mem_info_pae32(mon, env);
}
} else {
mem_info_32(mon, env);
}
}
#endif
#if defined(TARGET_SH4)
static void print_tlb(Monitor *mon, int idx, tlb_t *tlb)
{
monitor_printf(mon, " tlb%i:\t"
"asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t"
"v=%hhu shared=%hhu cached=%hhu prot=%hhu "
"dirty=%hhu writethrough=%hhu\n",
idx,
tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size,
tlb->v, tlb->sh, tlb->c, tlb->pr,
tlb->d, tlb->wt);
}
static void tlb_info(Monitor *mon)
{
CPUState *env = mon_get_cpu();
int i;
monitor_printf (mon, "ITLB:\n");
for (i = 0 ; i < ITLB_SIZE ; i++)
print_tlb (mon, i, &env->itlb[i]);
monitor_printf (mon, "UTLB:\n");
for (i = 0 ; i < UTLB_SIZE ; i++)
print_tlb (mon, i, &env->utlb[i]);
}
#endif
#if defined(TARGET_SPARC)
static void tlb_info(Monitor *mon)
{
CPUState *env1 = mon_get_cpu();
dump_mmu((FILE*)mon, (fprintf_function)monitor_printf, env1);
}
#endif
static void do_info_mtree(Monitor *mon)
{
mtree_info((fprintf_function)monitor_printf, mon);
}
static void do_info_numa(Monitor *mon)
{
int i;
CPUState *env;
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->numa_node == i) {
monitor_printf(mon, " %d", env->cpu_index);
}
}
monitor_printf(mon, "\n");
monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
node_mem[i] >> 20);
}
}
#ifdef CONFIG_PROFILER
int64_t qemu_time;
int64_t dev_time;
static void do_info_profile(Monitor *mon)
{
int64_t total;
total = qemu_time;
if (total == 0)
total = 1;
monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
dev_time, dev_time / (double)get_ticks_per_sec());
monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
qemu_time, qemu_time / (double)get_ticks_per_sec());
qemu_time = 0;
dev_time = 0;
}
#else
static void do_info_profile(Monitor *mon)
{
monitor_printf(mon, "Internal profiler not compiled\n");
}
#endif
/* Capture support */
static QLIST_HEAD (capture_list_head, CaptureState) capture_head;
static void do_info_capture(Monitor *mon)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
monitor_printf(mon, "[%d]: ", i);
s->ops.info (s->opaque);
}
}
#ifdef HAS_AUDIO
static void do_stop_capture(Monitor *mon, const QDict *qdict)
{
int i;
int n = qdict_get_int(qdict, "n");
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
if (i == n) {
s->ops.destroy (s->opaque);
QLIST_REMOVE (s, entries);
g_free (s);
return;
}
}
}
static void do_wav_capture(Monitor *mon, const QDict *qdict)
{
const char *path = qdict_get_str(qdict, "path");
int has_freq = qdict_haskey(qdict, "freq");
int freq = qdict_get_try_int(qdict, "freq", -1);
int has_bits = qdict_haskey(qdict, "bits");
int bits = qdict_get_try_int(qdict, "bits", -1);
int has_channels = qdict_haskey(qdict, "nchannels");
int nchannels = qdict_get_try_int(qdict, "nchannels", -1);
CaptureState *s;
s = g_malloc0 (sizeof (*s));
freq = has_freq ? freq : 44100;
bits = has_bits ? bits : 16;
nchannels = has_channels ? nchannels : 2;
if (wav_start_capture (s, path, freq, bits, nchannels)) {
monitor_printf(mon, "Failed to add wave capture\n");
g_free (s);
return;
}
QLIST_INSERT_HEAD (&capture_head, s, entries);
}
#endif
#if defined(TARGET_I386)
static int do_inject_nmi(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu_interrupt(env, CPU_INTERRUPT_NMI);
}
return 0;
}
#else
static int do_inject_nmi(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
qerror_report(QERR_UNSUPPORTED);
return -1;
}
#endif
static qemu_acl *find_acl(Monitor *mon, const char *name)
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
{
qemu_acl *acl = qemu_acl_find(name);
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
if (!acl) {
monitor_printf(mon, "acl: unknown list '%s'\n", name);
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
}
return acl;
}
static void do_acl_show(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
qemu_acl_entry *entry;
int i = 0;
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
if (acl) {
monitor_printf(mon, "policy: %s\n",
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
acl->defaultDeny ? "deny" : "allow");
QTAILQ_FOREACH(entry, &acl->entries, next) {
i++;
monitor_printf(mon, "%d: %s %s\n", i,
entry->deny ? "deny" : "allow", entry->match);
}
}
}
static void do_acl_reset(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
qemu_acl_reset(acl);
monitor_printf(mon, "acl: removed all rules\n");
}
}
static void do_acl_policy(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *policy = qdict_get_str(qdict, "policy");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
if (strcmp(policy, "allow") == 0) {
acl->defaultDeny = 0;
monitor_printf(mon, "acl: policy set to 'allow'\n");
} else if (strcmp(policy, "deny") == 0) {
acl->defaultDeny = 1;
monitor_printf(mon, "acl: policy set to 'deny'\n");
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
}
}
}
static void do_acl_add(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
const char *policy = qdict_get_str(qdict, "policy");
int has_index = qdict_haskey(qdict, "index");
int index = qdict_get_try_int(qdict, "index", -1);
qemu_acl *acl = find_acl(mon, aclname);
int deny, ret;
if (acl) {
if (strcmp(policy, "allow") == 0) {
deny = 0;
} else if (strcmp(policy, "deny") == 0) {
deny = 1;
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
return;
}
if (has_index)
ret = qemu_acl_insert(acl, deny, match, index);
else
ret = qemu_acl_append(acl, deny, match);
if (ret < 0)
monitor_printf(mon, "acl: unable to add acl entry\n");
else
monitor_printf(mon, "acl: added rule at position %d\n", ret);
}
}
static void do_acl_remove(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
qemu_acl *acl = find_acl(mon, aclname);
int ret;
if (acl) {
ret = qemu_acl_remove(acl, match);
if (ret < 0)
monitor_printf(mon, "acl: no matching acl entry\n");
else
monitor_printf(mon, "acl: removed rule at position %d\n", ret);
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
}
}
#if defined(TARGET_I386)
static void do_inject_mce(Monitor *mon, const QDict *qdict)
{
CPUState *cenv;
int cpu_index = qdict_get_int(qdict, "cpu_index");
int bank = qdict_get_int(qdict, "bank");
uint64_t status = qdict_get_int(qdict, "status");
uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
uint64_t addr = qdict_get_int(qdict, "addr");
uint64_t misc = qdict_get_int(qdict, "misc");
int flags = MCE_INJECT_UNCOND_AO;
if (qdict_get_try_bool(qdict, "broadcast", 0)) {
flags |= MCE_INJECT_BROADCAST;
}
for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
if (cenv->cpu_index == cpu_index) {
cpu_x86_inject_mce(mon, cenv, bank, status, mcg_status, addr, misc,
flags);
break;
}
}
}
#endif
static int do_getfd(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *fdname = qdict_get_str(qdict, "fdname");
mon_fd_t *monfd;
int fd;
fd = qemu_chr_fe_get_msgfd(mon->chr);
if (fd == -1) {
qerror_report(QERR_FD_NOT_SUPPLIED);
return -1;
}
if (qemu_isdigit(fdname[0])) {
qerror_report(QERR_INVALID_PARAMETER_VALUE, "fdname",
"a name not starting with a digit");
return -1;
}
QLIST_FOREACH(monfd, &mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
close(monfd->fd);
monfd->fd = fd;
return 0;
}
monfd = g_malloc0(sizeof(mon_fd_t));
monfd->name = g_strdup(fdname);
monfd->fd = fd;
QLIST_INSERT_HEAD(&mon->fds, monfd, next);
return 0;
}
static int do_closefd(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *fdname = qdict_get_str(qdict, "fdname");
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
QLIST_REMOVE(monfd, next);
close(monfd->fd);
g_free(monfd->name);
g_free(monfd);
return 0;
}
qerror_report(QERR_FD_NOT_FOUND, fdname);
return -1;
}
static void do_loadvm(Monitor *mon, const QDict *qdict)
{
int saved_vm_running = runstate_is_running();
const char *name = qdict_get_str(qdict, "name");
vm_stop(RUN_STATE_RESTORE_VM);
loadvm: improve tests before bdrv_snapshot_goto() This patch improves the resilience of the load_vmstate() function, doing further and better ordered tests. In load_vmstate(), if there is any error on bdrv_snapshot_goto(), except if the error is on VM state device, load_vmstate() will return zero and the VM will be started with major corruption chances. The current process: - test if there is any writable device without snapshot support - if exists return -error - get the device that saves the VM state, possible return -error but unlikely because it was tested earlier - flush I/O - run bdrv_snapshot_goto() on devices - if fails, give an warning and goes to the next (not good!) - if fails on the VM state device, return zero (not good!) - check if the requested snapshot exists on the device that saves the VM state and the state is not zero - if fails return -error - open the file with the VM state - if fails return -error - load the VM state - if fails return -error - return zero New behavior: - get the device that saves the VM state - if fails return -error - check if the requested snapshot exists on the device that saves the VM state and the state is not zero - if fails return -error - test if there is any writable device without snapshot support - if exists return -error - test if the devices with snapshot support have the requested snapshot - if anyone fails, return -error - flush I/O - run snapshot_goto() on devices - if anyone fails, return -error - open the file with the VM state - if fails return -error - load the VM state - if fails return -error - return zero do_loadvm must not call vm_start if any error has occurred in load_vmstate. Signed-off-by: Miguel Di Ciurcio Filho <miguel.filho@gmail.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2010-07-19 22:25:01 +04:00
if (load_vmstate(name) == 0 && saved_vm_running) {
vm_start();
loadvm: improve tests before bdrv_snapshot_goto() This patch improves the resilience of the load_vmstate() function, doing further and better ordered tests. In load_vmstate(), if there is any error on bdrv_snapshot_goto(), except if the error is on VM state device, load_vmstate() will return zero and the VM will be started with major corruption chances. The current process: - test if there is any writable device without snapshot support - if exists return -error - get the device that saves the VM state, possible return -error but unlikely because it was tested earlier - flush I/O - run bdrv_snapshot_goto() on devices - if fails, give an warning and goes to the next (not good!) - if fails on the VM state device, return zero (not good!) - check if the requested snapshot exists on the device that saves the VM state and the state is not zero - if fails return -error - open the file with the VM state - if fails return -error - load the VM state - if fails return -error - return zero New behavior: - get the device that saves the VM state - if fails return -error - check if the requested snapshot exists on the device that saves the VM state and the state is not zero - if fails return -error - test if there is any writable device without snapshot support - if exists return -error - test if the devices with snapshot support have the requested snapshot - if anyone fails, return -error - flush I/O - run snapshot_goto() on devices - if anyone fails, return -error - open the file with the VM state - if fails return -error - load the VM state - if fails return -error - return zero do_loadvm must not call vm_start if any error has occurred in load_vmstate. Signed-off-by: Miguel Di Ciurcio Filho <miguel.filho@gmail.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2010-07-19 22:25:01 +04:00
}
}
int monitor_get_fd(Monitor *mon, const char *fdname)
{
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &mon->fds, next) {
int fd;
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
fd = monfd->fd;
/* caller takes ownership of fd */
QLIST_REMOVE(monfd, next);
g_free(monfd->name);
g_free(monfd);
return fd;
}
return -1;
}
static const mon_cmd_t mon_cmds[] = {
#include "hmp-commands.h"
{ NULL, NULL, },
};
/* Please update hmp-commands.hx when adding or changing commands */
static const mon_cmd_t info_cmds[] = {
{
.name = "version",
.args_type = "",
.params = "",
.help = "show the version of QEMU",
.mhandler.info = hmp_info_version,
},
{
.name = "network",
.args_type = "",
.params = "",
.help = "show the network state",
.mhandler.info = do_info_network,
},
{
.name = "chardev",
.args_type = "",
.params = "",
.help = "show the character devices",
.mhandler.info = hmp_info_chardev,
},
{
.name = "block",
.args_type = "",
.params = "",
.help = "show the block devices",
.user_print = bdrv_info_print,
.mhandler.info_new = bdrv_info,
},
{
.name = "blockstats",
.args_type = "",
.params = "",
.help = "show block device statistics",
.user_print = bdrv_stats_print,
.mhandler.info_new = bdrv_info_stats,
},
{
.name = "registers",
.args_type = "",
.params = "",
.help = "show the cpu registers",
.mhandler.info = do_info_registers,
},
{
.name = "cpus",
.args_type = "",
.params = "",
.help = "show infos for each CPU",
.user_print = monitor_print_cpus,
.mhandler.info_new = do_info_cpus,
},
{
.name = "history",
.args_type = "",
.params = "",
.help = "show the command line history",
.mhandler.info = do_info_history,
},
{
.name = "irq",
.args_type = "",
.params = "",
.help = "show the interrupts statistics (if available)",
.mhandler.info = irq_info,
},
{
.name = "pic",
.args_type = "",
.params = "",
.help = "show i8259 (PIC) state",
.mhandler.info = pic_info,
},
{
.name = "pci",
.args_type = "",
.params = "",
.help = "show PCI info",
.user_print = do_pci_info_print,
.mhandler.info_new = do_pci_info,
},
#if defined(TARGET_I386) || defined(TARGET_SH4) || defined(TARGET_SPARC)
{
.name = "tlb",
.args_type = "",
.params = "",
.help = "show virtual to physical memory mappings",
.mhandler.info = tlb_info,
},
#endif
#if defined(TARGET_I386)
{
.name = "mem",
.args_type = "",
.params = "",
.help = "show the active virtual memory mappings",
.mhandler.info = mem_info,
},
#endif
{
.name = "mtree",
.args_type = "",
.params = "",
.help = "show memory tree",
.mhandler.info = do_info_mtree,
},
{
.name = "jit",
.args_type = "",
.params = "",
.help = "show dynamic compiler info",
.mhandler.info = do_info_jit,
},
{
.name = "kvm",
.args_type = "",
.params = "",
.help = "show KVM information",
.mhandler.info = hmp_info_kvm,
},
{
.name = "numa",
.args_type = "",
.params = "",
.help = "show NUMA information",
.mhandler.info = do_info_numa,
},
{
.name = "usb",
.args_type = "",
.params = "",
.help = "show guest USB devices",
.mhandler.info = usb_info,
},
{
.name = "usbhost",
.args_type = "",
.params = "",
.help = "show host USB devices",
.mhandler.info = usb_host_info,
},
{
.name = "profile",
.args_type = "",
.params = "",
.help = "show profiling information",
.mhandler.info = do_info_profile,
},
{
.name = "capture",
.args_type = "",
.params = "",
.help = "show capture information",
.mhandler.info = do_info_capture,
},
{
.name = "snapshots",
.args_type = "",
.params = "",
.help = "show the currently saved VM snapshots",
.mhandler.info = do_info_snapshots,
},
{
.name = "status",
.args_type = "",
.params = "",
.help = "show the current VM status (running|paused)",
.mhandler.info = hmp_info_status,
},
{
.name = "pcmcia",
.args_type = "",
.params = "",
.help = "show guest PCMCIA status",
.mhandler.info = pcmcia_info,
},
{
.name = "mice",
.args_type = "",
.params = "",
.help = "show which guest mouse is receiving events",
.user_print = do_info_mice_print,
.mhandler.info_new = do_info_mice,
},
{
.name = "vnc",
.args_type = "",
.params = "",
.help = "show the vnc server status",
.user_print = do_info_vnc_print,
.mhandler.info_new = do_info_vnc,
},
#if defined(CONFIG_SPICE)
{
.name = "spice",
.args_type = "",
.params = "",
.help = "show the spice server status",
.user_print = do_info_spice_print,
.mhandler.info_new = do_info_spice,
},
#endif
{
.name = "name",
.args_type = "",
.params = "",
.help = "show the current VM name",
.mhandler.info = hmp_info_name,
},
{
.name = "uuid",
.args_type = "",
.params = "",
.help = "show the current VM UUID",
.mhandler.info = hmp_info_uuid,
},
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
#if defined(TARGET_PPC)
{
.name = "cpustats",
.args_type = "",
.params = "",
.help = "show CPU statistics",
.mhandler.info = do_info_cpu_stats,
},
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
#endif
#if defined(CONFIG_SLIRP)
{
.name = "usernet",
.args_type = "",
.params = "",
.help = "show user network stack connection states",
.mhandler.info = do_info_usernet,
},
#endif
{
.name = "migrate",
.args_type = "",
.params = "",
.help = "show migration status",
.user_print = do_info_migrate_print,
.mhandler.info_new = do_info_migrate,
},
{
.name = "balloon",
.args_type = "",
.params = "",
.help = "show balloon information",
.user_print = monitor_print_balloon,
.mhandler.info_async = do_info_balloon,
.flags = MONITOR_CMD_ASYNC,
},
{
.name = "qtree",
.args_type = "",
.params = "",
.help = "show device tree",
.mhandler.info = do_info_qtree,
},
{
.name = "qdm",
.args_type = "",
.params = "",
.help = "show qdev device model list",
.mhandler.info = do_info_qdm,
},
{
.name = "roms",
.args_type = "",
.params = "",
.help = "show roms",
.mhandler.info = do_info_roms,
},
#if defined(CONFIG_TRACE_SIMPLE)
{
.name = "trace",
.args_type = "",
.params = "",
.help = "show current contents of trace buffer",
.mhandler.info = do_info_trace,
},
#endif
{
.name = "trace-events",
.args_type = "",
.params = "",
.help = "show available trace-events & their state",
.mhandler.info = do_trace_print_events,
},
{
.name = NULL,
},
};
static const mon_cmd_t qmp_cmds[] = {
#include "qmp-commands-old.h"
{ /* NULL */ },
};
static const mon_cmd_t qmp_query_cmds[] = {
{
.name = "block",
.args_type = "",
.params = "",
.help = "show the block devices",
.user_print = bdrv_info_print,
.mhandler.info_new = bdrv_info,
},
{
.name = "blockstats",
.args_type = "",
.params = "",
.help = "show block device statistics",
.user_print = bdrv_stats_print,
.mhandler.info_new = bdrv_info_stats,
},
{
.name = "cpus",
.args_type = "",
.params = "",
.help = "show infos for each CPU",
.user_print = monitor_print_cpus,
.mhandler.info_new = do_info_cpus,
},
{
.name = "pci",
.args_type = "",
.params = "",
.help = "show PCI info",
.user_print = do_pci_info_print,
.mhandler.info_new = do_pci_info,
},
{
.name = "mice",
.args_type = "",
.params = "",
.help = "show which guest mouse is receiving events",
.user_print = do_info_mice_print,
.mhandler.info_new = do_info_mice,
},
{
.name = "vnc",
.args_type = "",
.params = "",
.help = "show the vnc server status",
.user_print = do_info_vnc_print,
.mhandler.info_new = do_info_vnc,
},
#if defined(CONFIG_SPICE)
{
.name = "spice",
.args_type = "",
.params = "",
.help = "show the spice server status",
.user_print = do_info_spice_print,
.mhandler.info_new = do_info_spice,
},
#endif
{
.name = "migrate",
.args_type = "",
.params = "",
.help = "show migration status",
.user_print = do_info_migrate_print,
.mhandler.info_new = do_info_migrate,
},
{
.name = "balloon",
.args_type = "",
.params = "",
.help = "show balloon information",
.user_print = monitor_print_balloon,
.mhandler.info_async = do_info_balloon,
.flags = MONITOR_CMD_ASYNC,
},
{ /* NULL */ },
};
/*******************************************************************/
static const char *pch;
static jmp_buf expr_env;
#define MD_TLONG 0
#define MD_I32 1
typedef struct MonitorDef {
const char *name;
int offset;
target_long (*get_value)(const struct MonitorDef *md, int val);
int type;
} MonitorDef;
#if defined(TARGET_I386)
static target_long monitor_get_pc (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->eip + env->segs[R_CS].base;
}
#endif
#if defined(TARGET_PPC)
static target_long monitor_get_ccr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
unsigned int u;
int i;
u = 0;
for (i = 0; i < 8; i++)
u |= env->crf[i] << (32 - (4 * i));
return u;
}
static target_long monitor_get_msr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->msr;
}
static target_long monitor_get_xer (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->xer;
}
static target_long monitor_get_decr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_decr(env);
}
static target_long monitor_get_tbu (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_tbu(env);
}
static target_long monitor_get_tbl (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_tbl(env);
}
#endif
#if defined(TARGET_SPARC)
#ifndef TARGET_SPARC64
static target_long monitor_get_psr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_get_psr(env);
}
#endif
static target_long monitor_get_reg(const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->regwptr[val];
}
#endif
static const MonitorDef monitor_defs[] = {
#ifdef TARGET_I386
#define SEG(name, seg) \
{ name, offsetof(CPUState, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUState, segs[seg].base) },\
{ name ".limit", offsetof(CPUState, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUState, regs[0]) },
{ "ecx", offsetof(CPUState, regs[1]) },
{ "edx", offsetof(CPUState, regs[2]) },
{ "ebx", offsetof(CPUState, regs[3]) },
{ "esp|sp", offsetof(CPUState, regs[4]) },
{ "ebp|fp", offsetof(CPUState, regs[5]) },
{ "esi", offsetof(CPUState, regs[6]) },
{ "edi", offsetof(CPUState, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUState, regs[8]) },
{ "r9", offsetof(CPUState, regs[9]) },
{ "r10", offsetof(CPUState, regs[10]) },
{ "r11", offsetof(CPUState, regs[11]) },
{ "r12", offsetof(CPUState, regs[12]) },
{ "r13", offsetof(CPUState, regs[13]) },
{ "r14", offsetof(CPUState, regs[14]) },
{ "r15", offsetof(CPUState, regs[15]) },
#endif
{ "eflags", offsetof(CPUState, eflags) },
{ "eip", offsetof(CPUState, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
#elif defined(TARGET_PPC)
/* General purpose registers */
{ "r0", offsetof(CPUState, gpr[0]) },
{ "r1", offsetof(CPUState, gpr[1]) },
{ "r2", offsetof(CPUState, gpr[2]) },
{ "r3", offsetof(CPUState, gpr[3]) },
{ "r4", offsetof(CPUState, gpr[4]) },
{ "r5", offsetof(CPUState, gpr[5]) },
{ "r6", offsetof(CPUState, gpr[6]) },
{ "r7", offsetof(CPUState, gpr[7]) },
{ "r8", offsetof(CPUState, gpr[8]) },
{ "r9", offsetof(CPUState, gpr[9]) },
{ "r10", offsetof(CPUState, gpr[10]) },
{ "r11", offsetof(CPUState, gpr[11]) },
{ "r12", offsetof(CPUState, gpr[12]) },
{ "r13", offsetof(CPUState, gpr[13]) },
{ "r14", offsetof(CPUState, gpr[14]) },
{ "r15", offsetof(CPUState, gpr[15]) },
{ "r16", offsetof(CPUState, gpr[16]) },
{ "r17", offsetof(CPUState, gpr[17]) },
{ "r18", offsetof(CPUState, gpr[18]) },
{ "r19", offsetof(CPUState, gpr[19]) },
{ "r20", offsetof(CPUState, gpr[20]) },
{ "r21", offsetof(CPUState, gpr[21]) },
{ "r22", offsetof(CPUState, gpr[22]) },
{ "r23", offsetof(CPUState, gpr[23]) },
{ "r24", offsetof(CPUState, gpr[24]) },
{ "r25", offsetof(CPUState, gpr[25]) },
{ "r26", offsetof(CPUState, gpr[26]) },
{ "r27", offsetof(CPUState, gpr[27]) },
{ "r28", offsetof(CPUState, gpr[28]) },
{ "r29", offsetof(CPUState, gpr[29]) },
{ "r30", offsetof(CPUState, gpr[30]) },
{ "r31", offsetof(CPUState, gpr[31]) },
/* Floating point registers */
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
{ "fpscr", offsetof(CPUState, fpscr) },
/* Next instruction pointer */
{ "nip|pc", offsetof(CPUState, nip) },
{ "lr", offsetof(CPUState, lr) },
{ "ctr", offsetof(CPUState, ctr) },
{ "decr", 0, &monitor_get_decr, },
{ "ccr", 0, &monitor_get_ccr, },
/* Machine state register */
{ "msr", 0, &monitor_get_msr, },
{ "xer", 0, &monitor_get_xer, },
{ "tbu", 0, &monitor_get_tbu, },
{ "tbl", 0, &monitor_get_tbl, },
#if defined(TARGET_PPC64)
/* Address space register */
{ "asr", offsetof(CPUState, asr) },
#endif
/* Segment registers */
{ "sdr1", offsetof(CPUState, spr[SPR_SDR1]) },
{ "sr0", offsetof(CPUState, sr[0]) },
{ "sr1", offsetof(CPUState, sr[1]) },
{ "sr2", offsetof(CPUState, sr[2]) },
{ "sr3", offsetof(CPUState, sr[3]) },
{ "sr4", offsetof(CPUState, sr[4]) },
{ "sr5", offsetof(CPUState, sr[5]) },
{ "sr6", offsetof(CPUState, sr[6]) },
{ "sr7", offsetof(CPUState, sr[7]) },
{ "sr8", offsetof(CPUState, sr[8]) },
{ "sr9", offsetof(CPUState, sr[9]) },
{ "sr10", offsetof(CPUState, sr[10]) },
{ "sr11", offsetof(CPUState, sr[11]) },
{ "sr12", offsetof(CPUState, sr[12]) },
{ "sr13", offsetof(CPUState, sr[13]) },
{ "sr14", offsetof(CPUState, sr[14]) },
{ "sr15", offsetof(CPUState, sr[15]) },
/* Too lazy to put BATs... */
{ "pvr", offsetof(CPUState, spr[SPR_PVR]) },
{ "srr0", offsetof(CPUState, spr[SPR_SRR0]) },
{ "srr1", offsetof(CPUState, spr[SPR_SRR1]) },
{ "sprg0", offsetof(CPUState, spr[SPR_SPRG0]) },
{ "sprg1", offsetof(CPUState, spr[SPR_SPRG1]) },
{ "sprg2", offsetof(CPUState, spr[SPR_SPRG2]) },
{ "sprg3", offsetof(CPUState, spr[SPR_SPRG3]) },
{ "sprg4", offsetof(CPUState, spr[SPR_SPRG4]) },
{ "sprg5", offsetof(CPUState, spr[SPR_SPRG5]) },
{ "sprg6", offsetof(CPUState, spr[SPR_SPRG6]) },
{ "sprg7", offsetof(CPUState, spr[SPR_SPRG7]) },
{ "pid", offsetof(CPUState, spr[SPR_BOOKE_PID]) },
{ "csrr0", offsetof(CPUState, spr[SPR_BOOKE_CSRR0]) },
{ "csrr1", offsetof(CPUState, spr[SPR_BOOKE_CSRR1]) },
{ "esr", offsetof(CPUState, spr[SPR_BOOKE_ESR]) },
{ "dear", offsetof(CPUState, spr[SPR_BOOKE_DEAR]) },
{ "mcsr", offsetof(CPUState, spr[SPR_BOOKE_MCSR]) },
{ "tsr", offsetof(CPUState, spr[SPR_BOOKE_TSR]) },
{ "tcr", offsetof(CPUState, spr[SPR_BOOKE_TCR]) },
{ "vrsave", offsetof(CPUState, spr[SPR_VRSAVE]) },
{ "pir", offsetof(CPUState, spr[SPR_BOOKE_PIR]) },
{ "mcsrr0", offsetof(CPUState, spr[SPR_BOOKE_MCSRR0]) },
{ "mcsrr1", offsetof(CPUState, spr[SPR_BOOKE_MCSRR1]) },
{ "decar", offsetof(CPUState, spr[SPR_BOOKE_DECAR]) },
{ "ivpr", offsetof(CPUState, spr[SPR_BOOKE_IVPR]) },
{ "epcr", offsetof(CPUState, spr[SPR_BOOKE_EPCR]) },
{ "sprg8", offsetof(CPUState, spr[SPR_BOOKE_SPRG8]) },
{ "ivor0", offsetof(CPUState, spr[SPR_BOOKE_IVOR0]) },
{ "ivor1", offsetof(CPUState, spr[SPR_BOOKE_IVOR1]) },
{ "ivor2", offsetof(CPUState, spr[SPR_BOOKE_IVOR2]) },
{ "ivor3", offsetof(CPUState, spr[SPR_BOOKE_IVOR3]) },
{ "ivor4", offsetof(CPUState, spr[SPR_BOOKE_IVOR4]) },
{ "ivor5", offsetof(CPUState, spr[SPR_BOOKE_IVOR5]) },
{ "ivor6", offsetof(CPUState, spr[SPR_BOOKE_IVOR6]) },
{ "ivor7", offsetof(CPUState, spr[SPR_BOOKE_IVOR7]) },
{ "ivor8", offsetof(CPUState, spr[SPR_BOOKE_IVOR8]) },
{ "ivor9", offsetof(CPUState, spr[SPR_BOOKE_IVOR9]) },
{ "ivor10", offsetof(CPUState, spr[SPR_BOOKE_IVOR10]) },
{ "ivor11", offsetof(CPUState, spr[SPR_BOOKE_IVOR11]) },
{ "ivor12", offsetof(CPUState, spr[SPR_BOOKE_IVOR12]) },
{ "ivor13", offsetof(CPUState, spr[SPR_BOOKE_IVOR13]) },
{ "ivor14", offsetof(CPUState, spr[SPR_BOOKE_IVOR14]) },
{ "ivor15", offsetof(CPUState, spr[SPR_BOOKE_IVOR15]) },
{ "ivor32", offsetof(CPUState, spr[SPR_BOOKE_IVOR32]) },
{ "ivor33", offsetof(CPUState, spr[SPR_BOOKE_IVOR33]) },
{ "ivor34", offsetof(CPUState, spr[SPR_BOOKE_IVOR34]) },
{ "ivor35", offsetof(CPUState, spr[SPR_BOOKE_IVOR35]) },
{ "ivor36", offsetof(CPUState, spr[SPR_BOOKE_IVOR36]) },
{ "ivor37", offsetof(CPUState, spr[SPR_BOOKE_IVOR37]) },
{ "mas0", offsetof(CPUState, spr[SPR_BOOKE_MAS0]) },
{ "mas1", offsetof(CPUState, spr[SPR_BOOKE_MAS1]) },
{ "mas2", offsetof(CPUState, spr[SPR_BOOKE_MAS2]) },
{ "mas3", offsetof(CPUState, spr[SPR_BOOKE_MAS3]) },
{ "mas4", offsetof(CPUState, spr[SPR_BOOKE_MAS4]) },
{ "mas6", offsetof(CPUState, spr[SPR_BOOKE_MAS6]) },
{ "mas7", offsetof(CPUState, spr[SPR_BOOKE_MAS7]) },
{ "mmucfg", offsetof(CPUState, spr[SPR_MMUCFG]) },
{ "tlb0cfg", offsetof(CPUState, spr[SPR_BOOKE_TLB0CFG]) },
{ "tlb1cfg", offsetof(CPUState, spr[SPR_BOOKE_TLB1CFG]) },
{ "epr", offsetof(CPUState, spr[SPR_BOOKE_EPR]) },
{ "eplc", offsetof(CPUState, spr[SPR_BOOKE_EPLC]) },
{ "epsc", offsetof(CPUState, spr[SPR_BOOKE_EPSC]) },
{ "svr", offsetof(CPUState, spr[SPR_E500_SVR]) },
{ "mcar", offsetof(CPUState, spr[SPR_Exxx_MCAR]) },
{ "pid1", offsetof(CPUState, spr[SPR_BOOKE_PID1]) },
{ "pid2", offsetof(CPUState, spr[SPR_BOOKE_PID2]) },
{ "hid0", offsetof(CPUState, spr[SPR_HID0]) },
#elif defined(TARGET_SPARC)
{ "g0", offsetof(CPUState, gregs[0]) },
{ "g1", offsetof(CPUState, gregs[1]) },
{ "g2", offsetof(CPUState, gregs[2]) },
{ "g3", offsetof(CPUState, gregs[3]) },
{ "g4", offsetof(CPUState, gregs[4]) },
{ "g5", offsetof(CPUState, gregs[5]) },
{ "g6", offsetof(CPUState, gregs[6]) },
{ "g7", offsetof(CPUState, gregs[7]) },
{ "o0", 0, monitor_get_reg },
{ "o1", 1, monitor_get_reg },
{ "o2", 2, monitor_get_reg },
{ "o3", 3, monitor_get_reg },
{ "o4", 4, monitor_get_reg },
{ "o5", 5, monitor_get_reg },
{ "o6", 6, monitor_get_reg },
{ "o7", 7, monitor_get_reg },
{ "l0", 8, monitor_get_reg },
{ "l1", 9, monitor_get_reg },
{ "l2", 10, monitor_get_reg },
{ "l3", 11, monitor_get_reg },
{ "l4", 12, monitor_get_reg },
{ "l5", 13, monitor_get_reg },
{ "l6", 14, monitor_get_reg },
{ "l7", 15, monitor_get_reg },
{ "i0", 16, monitor_get_reg },
{ "i1", 17, monitor_get_reg },
{ "i2", 18, monitor_get_reg },
{ "i3", 19, monitor_get_reg },
{ "i4", 20, monitor_get_reg },
{ "i5", 21, monitor_get_reg },
{ "i6", 22, monitor_get_reg },
{ "i7", 23, monitor_get_reg },
{ "pc", offsetof(CPUState, pc) },
{ "npc", offsetof(CPUState, npc) },
{ "y", offsetof(CPUState, y) },
#ifndef TARGET_SPARC64
{ "psr", 0, &monitor_get_psr, },
{ "wim", offsetof(CPUState, wim) },
#endif
{ "tbr", offsetof(CPUState, tbr) },
{ "fsr", offsetof(CPUState, fsr) },
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
#ifdef TARGET_SPARC64
{ "f32", offsetof(CPUState, fpr[32]) },
{ "f34", offsetof(CPUState, fpr[34]) },
{ "f36", offsetof(CPUState, fpr[36]) },
{ "f38", offsetof(CPUState, fpr[38]) },
{ "f40", offsetof(CPUState, fpr[40]) },
{ "f42", offsetof(CPUState, fpr[42]) },
{ "f44", offsetof(CPUState, fpr[44]) },
{ "f46", offsetof(CPUState, fpr[46]) },
{ "f48", offsetof(CPUState, fpr[48]) },
{ "f50", offsetof(CPUState, fpr[50]) },
{ "f52", offsetof(CPUState, fpr[52]) },
{ "f54", offsetof(CPUState, fpr[54]) },
{ "f56", offsetof(CPUState, fpr[56]) },
{ "f58", offsetof(CPUState, fpr[58]) },
{ "f60", offsetof(CPUState, fpr[60]) },
{ "f62", offsetof(CPUState, fpr[62]) },
{ "asi", offsetof(CPUState, asi) },
{ "pstate", offsetof(CPUState, pstate) },
{ "cansave", offsetof(CPUState, cansave) },
{ "canrestore", offsetof(CPUState, canrestore) },
{ "otherwin", offsetof(CPUState, otherwin) },
{ "wstate", offsetof(CPUState, wstate) },
{ "cleanwin", offsetof(CPUState, cleanwin) },
{ "fprs", offsetof(CPUState, fprs) },
#endif
#endif
{ NULL },
};
static void expr_error(Monitor *mon, const char *msg)
{
monitor_printf(mon, "%s\n", msg);
longjmp(expr_env, 1);
}
/* return 0 if OK, -1 if not found */
static int get_monitor_def(target_long *pval, const char *name)
{
const MonitorDef *md;
void *ptr;
for(md = monitor_defs; md->name != NULL; md++) {
if (compare_cmd(name, md->name)) {
if (md->get_value) {
*pval = md->get_value(md, md->offset);
} else {
CPUState *env = mon_get_cpu();
ptr = (uint8_t *)env + md->offset;
switch(md->type) {
case MD_I32:
*pval = *(int32_t *)ptr;
break;
case MD_TLONG:
*pval = *(target_long *)ptr;
break;
default:
*pval = 0;
break;
}
}
return 0;
}
}
return -1;
}
static void next(void)
{
if (*pch != '\0') {
pch++;
while (qemu_isspace(*pch))
pch++;
}
}
static int64_t expr_sum(Monitor *mon);
static int64_t expr_unary(Monitor *mon)
{
int64_t n;
char *p;
int ret;
switch(*pch) {
case '+':
next();
n = expr_unary(mon);
break;
case '-':
next();
n = -expr_unary(mon);
break;
case '~':
next();
n = ~expr_unary(mon);
break;
case '(':
next();
n = expr_sum(mon);
if (*pch != ')') {
expr_error(mon, "')' expected");
}
next();
break;
case '\'':
pch++;
if (*pch == '\0')
expr_error(mon, "character constant expected");
n = *pch;
pch++;
if (*pch != '\'')
expr_error(mon, "missing terminating \' character");
next();
break;
case '$':
{
char buf[128], *q;
target_long reg=0;
pch++;
q = buf;
while ((*pch >= 'a' && *pch <= 'z') ||
(*pch >= 'A' && *pch <= 'Z') ||
(*pch >= '0' && *pch <= '9') ||
*pch == '_' || *pch == '.') {
if ((q - buf) < sizeof(buf) - 1)
*q++ = *pch;
pch++;
}
while (qemu_isspace(*pch))
pch++;
*q = 0;
ret = get_monitor_def(&reg, buf);
if (ret < 0)
expr_error(mon, "unknown register");
n = reg;
}
break;
case '\0':
expr_error(mon, "unexpected end of expression");
n = 0;
break;
default:
#if TARGET_PHYS_ADDR_BITS > 32
n = strtoull(pch, &p, 0);
#else
n = strtoul(pch, &p, 0);
#endif
if (pch == p) {
expr_error(mon, "invalid char in expression");
}
pch = p;
while (qemu_isspace(*pch))
pch++;
break;
}
return n;
}
static int64_t expr_prod(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_unary(mon);
for(;;) {
op = *pch;
if (op != '*' && op != '/' && op != '%')
break;
next();
val2 = expr_unary(mon);
switch(op) {
default:
case '*':
val *= val2;
break;
case '/':
case '%':
if (val2 == 0)
expr_error(mon, "division by zero");
if (op == '/')
val /= val2;
else
val %= val2;
break;
}
}
return val;
}
static int64_t expr_logic(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_prod(mon);
for(;;) {
op = *pch;
if (op != '&' && op != '|' && op != '^')
break;
next();
val2 = expr_prod(mon);
switch(op) {
default:
case '&':
val &= val2;
break;
case '|':
val |= val2;
break;
case '^':
val ^= val2;
break;
}
}
return val;
}
static int64_t expr_sum(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_logic(mon);
for(;;) {
op = *pch;
if (op != '+' && op != '-')
break;
next();
val2 = expr_logic(mon);
if (op == '+')
val += val2;
else
val -= val2;
}
return val;
}
static int get_expr(Monitor *mon, int64_t *pval, const char **pp)
{
pch = *pp;
if (setjmp(expr_env)) {
*pp = pch;
return -1;
}
while (qemu_isspace(*pch))
pch++;
*pval = expr_sum(mon);
*pp = pch;
return 0;
}
static int get_double(Monitor *mon, double *pval, const char **pp)
{
const char *p = *pp;
char *tailp;
double d;
d = strtod(p, &tailp);
if (tailp == p) {
monitor_printf(mon, "Number expected\n");
return -1;
}
if (d != d || d - d != 0) {
/* NaN or infinity */
monitor_printf(mon, "Bad number\n");
return -1;
}
*pval = d;
*pp = tailp;
return 0;
}
static int get_str(char *buf, int buf_size, const char **pp)
{
const char *p;
char *q;
int c;
q = buf;
p = *pp;
while (qemu_isspace(*p))
p++;
if (*p == '\0') {
fail:
*q = '\0';
*pp = p;
return -1;
}
if (*p == '\"') {
p++;
while (*p != '\0' && *p != '\"') {
if (*p == '\\') {
p++;
c = *p++;
switch(c) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case '\\':
case '\'':
case '\"':
break;
default:
qemu_printf("unsupported escape code: '\\%c'\n", c);
goto fail;
}
if ((q - buf) < buf_size - 1) {
*q++ = c;
}
} else {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
if (*p != '\"') {
qemu_printf("unterminated string\n");
goto fail;
}
p++;
} else {
while (*p != '\0' && !qemu_isspace(*p)) {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
*q = '\0';
*pp = p;
return 0;
}
/*
* Store the command-name in cmdname, and return a pointer to
* the remaining of the command string.
*/
static const char *get_command_name(const char *cmdline,
char *cmdname, size_t nlen)
{
size_t len;
const char *p, *pstart;
p = cmdline;
while (qemu_isspace(*p))
p++;
if (*p == '\0')
return NULL;
pstart = p;
while (*p != '\0' && *p != '/' && !qemu_isspace(*p))
p++;
len = p - pstart;
if (len > nlen - 1)
len = nlen - 1;
memcpy(cmdname, pstart, len);
cmdname[len] = '\0';
return p;
}
/**
* Read key of 'type' into 'key' and return the current
* 'type' pointer.
*/
static char *key_get_info(const char *type, char **key)
{
size_t len;
char *p, *str;
if (*type == ',')
type++;
p = strchr(type, ':');
if (!p) {
*key = NULL;
return NULL;
}
len = p - type;
str = g_malloc(len + 1);
memcpy(str, type, len);
str[len] = '\0';
*key = str;
return ++p;
}
static int default_fmt_format = 'x';
static int default_fmt_size = 4;
#define MAX_ARGS 16
static int is_valid_option(const char *c, const char *typestr)
{
char option[3];
option[0] = '-';
option[1] = *c;
option[2] = '\0';
typestr = strstr(typestr, option);
return (typestr != NULL);
}
static const mon_cmd_t *search_dispatch_table(const mon_cmd_t *disp_table,
const char *cmdname)
{
const mon_cmd_t *cmd;
for (cmd = disp_table; cmd->name != NULL; cmd++) {
if (compare_cmd(cmdname, cmd->name)) {
return cmd;
}
}
return NULL;
}
static const mon_cmd_t *monitor_find_command(const char *cmdname)
{
return search_dispatch_table(mon_cmds, cmdname);
}
static const mon_cmd_t *qmp_find_query_cmd(const char *info_item)
{
return search_dispatch_table(qmp_query_cmds, info_item);
}
static const mon_cmd_t *qmp_find_cmd(const char *cmdname)
{
return search_dispatch_table(qmp_cmds, cmdname);
}
static const mon_cmd_t *monitor_parse_command(Monitor *mon,
const char *cmdline,
QDict *qdict)
{
const char *p, *typestr;
int c;
const mon_cmd_t *cmd;
char cmdname[256];
char buf[1024];
char *key;
#ifdef DEBUG
monitor_printf(mon, "command='%s'\n", cmdline);
#endif
/* extract the command name */
p = get_command_name(cmdline, cmdname, sizeof(cmdname));
if (!p)
return NULL;
cmd = monitor_find_command(cmdname);
if (!cmd) {
monitor_printf(mon, "unknown command: '%s'\n", cmdname);
return NULL;
}
/* parse the parameters */
typestr = cmd->args_type;
for(;;) {
typestr = key_get_info(typestr, &key);
if (!typestr)
break;
c = *typestr;
typestr++;
switch(c) {
case 'F':
case 'B':
case 's':
{
int ret;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no optional string: NULL argument */
break;
}
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
switch(c) {
case 'F':
monitor_printf(mon, "%s: filename expected\n",
cmdname);
break;
case 'B':
monitor_printf(mon, "%s: block device name expected\n",
cmdname);
break;
default:
monitor_printf(mon, "%s: string expected\n", cmdname);
break;
}
goto fail;
}
qdict_put(qdict, key, qstring_from_str(buf));
}
break;
case 'O':
{
QemuOptsList *opts_list;
QemuOpts *opts;
opts_list = qemu_find_opts(key);
if (!opts_list || opts_list->desc->name) {
goto bad_type;
}
while (qemu_isspace(*p)) {
p++;
}
if (!*p)
break;
if (get_str(buf, sizeof(buf), &p) < 0) {
goto fail;
}
opts = qemu_opts_parse(opts_list, buf, 1);
if (!opts) {
goto fail;
}
qemu_opts_to_qdict(opts, qdict);
qemu_opts_del(opts);
}
break;
case '/':
{
int count, format, size;
while (qemu_isspace(*p))
p++;
if (*p == '/') {
/* format found */
p++;
count = 1;
if (qemu_isdigit(*p)) {
count = 0;
while (qemu_isdigit(*p)) {
count = count * 10 + (*p - '0');
p++;
}
}
size = -1;
format = -1;
for(;;) {
switch(*p) {
case 'o':
case 'd':
case 'u':
case 'x':
case 'i':
case 'c':
format = *p++;
break;
case 'b':
size = 1;
p++;
break;
case 'h':
size = 2;
p++;
break;
case 'w':
size = 4;
p++;
break;
case 'g':
case 'L':
size = 8;
p++;
break;
default:
goto next;
}
}
next:
if (*p != '\0' && !qemu_isspace(*p)) {
monitor_printf(mon, "invalid char in format: '%c'\n",
*p);
goto fail;
}
if (format < 0)
format = default_fmt_format;
if (format != 'i') {
/* for 'i', not specifying a size gives -1 as size */
if (size < 0)
size = default_fmt_size;
default_fmt_size = size;
}
default_fmt_format = format;
} else {
count = 1;
format = default_fmt_format;
if (format != 'i') {
size = default_fmt_size;
} else {
size = -1;
}
}
qdict_put(qdict, "count", qint_from_int(count));
qdict_put(qdict, "format", qint_from_int(format));
qdict_put(qdict, "size", qint_from_int(size));
}
break;
case 'i':
case 'l':
case 'M':
{
int64_t val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?' || *typestr == '.') {
if (*typestr == '?') {
if (*p == '\0') {
typestr++;
break;
}
} else {
if (*p == '.') {
p++;
while (qemu_isspace(*p))
p++;
} else {
typestr++;
break;
}
}
typestr++;
}
if (get_expr(mon, &val, &p))
goto fail;
/* Check if 'i' is greater than 32-bit */
if ((c == 'i') && ((val >> 32) & 0xffffffff)) {
monitor_printf(mon, "\'%s\' has failed: ", cmdname);
monitor_printf(mon, "integer is for 32-bit values\n");
goto fail;
} else if (c == 'M') {
val <<= 20;
}
qdict_put(qdict, key, qint_from_int(val));
}
break;
case 'o':
{
int64_t val;
char *end;
while (qemu_isspace(*p)) {
p++;
}
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
val = strtosz(p, &end);
if (val < 0) {
monitor_printf(mon, "invalid size\n");
goto fail;
}
qdict_put(qdict, key, qint_from_int(val));
p = end;
}
break;
case 'T':
{
double val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
if (get_double(mon, &val, &p) < 0) {
goto fail;
}
if (p[0] && p[1] == 's') {
switch (*p) {
case 'm':
val /= 1e3; p += 2; break;
case 'u':
val /= 1e6; p += 2; break;
case 'n':
val /= 1e9; p += 2; break;
}
}
if (*p && !qemu_isspace(*p)) {
monitor_printf(mon, "Unknown unit suffix\n");
goto fail;
}
qdict_put(qdict, key, qfloat_from_double(val));
}
break;
case 'b':
{
const char *beg;
int val;
while (qemu_isspace(*p)) {
p++;
}
beg = p;
while (qemu_isgraph(*p)) {
p++;
}
if (p - beg == 2 && !memcmp(beg, "on", p - beg)) {
val = 1;
} else if (p - beg == 3 && !memcmp(beg, "off", p - beg)) {
val = 0;
} else {
monitor_printf(mon, "Expected 'on' or 'off'\n");
goto fail;
}
qdict_put(qdict, key, qbool_from_int(val));
}
break;
case '-':
{
const char *tmp = p;
int skip_key = 0;
/* option */
c = *typestr++;
if (c == '\0')
goto bad_type;
while (qemu_isspace(*p))
p++;
if (*p == '-') {
p++;
if(c != *p) {
if(!is_valid_option(p, typestr)) {
monitor_printf(mon, "%s: unsupported option -%c\n",
cmdname, *p);
goto fail;
} else {
skip_key = 1;
}
}
if(skip_key) {
p = tmp;
} else {
/* has option */
p++;
qdict_put(qdict, key, qbool_from_int(1));
}
}
}
break;
default:
bad_type:
monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c);
goto fail;
}
g_free(key);
key = NULL;
}
/* check that all arguments were parsed */
while (qemu_isspace(*p))
p++;
if (*p != '\0') {
monitor_printf(mon, "%s: extraneous characters at the end of line\n",
cmdname);
goto fail;
}
return cmd;
fail:
g_free(key);
return NULL;
}
void monitor_set_error(Monitor *mon, QError *qerror)
{
/* report only the first error */
if (!mon->error) {
mon->error = qerror;
} else {
MON_DEBUG("Additional error report at %s:%d\n",
qerror->file, qerror->linenr);
QDECREF(qerror);
}
}
static void handler_audit(Monitor *mon, const mon_cmd_t *cmd, int ret)
{
if (ret && !monitor_has_error(mon)) {
/*
* If it returns failure, it must have passed on error.
*
* Action: Report an internal error to the client if in QMP.
*/
qerror_report(QERR_UNDEFINED_ERROR);
MON_DEBUG("command '%s' returned failure but did not pass an error\n",
cmd->name);
}
#ifdef CONFIG_DEBUG_MONITOR
if (!ret && monitor_has_error(mon)) {
/*
* If it returns success, it must not have passed an error.
*
* Action: Report the passed error to the client.
*/
MON_DEBUG("command '%s' returned success but passed an error\n",
cmd->name);
}
if (mon_print_count_get(mon) > 0 && strcmp(cmd->name, "info") != 0) {
/*
* Handlers should not call Monitor print functions.
*
* Action: Ignore them in QMP.
*
* (XXX: we don't check any 'info' or 'query' command here
* because the user print function _is_ called by do_info(), hence
* we will trigger this check. This problem will go away when we
* make 'query' commands real and kill do_info())
*/
MON_DEBUG("command '%s' called print functions %d time(s)\n",
cmd->name, mon_print_count_get(mon));
}
#endif
}
static void handle_user_command(Monitor *mon, const char *cmdline)
{
QDict *qdict;
const mon_cmd_t *cmd;
qdict = qdict_new();
cmd = monitor_parse_command(mon, cmdline, qdict);
if (!cmd)
goto out;
if (handler_is_async(cmd)) {
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
user_async_cmd_handler(mon, cmd, qdict);
} else if (handler_is_qobject(cmd)) {
QObject *data = NULL;
/* XXX: ignores the error code */
cmd->mhandler.cmd_new(mon, qdict, &data);
assert(!monitor_has_error(mon));
if (data) {
cmd->user_print(mon, data);
qobject_decref(data);
}
} else {
cmd->mhandler.cmd(mon, qdict);
}
out:
QDECREF(qdict);
}
static void cmd_completion(const char *name, const char *list)
{
const char *p, *pstart;
char cmd[128];
int len;
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
len = p - pstart;
if (len > sizeof(cmd) - 2)
len = sizeof(cmd) - 2;
memcpy(cmd, pstart, len);
cmd[len] = '\0';
if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) {
readline_add_completion(cur_mon->rs, cmd);
}
if (*p == '\0')
break;
p++;
}
}
static void file_completion(const char *input)
{
DIR *ffs;
struct dirent *d;
char path[1024];
char file[1024], file_prefix[1024];
int input_path_len;
const char *p;
p = strrchr(input, '/');
if (!p) {
input_path_len = 0;
pstrcpy(file_prefix, sizeof(file_prefix), input);
pstrcpy(path, sizeof(path), ".");
} else {
input_path_len = p - input + 1;
memcpy(path, input, input_path_len);
if (input_path_len > sizeof(path) - 1)
input_path_len = sizeof(path) - 1;
path[input_path_len] = '\0';
pstrcpy(file_prefix, sizeof(file_prefix), p + 1);
}
#ifdef DEBUG_COMPLETION
monitor_printf(cur_mon, "input='%s' path='%s' prefix='%s'\n",
input, path, file_prefix);
#endif
ffs = opendir(path);
if (!ffs)
return;
for(;;) {
struct stat sb;
d = readdir(ffs);
if (!d)
break;
if (strcmp(d->d_name, ".") == 0 || strcmp(d->d_name, "..") == 0) {
continue;
}
if (strstart(d->d_name, file_prefix, NULL)) {
memcpy(file, input, input_path_len);
if (input_path_len < sizeof(file))
pstrcpy(file + input_path_len, sizeof(file) - input_path_len,
d->d_name);
/* stat the file to find out if it's a directory.
* In that case add a slash to speed up typing long paths
*/
stat(file, &sb);
if(S_ISDIR(sb.st_mode))
pstrcat(file, sizeof(file), "/");
readline_add_completion(cur_mon->rs, file);
}
}
closedir(ffs);
}
static void block_completion_it(void *opaque, BlockDriverState *bs)
{
const char *name = bdrv_get_device_name(bs);
const char *input = opaque;
if (input[0] == '\0' ||
!strncmp(name, (char *)input, strlen(input))) {
readline_add_completion(cur_mon->rs, name);
}
}
/* NOTE: this parser is an approximate form of the real command parser */
static void parse_cmdline(const char *cmdline,
int *pnb_args, char **args)
{
const char *p;
int nb_args, ret;
char buf[1024];
p = cmdline;
nb_args = 0;
for(;;) {
while (qemu_isspace(*p))
p++;
if (*p == '\0')
break;
if (nb_args >= MAX_ARGS)
break;
ret = get_str(buf, sizeof(buf), &p);
args[nb_args] = g_strdup(buf);
nb_args++;
if (ret < 0)
break;
}
*pnb_args = nb_args;
}
static const char *next_arg_type(const char *typestr)
{
const char *p = strchr(typestr, ':');
return (p != NULL ? ++p : typestr);
}
static void monitor_find_completion(const char *cmdline)
{
const char *cmdname;
char *args[MAX_ARGS];
int nb_args, i, len;
const char *ptype, *str;
const mon_cmd_t *cmd;
const KeyDef *key;
parse_cmdline(cmdline, &nb_args, args);
#ifdef DEBUG_COMPLETION
for(i = 0; i < nb_args; i++) {
monitor_printf(cur_mon, "arg%d = '%s'\n", i, (char *)args[i]);
}
#endif
/* if the line ends with a space, it means we want to complete the
next arg */
len = strlen(cmdline);
if (len > 0 && qemu_isspace(cmdline[len - 1])) {
if (nb_args >= MAX_ARGS) {
goto cleanup;
}
args[nb_args++] = g_strdup("");
}
if (nb_args <= 1) {
/* command completion */
if (nb_args == 0)
cmdname = "";
else
cmdname = args[0];
readline_set_completion_index(cur_mon->rs, strlen(cmdname));
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
cmd_completion(cmdname, cmd->name);
}
} else {
/* find the command */
for (cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(args[0], cmd->name)) {
break;
}
}
if (!cmd->name) {
goto cleanup;
}
ptype = next_arg_type(cmd->args_type);
for(i = 0; i < nb_args - 2; i++) {
if (*ptype != '\0') {
ptype = next_arg_type(ptype);
while (*ptype == '?')
ptype = next_arg_type(ptype);
}
}
str = args[nb_args - 1];
if (*ptype == '-' && ptype[1] != '\0') {
ptype = next_arg_type(ptype);
}
switch(*ptype) {
case 'F':
/* file completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
file_completion(str);
break;
case 'B':
/* block device name completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
bdrv_iterate(block_completion_it, (void *)str);
break;
case 's':
/* XXX: more generic ? */
if (!strcmp(cmd->name, "info")) {
readline_set_completion_index(cur_mon->rs, strlen(str));
for(cmd = info_cmds; cmd->name != NULL; cmd++) {
cmd_completion(str, cmd->name);
}
} else if (!strcmp(cmd->name, "sendkey")) {
char *sep = strrchr(str, '-');
if (sep)
str = sep + 1;
readline_set_completion_index(cur_mon->rs, strlen(str));
for(key = key_defs; key->name != NULL; key++) {
cmd_completion(str, key->name);
}
} else if (!strcmp(cmd->name, "help|?")) {
readline_set_completion_index(cur_mon->rs, strlen(str));
for (cmd = mon_cmds; cmd->name != NULL; cmd++) {
cmd_completion(str, cmd->name);
}
}
break;
default:
break;
}
}
cleanup:
for (i = 0; i < nb_args; i++) {
g_free(args[i]);
}
}
static int monitor_can_read(void *opaque)
{
Monitor *mon = opaque;
return (mon->suspend_cnt == 0) ? 1 : 0;
}
static int invalid_qmp_mode(const Monitor *mon, const char *cmd_name)
{
int is_cap = compare_cmd(cmd_name, "qmp_capabilities");
return (qmp_cmd_mode(mon) ? is_cap : !is_cap);
}
/*
* Argument validation rules:
*
* 1. The argument must exist in cmd_args qdict
* 2. The argument type must be the expected one
*
* Special case: If the argument doesn't exist in cmd_args and
* the QMP_ACCEPT_UNKNOWNS flag is set, then the
* checking is skipped for it.
*/
static int check_client_args_type(const QDict *client_args,
const QDict *cmd_args, int flags)
{
const QDictEntry *ent;
for (ent = qdict_first(client_args); ent;ent = qdict_next(client_args,ent)){
QObject *obj;
QString *arg_type;
const QObject *client_arg = qdict_entry_value(ent);
const char *client_arg_name = qdict_entry_key(ent);
obj = qdict_get(cmd_args, client_arg_name);
if (!obj) {
if (flags & QMP_ACCEPT_UNKNOWNS) {
/* handler accepts unknowns */
continue;
}
/* client arg doesn't exist */
qerror_report(QERR_INVALID_PARAMETER, client_arg_name);
return -1;
}
arg_type = qobject_to_qstring(obj);
assert(arg_type != NULL);
/* check if argument's type is correct */
switch (qstring_get_str(arg_type)[0]) {
case 'F':
case 'B':
case 's':
if (qobject_type(client_arg) != QTYPE_QSTRING) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"string");
return -1;
}
break;
case 'i':
case 'l':
case 'M':
case 'o':
if (qobject_type(client_arg) != QTYPE_QINT) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"int");
return -1;
}
break;
case 'T':
if (qobject_type(client_arg) != QTYPE_QINT &&
qobject_type(client_arg) != QTYPE_QFLOAT) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"number");
return -1;
}
break;
case 'b':
case '-':
if (qobject_type(client_arg) != QTYPE_QBOOL) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"bool");
return -1;
}
break;
case 'O':
assert(flags & QMP_ACCEPT_UNKNOWNS);
break;
case '/':
case '.':
/*
* These types are not supported by QMP and thus are not
* handled here. Fall through.
*/
default:
abort();
}
}
return 0;
}
/*
* - Check if the client has passed all mandatory args
* - Set special flags for argument validation
*/
static int check_mandatory_args(const QDict *cmd_args,
const QDict *client_args, int *flags)
{
const QDictEntry *ent;
for (ent = qdict_first(cmd_args); ent; ent = qdict_next(cmd_args, ent)) {
const char *cmd_arg_name = qdict_entry_key(ent);
QString *type = qobject_to_qstring(qdict_entry_value(ent));
assert(type != NULL);
if (qstring_get_str(type)[0] == 'O') {
assert((*flags & QMP_ACCEPT_UNKNOWNS) == 0);
*flags |= QMP_ACCEPT_UNKNOWNS;
} else if (qstring_get_str(type)[0] != '-' &&
qstring_get_str(type)[1] != '?' &&
!qdict_haskey(client_args, cmd_arg_name)) {
qerror_report(QERR_MISSING_PARAMETER, cmd_arg_name);
return -1;
}
}
return 0;
}
static QDict *qdict_from_args_type(const char *args_type)
{
int i;
QDict *qdict;
QString *key, *type, *cur_qs;
assert(args_type != NULL);
qdict = qdict_new();
if (args_type == NULL || args_type[0] == '\0') {
/* no args, empty qdict */
goto out;
}
key = qstring_new();
type = qstring_new();
cur_qs = key;
for (i = 0;; i++) {
switch (args_type[i]) {
case ',':
case '\0':
qdict_put(qdict, qstring_get_str(key), type);
QDECREF(key);
if (args_type[i] == '\0') {
goto out;
}
type = qstring_new(); /* qdict has ref */
cur_qs = key = qstring_new();
break;
case ':':
cur_qs = type;
break;
default:
qstring_append_chr(cur_qs, args_type[i]);
break;
}
}
out:
return qdict;
}
/*
* Client argument checking rules:
*
* 1. Client must provide all mandatory arguments
* 2. Each argument provided by the client must be expected
* 3. Each argument provided by the client must have the type expected
* by the command
*/
static int qmp_check_client_args(const mon_cmd_t *cmd, QDict *client_args)
{
int flags, err;
QDict *cmd_args;
cmd_args = qdict_from_args_type(cmd->args_type);
flags = 0;
err = check_mandatory_args(cmd_args, client_args, &flags);
if (err) {
goto out;
}
err = check_client_args_type(client_args, cmd_args, flags);
out:
QDECREF(cmd_args);
return err;
}
/*
* Input object checking rules
*
* 1. Input object must be a dict
* 2. The "execute" key must exist
* 3. The "execute" key must be a string
* 4. If the "arguments" key exists, it must be a dict
* 5. If the "id" key exists, it can be anything (ie. json-value)
* 6. Any argument not listed above is considered invalid
*/
static QDict *qmp_check_input_obj(QObject *input_obj)
{
const QDictEntry *ent;
int has_exec_key = 0;
QDict *input_dict;
if (qobject_type(input_obj) != QTYPE_QDICT) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT, "object");
return NULL;
}
input_dict = qobject_to_qdict(input_obj);
for (ent = qdict_first(input_dict); ent; ent = qdict_next(input_dict, ent)){
const char *arg_name = qdict_entry_key(ent);
const QObject *arg_obj = qdict_entry_value(ent);
if (!strcmp(arg_name, "execute")) {
if (qobject_type(arg_obj) != QTYPE_QSTRING) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "execute",
"string");
return NULL;
}
has_exec_key = 1;
} else if (!strcmp(arg_name, "arguments")) {
if (qobject_type(arg_obj) != QTYPE_QDICT) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "arguments",
"object");
return NULL;
}
} else if (!strcmp(arg_name, "id")) {
/* FIXME: check duplicated IDs for async commands */
} else {
qerror_report(QERR_QMP_EXTRA_MEMBER, arg_name);
return NULL;
}
}
if (!has_exec_key) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT, "execute");
return NULL;
}
return input_dict;
}
static void qmp_call_query_cmd(Monitor *mon, const mon_cmd_t *cmd)
{
QObject *ret_data = NULL;
if (handler_is_async(cmd)) {
qmp_async_info_handler(mon, cmd);
if (monitor_has_error(mon)) {
monitor_protocol_emitter(mon, NULL);
}
} else {
cmd->mhandler.info_new(mon, &ret_data);
monitor_protocol_emitter(mon, ret_data);
qobject_decref(ret_data);
}
}
static void qmp_call_cmd(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
QObject *data = NULL;
mon_print_count_init(mon);
ret = cmd->mhandler.cmd_new(mon, params, &data);
handler_audit(mon, cmd, ret);
monitor_protocol_emitter(mon, data);
qobject_decref(data);
}
static void handle_qmp_command(JSONMessageParser *parser, QList *tokens)
{
int err;
QObject *obj;
QDict *input, *args;
const mon_cmd_t *cmd;
Monitor *mon = cur_mon;
const char *cmd_name, *query_cmd;
query_cmd = NULL;
args = input = NULL;
obj = json_parser_parse(tokens, NULL);
if (!obj) {
// FIXME: should be triggered in json_parser_parse()
qerror_report(QERR_JSON_PARSING);
goto err_out;
}
input = qmp_check_input_obj(obj);
if (!input) {
qobject_decref(obj);
goto err_out;
}
mon->mc->id = qdict_get(input, "id");
qobject_incref(mon->mc->id);
cmd_name = qdict_get_str(input, "execute");
if (invalid_qmp_mode(mon, cmd_name)) {
qerror_report(QERR_COMMAND_NOT_FOUND, cmd_name);
goto err_out;
}
cmd = qmp_find_cmd(cmd_name);
if (!cmd && strstart(cmd_name, "query-", &query_cmd)) {
cmd = qmp_find_query_cmd(query_cmd);
}
if (!cmd) {
qerror_report(QERR_COMMAND_NOT_FOUND, cmd_name);
goto err_out;
}
obj = qdict_get(input, "arguments");
if (!obj) {
args = qdict_new();
} else {
args = qobject_to_qdict(obj);
QINCREF(args);
}
err = qmp_check_client_args(cmd, args);
if (err < 0) {
goto err_out;
}
if (query_cmd) {
qmp_call_query_cmd(mon, cmd);
} else if (handler_is_async(cmd)) {
err = qmp_async_cmd_handler(mon, cmd, args);
if (err) {
/* emit the error response */
goto err_out;
}
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
} else {
qmp_call_cmd(mon, cmd, args);
New API for asynchronous monitor commands Qemu has a number of commands that can operate asynchronously (savevm, migrate, etc) and it will be getting more. For these commands, the user monitor needs to be suspended, but QMP monitors could continue to to accept other commands. This patch introduces a new command API that isolates the details of handling different monitor types from the actual command execution. A monitor command can use this API by implementing the mhandler.cmd_async handler (or info_async if appropriate). This function is responsible for submitting the command and does not return any data although it may raise errors. When the command completes, the QMPCompletion callback should be invoked with its opaque data and the command result. The process for submitting and completing an asynchronous command is different for QMP and user monitors. A user monitor must be suspended at submit time and resumed at completion time. The user_print() function must be passed to the QMPCompletion callback so the result can be displayed properly. QMP monitors are simpler. No submit time setup is required. When the command completes, monitor_protocol_emitter() writes the result in JSON format. This API can also be used to implement synchronous commands. In this case, the cmd_async handler should immediately call the QMPCompletion callback. It is my hope that this new interface will work for all commands, leading to a drastically simplified monitor.c once all commands are ported. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-25 21:18:44 +03:00
}
goto out;
err_out:
monitor_protocol_emitter(mon, NULL);
out:
QDECREF(input);
QDECREF(args);
}
/**
* monitor_control_read(): Read and handle QMP input
*/
static void monitor_control_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
cur_mon = opaque;
json_message_parser_feed(&cur_mon->mc->parser, (const char *) buf, size);
cur_mon = old_mon;
}
static void monitor_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
int i;
cur_mon = opaque;
if (cur_mon->rs) {
for (i = 0; i < size; i++)
readline_handle_byte(cur_mon->rs, buf[i]);
} else {
if (size == 0 || buf[size - 1] != 0)
monitor_printf(cur_mon, "corrupted command\n");
else
handle_user_command(cur_mon, (char *)buf);
}
cur_mon = old_mon;
}
static void monitor_command_cb(Monitor *mon, const char *cmdline, void *opaque)
{
monitor_suspend(mon);
handle_user_command(mon, cmdline);
monitor_resume(mon);
}
int monitor_suspend(Monitor *mon)
{
if (!mon->rs)
return -ENOTTY;
mon->suspend_cnt++;
return 0;
}
void monitor_resume(Monitor *mon)
{
if (!mon->rs)
return;
if (--mon->suspend_cnt == 0)
readline_show_prompt(mon->rs);
}
static QObject *get_qmp_greeting(void)
{
QObject *ver = NULL;
qmp_marshal_input_query_version(NULL, NULL, &ver);
return qobject_from_jsonf("{'QMP':{'version': %p,'capabilities': []}}",ver);
}
/**
* monitor_control_event(): Print QMP gretting
*/
static void monitor_control_event(void *opaque, int event)
{
QObject *data;
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_OPENED:
mon->mc->command_mode = 0;
json_message_parser_init(&mon->mc->parser, handle_qmp_command);
data = get_qmp_greeting();
monitor_json_emitter(mon, data);
qobject_decref(data);
break;
case CHR_EVENT_CLOSED:
json_message_parser_destroy(&mon->mc->parser);
break;
}
}
static void monitor_event(void *opaque, int event)
{
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_MUX_IN:
mon->mux_out = 0;
if (mon->reset_seen) {
readline_restart(mon->rs);
monitor_resume(mon);
monitor_flush(mon);
} else {
mon->suspend_cnt = 0;
}
break;
case CHR_EVENT_MUX_OUT:
if (mon->reset_seen) {
if (mon->suspend_cnt == 0) {
monitor_printf(mon, "\n");
}
monitor_flush(mon);
monitor_suspend(mon);
} else {
mon->suspend_cnt++;
}
mon->mux_out = 1;
break;
case CHR_EVENT_OPENED:
monitor_printf(mon, "QEMU %s monitor - type 'help' for more "
"information\n", QEMU_VERSION);
if (!mon->mux_out) {
readline_show_prompt(mon->rs);
}
mon->reset_seen = 1;
break;
}
}
Support ACLs for controlling VNC access ("Daniel P. Berrange") This patch introduces a generic internal API for access control lists to be used by network servers in QEMU. It adds support for checking these ACL in the VNC server, in two places. The first ACL is for the SASL authentication mechanism, checking the SASL username. This ACL is called 'vnc.username'. The second is for the TLS authentication mechanism, when x509 client certificates are turned on, checking against the Distinguished Name of the client. This ACL is called 'vnc.x509dname' The internal API provides for an ACL with the following characteristics - A unique name, eg vnc.username, and vnc.x509dname. - A default policy, allow or deny - An ordered series of match rules, with allow or deny policy If none of the match rules apply, then the default policy is used. There is a monitor API to manipulate the ACLs, which I'll describe via examples (qemu) acl show vnc.username policy: allow (qemu) acl policy vnc.username denya acl: policy set to 'deny' (qemu) acl allow vnc.username fred acl: added rule at position 1 (qemu) acl allow vnc.username bob acl: added rule at position 2 (qemu) acl allow vnc.username joe 1 acl: added rule at position 1 (qemu) acl show vnc.username policy: deny 0: allow fred 1: allow joe 2: allow bob (qemu) acl show vnc.x509dname policy: allow (qemu) acl policy vnc.x509dname deny acl: policy set to 'deny' (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=London,CN=* acl: added rule at position 1 (qemu) acl allow vnc.x509dname C=GB,O=ACME,L=Boston,CN=bob acl: added rule at position 2 (qemu) acl show vnc.x509dname policy: deny 0: allow C=GB,O=ACME,L=London,CN=* 1: allow C=GB,O=ACME,L=Boston,CN=bob By default the VNC server will not use any ACLs, allowing access to the server if the user successfully authenticates. To enable use of ACLs to restrict user access, the ',acl' flag should be given when starting QEMU. The initial ACL activated will be a 'deny all' policy and should be customized using monitor commands. eg enable SASL auth and ACLs qemu .... -vnc localhost:1,sasl,acl The next patch will provide a way to load a pre-defined ACL when starting up Makefile | 6 + b/acl.c | 185 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ b/acl.h | 74 ++++++++++++++++++++++ configure | 18 +++++ monitor.c | 95 ++++++++++++++++++++++++++++ qemu-doc.texi | 49 ++++++++++++++ vnc-auth-sasl.c | 16 +++- vnc-auth-sasl.h | 7 ++ vnc-tls.c | 19 +++++ vnc-tls.h | 3 vnc.c | 21 ++++++ vnc.h | 3 12 files changed, 491 insertions(+), 5 deletions(-) Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6726 c046a42c-6fe2-441c-8c8c-71466251a162
2009-03-06 23:27:37 +03:00
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 8
* End:
*/
void monitor_init(CharDriverState *chr, int flags)
{
static int is_first_init = 1;
Monitor *mon;
if (is_first_init) {
key_timer = qemu_new_timer_ns(vm_clock, release_keys, NULL);
is_first_init = 0;
}
mon = g_malloc0(sizeof(*mon));
mon->chr = chr;
mon->flags = flags;
if (flags & MONITOR_USE_READLINE) {
mon->rs = readline_init(mon, monitor_find_completion);
monitor_read_command(mon, 0);
}
if (monitor_ctrl_mode(mon)) {
mon->mc = g_malloc0(sizeof(MonitorControl));
/* Control mode requires special handlers */
qemu_chr_add_handlers(chr, monitor_can_read, monitor_control_read,
monitor_control_event, mon);
qemu_chr_fe_set_echo(chr, true);
} else {
qemu_chr_add_handlers(chr, monitor_can_read, monitor_read,
monitor_event, mon);
}
QLIST_INSERT_HEAD(&mon_list, mon, entry);
monitor: Separate "default monitor" and "current monitor" cleanly Commits 376253ec..731b0364 introduced global variable cur_mon, which points to the "default monitor" (if any), except during execution of monitor_read() or monitor_control_read() it points to the monitor from which we're reading instead (the "current monitor"). Monitor command handlers run within monitor_read() or monitor_control_read(). Default monitor and current monitor are really separate things, and squashing them together is confusing and error-prone. For instance, usb_host_scan() can run both in "info usbhost" and periodically via usb_host_auto_check(). It prints to cur_mon, which is what we want in the former case: the monitor executing "info usbhost". But since that's the default monitor in the latter case, it periodically spams the default monitor there. A few places use cur_mon to log stuff to the default monitor. If we ever log something while cur_mon points to current monitor instead of default monitor, the log temporarily "jumps" to another monitor. Whether that can or cannot happen isn't always obvious. Maybe logging to the default monitor (which may not even exist) is a bad idea, and we should log to stderr or a logfile instead. But that's outside the scope of this commit. Change cur_mon to point to the current monitor. Create new default_mon to point to the default monitor. Update users of cur_mon accordingly. This fixes the periodical spamming of the default monitor by usb_host_scan(). It also stops "log jumping", should that problem exist.
2010-02-18 13:41:55 +03:00
if (!default_mon || (flags & MONITOR_IS_DEFAULT))
default_mon = mon;
}
static void bdrv_password_cb(Monitor *mon, const char *password, void *opaque)
{
BlockDriverState *bs = opaque;
int ret = 0;
if (bdrv_set_key(bs, password) != 0) {
monitor_printf(mon, "invalid password\n");
ret = -EPERM;
}
if (mon->password_completion_cb)
mon->password_completion_cb(mon->password_opaque, ret);
monitor_read_command(mon, 1);
}
int monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs,
BlockDriverCompletionFunc *completion_cb,
void *opaque)
{
int err;
if (!bdrv_key_required(bs)) {
if (completion_cb)
completion_cb(opaque, 0);
return 0;
}
if (monitor_ctrl_mode(mon)) {
qerror_report(QERR_DEVICE_ENCRYPTED, bdrv_get_device_name(bs));
return -1;
}
monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs),
bdrv_get_encrypted_filename(bs));
mon->password_completion_cb = completion_cb;
mon->password_opaque = opaque;
err = monitor_read_password(mon, bdrv_password_cb, bs);
if (err && completion_cb)
completion_cb(opaque, err);
return err;
}