qemu/linux-user/syscall.c

7874 lines
242 KiB
C
Raw Normal View History

/*
* Linux syscalls
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define _ATFILE_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <elf.h>
#include <endian.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <sys/swap.h>
#include <signal.h>
#include <sched.h>
#ifdef __ia64__
int __clone2(int (*fn)(void *), void *child_stack_base,
size_t stack_size, int flags, void *arg, ...);
#endif
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/uio.h>
#include <sys/poll.h>
#include <sys/times.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/statfs.h>
#include <utime.h>
#include <sys/sysinfo.h>
#include <sys/utsname.h>
//#include <sys/user.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <linux/wireless.h>
#include <qemu-common.h>
#ifdef TARGET_GPROF
#include <sys/gmon.h>
#endif
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
#ifdef CONFIG_EPOLL
#include <sys/epoll.h>
#endif
#define termios host_termios
#define winsize host_winsize
#define termio host_termio
#define sgttyb host_sgttyb /* same as target */
#define tchars host_tchars /* same as target */
#define ltchars host_ltchars /* same as target */
#include <linux/termios.h>
#include <linux/unistd.h>
#include <linux/utsname.h>
#include <linux/cdrom.h>
#include <linux/hdreg.h>
#include <linux/soundcard.h>
#include <linux/kd.h>
#include <linux/mtio.h>
#include <linux/fs.h>
#if defined(CONFIG_FIEMAP)
#include <linux/fiemap.h>
#endif
#include <linux/fb.h>
#include <linux/vt.h>
#include "linux_loop.h"
#include "cpu-uname.h"
#include "qemu.h"
#include "qemu-common.h"
#if defined(CONFIG_USE_NPTL)
#define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
#else
/* XXX: Hardcode the above values. */
#define CLONE_NPTL_FLAGS2 0
#endif
//#define DEBUG
//#include <linux/msdos_fs.h>
#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
#define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
#undef _syscall0
#undef _syscall1
#undef _syscall2
#undef _syscall3
#undef _syscall4
#undef _syscall5
#undef _syscall6
#define _syscall0(type,name) \
static type name (void) \
{ \
return syscall(__NR_##name); \
}
#define _syscall1(type,name,type1,arg1) \
static type name (type1 arg1) \
{ \
return syscall(__NR_##name, arg1); \
}
#define _syscall2(type,name,type1,arg1,type2,arg2) \
static type name (type1 arg1,type2 arg2) \
{ \
return syscall(__NR_##name, arg1, arg2); \
}
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
static type name (type1 arg1,type2 arg2,type3 arg3) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3); \
}
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
}
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
}
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
type6 arg6) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
}
#define __NR_sys_uname __NR_uname
#define __NR_sys_faccessat __NR_faccessat
#define __NR_sys_fchmodat __NR_fchmodat
#define __NR_sys_fchownat __NR_fchownat
#define __NR_sys_fstatat64 __NR_fstatat64
#define __NR_sys_futimesat __NR_futimesat
#define __NR_sys_getcwd1 __NR_getcwd
#define __NR_sys_getdents __NR_getdents
#define __NR_sys_getdents64 __NR_getdents64
#define __NR_sys_getpriority __NR_getpriority
#define __NR_sys_linkat __NR_linkat
#define __NR_sys_mkdirat __NR_mkdirat
#define __NR_sys_mknodat __NR_mknodat
#define __NR_sys_newfstatat __NR_newfstatat
#define __NR_sys_openat __NR_openat
#define __NR_sys_readlinkat __NR_readlinkat
#define __NR_sys_renameat __NR_renameat
#define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
#define __NR_sys_symlinkat __NR_symlinkat
#define __NR_sys_syslog __NR_syslog
#define __NR_sys_tgkill __NR_tgkill
#define __NR_sys_tkill __NR_tkill
#define __NR_sys_unlinkat __NR_unlinkat
#define __NR_sys_utimensat __NR_utimensat
#define __NR_sys_futex __NR_futex
#define __NR_sys_inotify_init __NR_inotify_init
#define __NR_sys_inotify_add_watch __NR_inotify_add_watch
#define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
#if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
defined(__s390x__)
#define __NR__llseek __NR_lseek
#endif
#ifdef __NR_gettid
_syscall0(int, gettid)
#else
/* This is a replacement for the host gettid() and must return a host
errno. */
static int gettid(void) {
return -ENOSYS;
}
#endif
_syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
#if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
_syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
#endif
_syscall2(int, sys_getpriority, int, which, int, who);
#if defined(TARGET_NR__llseek) && defined(__NR_llseek)
_syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
loff_t *, res, uint, wh);
#endif
_syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
_syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
#if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
_syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig)
#endif
#if defined(TARGET_NR_tkill) && defined(__NR_tkill)
_syscall2(int,sys_tkill,int,tid,int,sig)
#endif
#ifdef __NR_exit_group
_syscall1(int,exit_group,int,error_code)
#endif
#if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
_syscall1(int,set_tid_address,int *,tidptr)
#endif
#if defined(CONFIG_USE_NPTL)
#if defined(TARGET_NR_futex) && defined(__NR_futex)
_syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
const struct timespec *,timeout,int *,uaddr2,int,val3)
#endif
#endif
#define __NR_sys_sched_getaffinity __NR_sched_getaffinity
_syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
unsigned long *, user_mask_ptr);
#define __NR_sys_sched_setaffinity __NR_sched_setaffinity
_syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
unsigned long *, user_mask_ptr);
static bitmask_transtbl fcntl_flags_tbl[] = {
{ TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
{ TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
{ TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
{ TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
{ TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
{ TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
{ TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
{ TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
{ TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
{ TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
{ TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
{ TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
{ TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
#if defined(O_DIRECT)
{ TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
#endif
{ 0, 0, 0, 0 }
};
#define COPY_UTSNAME_FIELD(dest, src) \
do { \
/* __NEW_UTS_LEN doesn't include terminating null */ \
(void) strncpy((dest), (src), __NEW_UTS_LEN); \
(dest)[__NEW_UTS_LEN] = '\0'; \
} while (0)
static int sys_uname(struct new_utsname *buf)
{
struct utsname uts_buf;
if (uname(&uts_buf) < 0)
return (-1);
/*
* Just in case these have some differences, we
* translate utsname to new_utsname (which is the
* struct linux kernel uses).
*/
memset(buf, 0, sizeof(*buf));
COPY_UTSNAME_FIELD(buf->sysname, uts_buf.sysname);
COPY_UTSNAME_FIELD(buf->nodename, uts_buf.nodename);
COPY_UTSNAME_FIELD(buf->release, uts_buf.release);
COPY_UTSNAME_FIELD(buf->version, uts_buf.version);
COPY_UTSNAME_FIELD(buf->machine, uts_buf.machine);
#ifdef _GNU_SOURCE
COPY_UTSNAME_FIELD(buf->domainname, uts_buf.domainname);
#endif
return (0);
#undef COPY_UTSNAME_FIELD
}
static int sys_getcwd1(char *buf, size_t size)
{
if (getcwd(buf, size) == NULL) {
/* getcwd() sets errno */
return (-1);
}
return strlen(buf)+1;
}
#ifdef CONFIG_ATFILE
/*
* Host system seems to have atfile syscall stubs available. We
* now enable them one by one as specified by target syscall_nr.h.
*/
#ifdef TARGET_NR_faccessat
static int sys_faccessat(int dirfd, const char *pathname, int mode)
{
return (faccessat(dirfd, pathname, mode, 0));
}
#endif
#ifdef TARGET_NR_fchmodat
static int sys_fchmodat(int dirfd, const char *pathname, mode_t mode)
{
return (fchmodat(dirfd, pathname, mode, 0));
}
#endif
#if defined(TARGET_NR_fchownat)
static int sys_fchownat(int dirfd, const char *pathname, uid_t owner,
gid_t group, int flags)
{
return (fchownat(dirfd, pathname, owner, group, flags));
}
#endif
#ifdef __NR_fstatat64
static int sys_fstatat64(int dirfd, const char *pathname, struct stat *buf,
int flags)
{
return (fstatat(dirfd, pathname, buf, flags));
}
#endif
#ifdef __NR_newfstatat
static int sys_newfstatat(int dirfd, const char *pathname, struct stat *buf,
int flags)
{
return (fstatat(dirfd, pathname, buf, flags));
}
#endif
#ifdef TARGET_NR_futimesat
static int sys_futimesat(int dirfd, const char *pathname,
const struct timeval times[2])
{
return (futimesat(dirfd, pathname, times));
}
#endif
#ifdef TARGET_NR_linkat
static int sys_linkat(int olddirfd, const char *oldpath,
int newdirfd, const char *newpath, int flags)
{
return (linkat(olddirfd, oldpath, newdirfd, newpath, flags));
}
#endif
#ifdef TARGET_NR_mkdirat
static int sys_mkdirat(int dirfd, const char *pathname, mode_t mode)
{
return (mkdirat(dirfd, pathname, mode));
}
#endif
#ifdef TARGET_NR_mknodat
static int sys_mknodat(int dirfd, const char *pathname, mode_t mode,
dev_t dev)
{
return (mknodat(dirfd, pathname, mode, dev));
}
#endif
#ifdef TARGET_NR_openat
static int sys_openat(int dirfd, const char *pathname, int flags, ...)
{
/*
* open(2) has extra parameter 'mode' when called with
* flag O_CREAT.
*/
if ((flags & O_CREAT) != 0) {
va_list ap;
mode_t mode;
/*
* Get the 'mode' parameter and translate it to
* host bits.
*/
va_start(ap, flags);
mode = va_arg(ap, mode_t);
mode = target_to_host_bitmask(mode, fcntl_flags_tbl);
va_end(ap);
return (openat(dirfd, pathname, flags, mode));
}
return (openat(dirfd, pathname, flags));
}
#endif
#ifdef TARGET_NR_readlinkat
static int sys_readlinkat(int dirfd, const char *pathname, char *buf, size_t bufsiz)
{
return (readlinkat(dirfd, pathname, buf, bufsiz));
}
#endif
#ifdef TARGET_NR_renameat
static int sys_renameat(int olddirfd, const char *oldpath,
int newdirfd, const char *newpath)
{
return (renameat(olddirfd, oldpath, newdirfd, newpath));
}
#endif
#ifdef TARGET_NR_symlinkat
static int sys_symlinkat(const char *oldpath, int newdirfd, const char *newpath)
{
return (symlinkat(oldpath, newdirfd, newpath));
}
#endif
#ifdef TARGET_NR_unlinkat
static int sys_unlinkat(int dirfd, const char *pathname, int flags)
{
return (unlinkat(dirfd, pathname, flags));
}
#endif
#else /* !CONFIG_ATFILE */
/*
* Try direct syscalls instead
*/
#if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
_syscall3(int,sys_faccessat,int,dirfd,const char *,pathname,int,mode)
#endif
#if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat)
_syscall3(int,sys_fchmodat,int,dirfd,const char *,pathname, mode_t,mode)
#endif
#if defined(TARGET_NR_fchownat) && defined(__NR_fchownat)
_syscall5(int,sys_fchownat,int,dirfd,const char *,pathname,
uid_t,owner,gid_t,group,int,flags)
#endif
#if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \
defined(__NR_fstatat64)
_syscall4(int,sys_fstatat64,int,dirfd,const char *,pathname,
struct stat *,buf,int,flags)
#endif
#if defined(TARGET_NR_futimesat) && defined(__NR_futimesat)
_syscall3(int,sys_futimesat,int,dirfd,const char *,pathname,
const struct timeval *,times)
#endif
#if (defined(TARGET_NR_newfstatat) || defined(TARGET_NR_fstatat64) ) && \
defined(__NR_newfstatat)
_syscall4(int,sys_newfstatat,int,dirfd,const char *,pathname,
struct stat *,buf,int,flags)
#endif
#if defined(TARGET_NR_linkat) && defined(__NR_linkat)
_syscall5(int,sys_linkat,int,olddirfd,const char *,oldpath,
int,newdirfd,const char *,newpath,int,flags)
#endif
#if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat)
_syscall3(int,sys_mkdirat,int,dirfd,const char *,pathname,mode_t,mode)
#endif
#if defined(TARGET_NR_mknodat) && defined(__NR_mknodat)
_syscall4(int,sys_mknodat,int,dirfd,const char *,pathname,
mode_t,mode,dev_t,dev)
#endif
#if defined(TARGET_NR_openat) && defined(__NR_openat)
_syscall4(int,sys_openat,int,dirfd,const char *,pathname,int,flags,mode_t,mode)
#endif
#if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat)
_syscall4(int,sys_readlinkat,int,dirfd,const char *,pathname,
char *,buf,size_t,bufsize)
#endif
#if defined(TARGET_NR_renameat) && defined(__NR_renameat)
_syscall4(int,sys_renameat,int,olddirfd,const char *,oldpath,
int,newdirfd,const char *,newpath)
#endif
#if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat)
_syscall3(int,sys_symlinkat,const char *,oldpath,
int,newdirfd,const char *,newpath)
#endif
#if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat)
_syscall3(int,sys_unlinkat,int,dirfd,const char *,pathname,int,flags)
#endif
#endif /* CONFIG_ATFILE */
#ifdef CONFIG_UTIMENSAT
static int sys_utimensat(int dirfd, const char *pathname,
const struct timespec times[2], int flags)
{
if (pathname == NULL)
return futimens(dirfd, times);
else
return utimensat(dirfd, pathname, times, flags);
}
#else
#if defined(TARGET_NR_utimensat) && defined(__NR_utimensat)
_syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
const struct timespec *,tsp,int,flags)
#endif
#endif /* CONFIG_UTIMENSAT */
#ifdef CONFIG_INOTIFY
#include <sys/inotify.h>
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
static int sys_inotify_init(void)
{
return (inotify_init());
}
#endif
#if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
{
return (inotify_add_watch(fd, pathname, mask));
}
#endif
#if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
static int sys_inotify_rm_watch(int fd, int32_t wd)
{
return (inotify_rm_watch(fd, wd));
}
#endif
#ifdef CONFIG_INOTIFY1
#if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
static int sys_inotify_init1(int flags)
{
return (inotify_init1(flags));
}
#endif
#endif
#else
/* Userspace can usually survive runtime without inotify */
#undef TARGET_NR_inotify_init
#undef TARGET_NR_inotify_init1
#undef TARGET_NR_inotify_add_watch
#undef TARGET_NR_inotify_rm_watch
#endif /* CONFIG_INOTIFY */
#if defined(TARGET_NR_ppoll)
#ifndef __NR_ppoll
# define __NR_ppoll -1
#endif
#define __NR_sys_ppoll __NR_ppoll
_syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds,
struct timespec *, timeout, const __sigset_t *, sigmask,
size_t, sigsetsize)
#endif
extern int personality(int);
extern int flock(int, int);
extern int setfsuid(int);
extern int setfsgid(int);
extern int setgroups(int, gid_t *);
#define ERRNO_TABLE_SIZE 1200
/* target_to_host_errno_table[] is initialized from
* host_to_target_errno_table[] in syscall_init(). */
static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
};
/*
* This list is the union of errno values overridden in asm-<arch>/errno.h
* minus the errnos that are not actually generic to all archs.
*/
static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
[EIDRM] = TARGET_EIDRM,
[ECHRNG] = TARGET_ECHRNG,
[EL2NSYNC] = TARGET_EL2NSYNC,
[EL3HLT] = TARGET_EL3HLT,
[EL3RST] = TARGET_EL3RST,
[ELNRNG] = TARGET_ELNRNG,
[EUNATCH] = TARGET_EUNATCH,
[ENOCSI] = TARGET_ENOCSI,
[EL2HLT] = TARGET_EL2HLT,
[EDEADLK] = TARGET_EDEADLK,
[ENOLCK] = TARGET_ENOLCK,
[EBADE] = TARGET_EBADE,
[EBADR] = TARGET_EBADR,
[EXFULL] = TARGET_EXFULL,
[ENOANO] = TARGET_ENOANO,
[EBADRQC] = TARGET_EBADRQC,
[EBADSLT] = TARGET_EBADSLT,
[EBFONT] = TARGET_EBFONT,
[ENOSTR] = TARGET_ENOSTR,
[ENODATA] = TARGET_ENODATA,
[ETIME] = TARGET_ETIME,
[ENOSR] = TARGET_ENOSR,
[ENONET] = TARGET_ENONET,
[ENOPKG] = TARGET_ENOPKG,
[EREMOTE] = TARGET_EREMOTE,
[ENOLINK] = TARGET_ENOLINK,
[EADV] = TARGET_EADV,
[ESRMNT] = TARGET_ESRMNT,
[ECOMM] = TARGET_ECOMM,
[EPROTO] = TARGET_EPROTO,
[EDOTDOT] = TARGET_EDOTDOT,
[EMULTIHOP] = TARGET_EMULTIHOP,
[EBADMSG] = TARGET_EBADMSG,
[ENAMETOOLONG] = TARGET_ENAMETOOLONG,
[EOVERFLOW] = TARGET_EOVERFLOW,
[ENOTUNIQ] = TARGET_ENOTUNIQ,
[EBADFD] = TARGET_EBADFD,
[EREMCHG] = TARGET_EREMCHG,
[ELIBACC] = TARGET_ELIBACC,
[ELIBBAD] = TARGET_ELIBBAD,
[ELIBSCN] = TARGET_ELIBSCN,
[ELIBMAX] = TARGET_ELIBMAX,
[ELIBEXEC] = TARGET_ELIBEXEC,
[EILSEQ] = TARGET_EILSEQ,
[ENOSYS] = TARGET_ENOSYS,
[ELOOP] = TARGET_ELOOP,
[ERESTART] = TARGET_ERESTART,
[ESTRPIPE] = TARGET_ESTRPIPE,
[ENOTEMPTY] = TARGET_ENOTEMPTY,
[EUSERS] = TARGET_EUSERS,
[ENOTSOCK] = TARGET_ENOTSOCK,
[EDESTADDRREQ] = TARGET_EDESTADDRREQ,
[EMSGSIZE] = TARGET_EMSGSIZE,
[EPROTOTYPE] = TARGET_EPROTOTYPE,
[ENOPROTOOPT] = TARGET_ENOPROTOOPT,
[EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
[ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
[EOPNOTSUPP] = TARGET_EOPNOTSUPP,
[EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
[EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
[EADDRINUSE] = TARGET_EADDRINUSE,
[EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
[ENETDOWN] = TARGET_ENETDOWN,
[ENETUNREACH] = TARGET_ENETUNREACH,
[ENETRESET] = TARGET_ENETRESET,
[ECONNABORTED] = TARGET_ECONNABORTED,
[ECONNRESET] = TARGET_ECONNRESET,
[ENOBUFS] = TARGET_ENOBUFS,
[EISCONN] = TARGET_EISCONN,
[ENOTCONN] = TARGET_ENOTCONN,
[EUCLEAN] = TARGET_EUCLEAN,
[ENOTNAM] = TARGET_ENOTNAM,
[ENAVAIL] = TARGET_ENAVAIL,
[EISNAM] = TARGET_EISNAM,
[EREMOTEIO] = TARGET_EREMOTEIO,
[ESHUTDOWN] = TARGET_ESHUTDOWN,
[ETOOMANYREFS] = TARGET_ETOOMANYREFS,
[ETIMEDOUT] = TARGET_ETIMEDOUT,
[ECONNREFUSED] = TARGET_ECONNREFUSED,
[EHOSTDOWN] = TARGET_EHOSTDOWN,
[EHOSTUNREACH] = TARGET_EHOSTUNREACH,
[EALREADY] = TARGET_EALREADY,
[EINPROGRESS] = TARGET_EINPROGRESS,
[ESTALE] = TARGET_ESTALE,
[ECANCELED] = TARGET_ECANCELED,
[ENOMEDIUM] = TARGET_ENOMEDIUM,
[EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
#ifdef ENOKEY
[ENOKEY] = TARGET_ENOKEY,
#endif
#ifdef EKEYEXPIRED
[EKEYEXPIRED] = TARGET_EKEYEXPIRED,
#endif
#ifdef EKEYREVOKED
[EKEYREVOKED] = TARGET_EKEYREVOKED,
#endif
#ifdef EKEYREJECTED
[EKEYREJECTED] = TARGET_EKEYREJECTED,
#endif
#ifdef EOWNERDEAD
[EOWNERDEAD] = TARGET_EOWNERDEAD,
#endif
#ifdef ENOTRECOVERABLE
[ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
#endif
};
static inline int host_to_target_errno(int err)
{
if(host_to_target_errno_table[err])
return host_to_target_errno_table[err];
return err;
}
static inline int target_to_host_errno(int err)
{
if (target_to_host_errno_table[err])
return target_to_host_errno_table[err];
return err;
}
static inline abi_long get_errno(abi_long ret)
{
if (ret == -1)
return -host_to_target_errno(errno);
else
return ret;
}
static inline int is_error(abi_long ret)
{
return (abi_ulong)ret >= (abi_ulong)(-4096);
}
char *target_strerror(int err)
{
return strerror(target_to_host_errno(err));
}
static abi_ulong target_brk;
static abi_ulong target_original_brk;
void target_set_brk(abi_ulong new_brk)
{
target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
}
/* do_brk() must return target values and target errnos. */
abi_long do_brk(abi_ulong new_brk)
{
abi_ulong brk_page;
abi_long mapped_addr;
int new_alloc_size;
if (!new_brk)
return target_brk;
if (new_brk < target_original_brk)
return target_brk;
brk_page = HOST_PAGE_ALIGN(target_brk);
/* If the new brk is less than this, set it and we're done... */
if (new_brk < brk_page) {
target_brk = new_brk;
return target_brk;
}
/* We need to allocate more memory after the brk... Note that
* we don't use MAP_FIXED because that will map over the top of
* any existing mapping (like the one with the host libc or qemu
* itself); instead we treat "mapped but at wrong address" as
* a failure and unmap again.
*/
new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page + 1);
mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, 0, 0));
if (mapped_addr == brk_page) {
target_brk = new_brk;
return target_brk;
} else if (mapped_addr != -1) {
/* Mapped but at wrong address, meaning there wasn't actually
* enough space for this brk.
*/
target_munmap(mapped_addr, new_alloc_size);
mapped_addr = -1;
}
#if defined(TARGET_ALPHA)
/* We (partially) emulate OSF/1 on Alpha, which requires we
return a proper errno, not an unchanged brk value. */
return -TARGET_ENOMEM;
#endif
/* For everything else, return the previous break. */
return target_brk;
}
static inline abi_long copy_from_user_fdset(fd_set *fds,
abi_ulong target_fds_addr,
int n)
{
int i, nw, j, k;
abi_ulong b, *target_fds;
nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
if (!(target_fds = lock_user(VERIFY_READ,
target_fds_addr,
sizeof(abi_ulong) * nw,
1)))
return -TARGET_EFAULT;
FD_ZERO(fds);
k = 0;
for (i = 0; i < nw; i++) {
/* grab the abi_ulong */
__get_user(b, &target_fds[i]);
for (j = 0; j < TARGET_ABI_BITS; j++) {
/* check the bit inside the abi_ulong */
if ((b >> j) & 1)
FD_SET(k, fds);
k++;
}
}
unlock_user(target_fds, target_fds_addr, 0);
return 0;
}
static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
const fd_set *fds,
int n)
{
int i, nw, j, k;
abi_long v;
abi_ulong *target_fds;
nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
if (!(target_fds = lock_user(VERIFY_WRITE,
target_fds_addr,
sizeof(abi_ulong) * nw,
0)))
return -TARGET_EFAULT;
k = 0;
for (i = 0; i < nw; i++) {
v = 0;
for (j = 0; j < TARGET_ABI_BITS; j++) {
v |= ((FD_ISSET(k, fds) != 0) << j);
k++;
}
__put_user(v, &target_fds[i]);
}
unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
return 0;
}
#if defined(__alpha__)
#define HOST_HZ 1024
#else
#define HOST_HZ 100
#endif
static inline abi_long host_to_target_clock_t(long ticks)
{
#if HOST_HZ == TARGET_HZ
return ticks;
#else
return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
#endif
}
static inline abi_long host_to_target_rusage(abi_ulong target_addr,
const struct rusage *rusage)
{
struct target_rusage *target_rusage;
if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
return -TARGET_EFAULT;
target_rusage->ru_utime.tv_sec = tswapl(rusage->ru_utime.tv_sec);
target_rusage->ru_utime.tv_usec = tswapl(rusage->ru_utime.tv_usec);
target_rusage->ru_stime.tv_sec = tswapl(rusage->ru_stime.tv_sec);
target_rusage->ru_stime.tv_usec = tswapl(rusage->ru_stime.tv_usec);
target_rusage->ru_maxrss = tswapl(rusage->ru_maxrss);
target_rusage->ru_ixrss = tswapl(rusage->ru_ixrss);
target_rusage->ru_idrss = tswapl(rusage->ru_idrss);
target_rusage->ru_isrss = tswapl(rusage->ru_isrss);
target_rusage->ru_minflt = tswapl(rusage->ru_minflt);
target_rusage->ru_majflt = tswapl(rusage->ru_majflt);
target_rusage->ru_nswap = tswapl(rusage->ru_nswap);
target_rusage->ru_inblock = tswapl(rusage->ru_inblock);
target_rusage->ru_oublock = tswapl(rusage->ru_oublock);
target_rusage->ru_msgsnd = tswapl(rusage->ru_msgsnd);
target_rusage->ru_msgrcv = tswapl(rusage->ru_msgrcv);
target_rusage->ru_nsignals = tswapl(rusage->ru_nsignals);
target_rusage->ru_nvcsw = tswapl(rusage->ru_nvcsw);
target_rusage->ru_nivcsw = tswapl(rusage->ru_nivcsw);
unlock_user_struct(target_rusage, target_addr, 1);
return 0;
}
static inline rlim_t target_to_host_rlim(target_ulong target_rlim)
{
if (target_rlim == TARGET_RLIM_INFINITY)
return RLIM_INFINITY;
else
return tswapl(target_rlim);
}
static inline target_ulong host_to_target_rlim(rlim_t rlim)
{
if (rlim == RLIM_INFINITY || rlim != (target_long)rlim)
return TARGET_RLIM_INFINITY;
else
return tswapl(rlim);
}
static inline abi_long copy_from_user_timeval(struct timeval *tv,
abi_ulong target_tv_addr)
{
struct target_timeval *target_tv;
if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
return -TARGET_EFAULT;
__get_user(tv->tv_sec, &target_tv->tv_sec);
__get_user(tv->tv_usec, &target_tv->tv_usec);
unlock_user_struct(target_tv, target_tv_addr, 0);
return 0;
}
static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
const struct timeval *tv)
{
struct target_timeval *target_tv;
if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
return -TARGET_EFAULT;
__put_user(tv->tv_sec, &target_tv->tv_sec);
__put_user(tv->tv_usec, &target_tv->tv_usec);
unlock_user_struct(target_tv, target_tv_addr, 1);
return 0;
}
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
#include <mqueue.h>
static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
abi_ulong target_mq_attr_addr)
{
struct target_mq_attr *target_mq_attr;
if (!lock_user_struct(VERIFY_READ, target_mq_attr,
target_mq_attr_addr, 1))
return -TARGET_EFAULT;
__get_user(attr->mq_flags, &target_mq_attr->mq_flags);
__get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
__get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
__get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
return 0;
}
static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
const struct mq_attr *attr)
{
struct target_mq_attr *target_mq_attr;
if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
target_mq_attr_addr, 0))
return -TARGET_EFAULT;
__put_user(attr->mq_flags, &target_mq_attr->mq_flags);
__put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
__put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
__put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
return 0;
}
#endif
/* do_select() must return target values and target errnos. */
static abi_long do_select(int n,
abi_ulong rfd_addr, abi_ulong wfd_addr,
abi_ulong efd_addr, abi_ulong target_tv_addr)
{
fd_set rfds, wfds, efds;
fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
struct timeval tv, *tv_ptr;
abi_long ret;
if (rfd_addr) {
if (copy_from_user_fdset(&rfds, rfd_addr, n))
return -TARGET_EFAULT;
rfds_ptr = &rfds;
} else {
rfds_ptr = NULL;
}
if (wfd_addr) {
if (copy_from_user_fdset(&wfds, wfd_addr, n))
return -TARGET_EFAULT;
wfds_ptr = &wfds;
} else {
wfds_ptr = NULL;
}
if (efd_addr) {
if (copy_from_user_fdset(&efds, efd_addr, n))
return -TARGET_EFAULT;
efds_ptr = &efds;
} else {
efds_ptr = NULL;
}
if (target_tv_addr) {
if (copy_from_user_timeval(&tv, target_tv_addr))
return -TARGET_EFAULT;
tv_ptr = &tv;
} else {
tv_ptr = NULL;
}
ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr));
if (!is_error(ret)) {
if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
return -TARGET_EFAULT;
if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
return -TARGET_EFAULT;
if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
return -TARGET_EFAULT;
if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv))
return -TARGET_EFAULT;
}
return ret;
}
static abi_long do_pipe2(int host_pipe[], int flags)
{
#ifdef CONFIG_PIPE2
return pipe2(host_pipe, flags);
#else
return -ENOSYS;
#endif
}
static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
int flags, int is_pipe2)
{
int host_pipe[2];
abi_long ret;
ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
if (is_error(ret))
return get_errno(ret);
/* Several targets have special calling conventions for the original
pipe syscall, but didn't replicate this into the pipe2 syscall. */
if (!is_pipe2) {
#if defined(TARGET_ALPHA)
((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
return host_pipe[0];
#elif defined(TARGET_MIPS)
((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
return host_pipe[0];
#elif defined(TARGET_SH4)
((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
return host_pipe[0];
#endif
}
if (put_user_s32(host_pipe[0], pipedes)
|| put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
return -TARGET_EFAULT;
return get_errno(ret);
}
static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
abi_ulong target_addr,
socklen_t len)
{
struct target_ip_mreqn *target_smreqn;
target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
if (!target_smreqn)
return -TARGET_EFAULT;
mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
if (len == sizeof(struct target_ip_mreqn))
mreqn->imr_ifindex = tswapl(target_smreqn->imr_ifindex);
unlock_user(target_smreqn, target_addr, 0);
return 0;
}
static inline abi_long target_to_host_sockaddr(struct sockaddr *addr,
abi_ulong target_addr,
socklen_t len)
{
const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
sa_family_t sa_family;
struct target_sockaddr *target_saddr;
target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
if (!target_saddr)
return -TARGET_EFAULT;
sa_family = tswap16(target_saddr->sa_family);
/* Oops. The caller might send a incomplete sun_path; sun_path
* must be terminated by \0 (see the manual page), but
* unfortunately it is quite common to specify sockaddr_un
* length as "strlen(x->sun_path)" while it should be
* "strlen(...) + 1". We'll fix that here if needed.
* Linux kernel has a similar feature.
*/
if (sa_family == AF_UNIX) {
if (len < unix_maxlen && len > 0) {
char *cp = (char*)target_saddr;
if ( cp[len-1] && !cp[len] )
len++;
}
if (len > unix_maxlen)
len = unix_maxlen;
}
memcpy(addr, target_saddr, len);
addr->sa_family = sa_family;
unlock_user(target_saddr, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
struct sockaddr *addr,
socklen_t len)
{
struct target_sockaddr *target_saddr;
target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
if (!target_saddr)
return -TARGET_EFAULT;
memcpy(target_saddr, addr, len);
target_saddr->sa_family = tswap16(addr->sa_family);
unlock_user(target_saddr, target_addr, len);
return 0;
}
/* ??? Should this also swap msgh->name? */
static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
struct target_msghdr *target_msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
abi_long msg_controllen;
abi_ulong target_cmsg_addr;
struct target_cmsghdr *target_cmsg;
socklen_t space = 0;
msg_controllen = tswapl(target_msgh->msg_controllen);
if (msg_controllen < sizeof (struct target_cmsghdr))
goto the_end;
target_cmsg_addr = tswapl(target_msgh->msg_control);
target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
if (!target_cmsg)
return -TARGET_EFAULT;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = tswapl(target_cmsg->cmsg_len)
- TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
space += CMSG_SPACE(len);
if (space > msgh->msg_controllen) {
space -= CMSG_SPACE(len);
gemu_log("Host cmsg overflow\n");
break;
}
cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
cmsg->cmsg_len = CMSG_LEN(len);
if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(data, target_data, len);
} else {
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = len / sizeof(int);
for (i = 0; i < numfds; i++)
fd[i] = tswap32(target_fd[i]);
}
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
}
unlock_user(target_cmsg, target_cmsg_addr, 0);
the_end:
msgh->msg_controllen = space;
return 0;
}
/* ??? Should this also swap msgh->name? */
static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
struct msghdr *msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
abi_long msg_controllen;
abi_ulong target_cmsg_addr;
struct target_cmsghdr *target_cmsg;
socklen_t space = 0;
msg_controllen = tswapl(target_msgh->msg_controllen);
if (msg_controllen < sizeof (struct target_cmsghdr))
goto the_end;
target_cmsg_addr = tswapl(target_msgh->msg_control);
target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
if (!target_cmsg)
return -TARGET_EFAULT;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
space += TARGET_CMSG_SPACE(len);
if (space > msg_controllen) {
space -= TARGET_CMSG_SPACE(len);
gemu_log("Target cmsg overflow\n");
break;
}
target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
target_cmsg->cmsg_len = tswapl(TARGET_CMSG_LEN(len));
if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(target_data, data, len);
} else {
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = len / sizeof(int);
for (i = 0; i < numfds; i++)
target_fd[i] = tswap32(fd[i]);
}
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
}
unlock_user(target_cmsg, target_cmsg_addr, space);
the_end:
target_msgh->msg_controllen = tswapl(space);
return 0;
}
/* do_setsockopt() Must return target values and target errnos. */
static abi_long do_setsockopt(int sockfd, int level, int optname,
abi_ulong optval_addr, socklen_t optlen)
{
abi_long ret;
int val;
struct ip_mreqn *ip_mreq;
struct ip_mreq_source *ip_mreq_source;
switch(level) {
case SOL_TCP:
/* TCP options all take an 'int' value. */
if (optlen < sizeof(uint32_t))
return -TARGET_EINVAL;
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
break;
case SOL_IP:
switch(optname) {
case IP_TOS:
case IP_TTL:
case IP_HDRINCL:
case IP_ROUTER_ALERT:
case IP_RECVOPTS:
case IP_RETOPTS:
case IP_PKTINFO:
case IP_MTU_DISCOVER:
case IP_RECVERR:
case IP_RECVTOS:
#ifdef IP_FREEBIND
case IP_FREEBIND:
#endif
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
val = 0;
if (optlen >= sizeof(uint32_t)) {
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
} else if (optlen >= 1) {
if (get_user_u8(val, optval_addr))
return -TARGET_EFAULT;
}
ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
break;
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
if (optlen < sizeof (struct target_ip_mreq) ||
optlen > sizeof (struct target_ip_mreqn))
return -TARGET_EINVAL;
ip_mreq = (struct ip_mreqn *) alloca(optlen);
target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
break;
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
if (optlen != sizeof (struct target_ip_mreq_source))
return -TARGET_EINVAL;
ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
unlock_user (ip_mreq_source, optval_addr, 0);
break;
default:
goto unimplemented;
}
break;
case TARGET_SOL_SOCKET:
switch (optname) {
/* Options with 'int' argument. */
case TARGET_SO_DEBUG:
optname = SO_DEBUG;
break;
case TARGET_SO_REUSEADDR:
optname = SO_REUSEADDR;
break;
case TARGET_SO_TYPE:
optname = SO_TYPE;
break;
case TARGET_SO_ERROR:
optname = SO_ERROR;
break;
case TARGET_SO_DONTROUTE:
optname = SO_DONTROUTE;
break;
case TARGET_SO_BROADCAST:
optname = SO_BROADCAST;
break;
case TARGET_SO_SNDBUF:
optname = SO_SNDBUF;
break;
case TARGET_SO_RCVBUF:
optname = SO_RCVBUF;
break;
case TARGET_SO_KEEPALIVE:
optname = SO_KEEPALIVE;
break;
case TARGET_SO_OOBINLINE:
optname = SO_OOBINLINE;
break;
case TARGET_SO_NO_CHECK:
optname = SO_NO_CHECK;
break;
case TARGET_SO_PRIORITY:
optname = SO_PRIORITY;
break;
#ifdef SO_BSDCOMPAT
case TARGET_SO_BSDCOMPAT:
optname = SO_BSDCOMPAT;
break;
#endif
case TARGET_SO_PASSCRED:
optname = SO_PASSCRED;
break;
case TARGET_SO_TIMESTAMP:
optname = SO_TIMESTAMP;
break;
case TARGET_SO_RCVLOWAT:
optname = SO_RCVLOWAT;
break;
case TARGET_SO_RCVTIMEO:
optname = SO_RCVTIMEO;
break;
case TARGET_SO_SNDTIMEO:
optname = SO_SNDTIMEO;
break;
break;
default:
goto unimplemented;
}
if (optlen < sizeof(uint32_t))
return -TARGET_EINVAL;
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
break;
default:
unimplemented:
gemu_log("Unsupported setsockopt level=%d optname=%d \n", level, optname);
ret = -TARGET_ENOPROTOOPT;
}
return ret;
}
/* do_getsockopt() Must return target values and target errnos. */
static abi_long do_getsockopt(int sockfd, int level, int optname,
abi_ulong optval_addr, abi_ulong optlen)
{
abi_long ret;
int len, val;
socklen_t lv;
switch(level) {
case TARGET_SOL_SOCKET:
level = SOL_SOCKET;
switch (optname) {
/* These don't just return a single integer */
case TARGET_SO_LINGER:
case TARGET_SO_RCVTIMEO:
case TARGET_SO_SNDTIMEO:
case TARGET_SO_PEERCRED:
case TARGET_SO_PEERNAME:
goto unimplemented;
/* Options with 'int' argument. */
case TARGET_SO_DEBUG:
optname = SO_DEBUG;
goto int_case;
case TARGET_SO_REUSEADDR:
optname = SO_REUSEADDR;
goto int_case;
case TARGET_SO_TYPE:
optname = SO_TYPE;
goto int_case;
case TARGET_SO_ERROR:
optname = SO_ERROR;
goto int_case;
case TARGET_SO_DONTROUTE:
optname = SO_DONTROUTE;
goto int_case;
case TARGET_SO_BROADCAST:
optname = SO_BROADCAST;
goto int_case;
case TARGET_SO_SNDBUF:
optname = SO_SNDBUF;
goto int_case;
case TARGET_SO_RCVBUF:
optname = SO_RCVBUF;
goto int_case;
case TARGET_SO_KEEPALIVE:
optname = SO_KEEPALIVE;
goto int_case;
case TARGET_SO_OOBINLINE:
optname = SO_OOBINLINE;
goto int_case;
case TARGET_SO_NO_CHECK:
optname = SO_NO_CHECK;
goto int_case;
case TARGET_SO_PRIORITY:
optname = SO_PRIORITY;
goto int_case;
#ifdef SO_BSDCOMPAT
case TARGET_SO_BSDCOMPAT:
optname = SO_BSDCOMPAT;
goto int_case;
#endif
case TARGET_SO_PASSCRED:
optname = SO_PASSCRED;
goto int_case;
case TARGET_SO_TIMESTAMP:
optname = SO_TIMESTAMP;
goto int_case;
case TARGET_SO_RCVLOWAT:
optname = SO_RCVLOWAT;
goto int_case;
default:
goto int_case;
}
break;
case SOL_TCP:
/* TCP options all take an 'int' value. */
int_case:
if (get_user_u32(len, optlen))
return -TARGET_EFAULT;
if (len < 0)
return -TARGET_EINVAL;
lv = sizeof(lv);
ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
if (ret < 0)
return ret;
if (len > lv)
len = lv;
if (len == 4) {
if (put_user_u32(val, optval_addr))
return -TARGET_EFAULT;
} else {
if (put_user_u8(val, optval_addr))
return -TARGET_EFAULT;
}
if (put_user_u32(len, optlen))
return -TARGET_EFAULT;
break;
case SOL_IP:
switch(optname) {
case IP_TOS:
case IP_TTL:
case IP_HDRINCL:
case IP_ROUTER_ALERT:
case IP_RECVOPTS:
case IP_RETOPTS:
case IP_PKTINFO:
case IP_MTU_DISCOVER:
case IP_RECVERR:
case IP_RECVTOS:
#ifdef IP_FREEBIND
case IP_FREEBIND:
#endif
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
if (get_user_u32(len, optlen))
return -TARGET_EFAULT;
if (len < 0)
return -TARGET_EINVAL;
lv = sizeof(lv);
ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
if (ret < 0)
return ret;
if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
len = 1;
if (put_user_u32(len, optlen)
|| put_user_u8(val, optval_addr))
return -TARGET_EFAULT;
} else {
if (len > sizeof(int))
len = sizeof(int);
if (put_user_u32(len, optlen)
|| put_user_u32(val, optval_addr))
return -TARGET_EFAULT;
}
break;
default:
ret = -TARGET_ENOPROTOOPT;
break;
}
break;
default:
unimplemented:
gemu_log("getsockopt level=%d optname=%d not yet supported\n",
level, optname);
ret = -TARGET_EOPNOTSUPP;
break;
}
return ret;
}
/* FIXME
* lock_iovec()/unlock_iovec() have a return code of 0 for success where
* other lock functions have a return code of 0 for failure.
*/
static abi_long lock_iovec(int type, struct iovec *vec, abi_ulong target_addr,
int count, int copy)
{
struct target_iovec *target_vec;
abi_ulong base;
int i;
target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1);
if (!target_vec)
return -TARGET_EFAULT;
for(i = 0;i < count; i++) {
base = tswapl(target_vec[i].iov_base);
vec[i].iov_len = tswapl(target_vec[i].iov_len);
if (vec[i].iov_len != 0) {
vec[i].iov_base = lock_user(type, base, vec[i].iov_len, copy);
/* Don't check lock_user return value. We must call writev even
if a element has invalid base address. */
} else {
/* zero length pointer is ignored */
vec[i].iov_base = NULL;
}
}
unlock_user (target_vec, target_addr, 0);
return 0;
}
static abi_long unlock_iovec(struct iovec *vec, abi_ulong target_addr,
int count, int copy)
{
struct target_iovec *target_vec;
abi_ulong base;
int i;
target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1);
if (!target_vec)
return -TARGET_EFAULT;
for(i = 0;i < count; i++) {
if (target_vec[i].iov_base) {
base = tswapl(target_vec[i].iov_base);
unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
}
}
unlock_user (target_vec, target_addr, 0);
return 0;
}
/* do_socket() Must return target values and target errnos. */
static abi_long do_socket(int domain, int type, int protocol)
{
#if defined(TARGET_MIPS)
switch(type) {
case TARGET_SOCK_DGRAM:
type = SOCK_DGRAM;
break;
case TARGET_SOCK_STREAM:
type = SOCK_STREAM;
break;
case TARGET_SOCK_RAW:
type = SOCK_RAW;
break;
case TARGET_SOCK_RDM:
type = SOCK_RDM;
break;
case TARGET_SOCK_SEQPACKET:
type = SOCK_SEQPACKET;
break;
case TARGET_SOCK_PACKET:
type = SOCK_PACKET;
break;
}
#endif
if (domain == PF_NETLINK)
return -EAFNOSUPPORT; /* do not NETLINK socket connections possible */
return get_errno(socket(domain, type, protocol));
}
/* do_bind() Must return target values and target errnos. */
static abi_long do_bind(int sockfd, abi_ulong target_addr,
socklen_t addrlen)
{
void *addr;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
addr = alloca(addrlen+1);
ret = target_to_host_sockaddr(addr, target_addr, addrlen);
if (ret)
return ret;
return get_errno(bind(sockfd, addr, addrlen));
}
/* do_connect() Must return target values and target errnos. */
static abi_long do_connect(int sockfd, abi_ulong target_addr,
socklen_t addrlen)
{
void *addr;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
addr = alloca(addrlen);
ret = target_to_host_sockaddr(addr, target_addr, addrlen);
if (ret)
return ret;
return get_errno(connect(sockfd, addr, addrlen));
}
/* do_sendrecvmsg() Must return target values and target errnos. */
static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
int flags, int send)
{
abi_long ret, len;
struct target_msghdr *msgp;
struct msghdr msg;
int count;
struct iovec *vec;
abi_ulong target_vec;
/* FIXME */
if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
msgp,
target_msg,
send ? 1 : 0))
return -TARGET_EFAULT;
if (msgp->msg_name) {
msg.msg_namelen = tswap32(msgp->msg_namelen);
msg.msg_name = alloca(msg.msg_namelen);
ret = target_to_host_sockaddr(msg.msg_name, tswapl(msgp->msg_name),
msg.msg_namelen);
if (ret) {
unlock_user_struct(msgp, target_msg, send ? 0 : 1);
return ret;
}
} else {
msg.msg_name = NULL;
msg.msg_namelen = 0;
}
msg.msg_controllen = 2 * tswapl(msgp->msg_controllen);
msg.msg_control = alloca(msg.msg_controllen);
msg.msg_flags = tswap32(msgp->msg_flags);
count = tswapl(msgp->msg_iovlen);
vec = alloca(count * sizeof(struct iovec));
target_vec = tswapl(msgp->msg_iov);
lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, vec, target_vec, count, send);
msg.msg_iovlen = count;
msg.msg_iov = vec;
if (send) {
ret = target_to_host_cmsg(&msg, msgp);
if (ret == 0)
ret = get_errno(sendmsg(fd, &msg, flags));
} else {
ret = get_errno(recvmsg(fd, &msg, flags));
if (!is_error(ret)) {
len = ret;
ret = host_to_target_cmsg(msgp, &msg);
if (!is_error(ret))
ret = len;
}
}
unlock_iovec(vec, target_vec, count, !send);
unlock_user_struct(msgp, target_msg, send ? 0 : 1);
return ret;
}
/* do_accept() Must return target values and target errnos. */
static abi_long do_accept(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr)
{
socklen_t addrlen;
void *addr;
abi_long ret;
if (target_addr == 0)
return get_errno(accept(fd, NULL, NULL));
/* linux returns EINVAL if addrlen pointer is invalid */
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EINVAL;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EINVAL;
addr = alloca(addrlen);
ret = get_errno(accept(fd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_getpeername() Must return target values and target errnos. */
static abi_long do_getpeername(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr)
{
socklen_t addrlen;
void *addr;
abi_long ret;
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EFAULT;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EFAULT;
addr = alloca(addrlen);
ret = get_errno(getpeername(fd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_getsockname() Must return target values and target errnos. */
static abi_long do_getsockname(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr)
{
socklen_t addrlen;
void *addr;
abi_long ret;
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EFAULT;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EFAULT;
addr = alloca(addrlen);
ret = get_errno(getsockname(fd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_socketpair() Must return target values and target errnos. */
static abi_long do_socketpair(int domain, int type, int protocol,
abi_ulong target_tab_addr)
{
int tab[2];
abi_long ret;
ret = get_errno(socketpair(domain, type, protocol, tab));
if (!is_error(ret)) {
if (put_user_s32(tab[0], target_tab_addr)
|| put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_sendto() Must return target values and target errnos. */
static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
abi_ulong target_addr, socklen_t addrlen)
{
void *addr;
void *host_msg;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
host_msg = lock_user(VERIFY_READ, msg, len, 1);
if (!host_msg)
return -TARGET_EFAULT;
if (target_addr) {
addr = alloca(addrlen);
ret = target_to_host_sockaddr(addr, target_addr, addrlen);
if (ret) {
unlock_user(host_msg, msg, 0);
return ret;
}
ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen));
} else {
ret = get_errno(send(fd, host_msg, len, flags));
}
unlock_user(host_msg, msg, 0);
return ret;
}
/* do_recvfrom() Must return target values and target errnos. */
static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
abi_ulong target_addr,
abi_ulong target_addrlen)
{
socklen_t addrlen;
void *addr;
void *host_msg;
abi_long ret;
host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
if (!host_msg)
return -TARGET_EFAULT;
if (target_addr) {
if (get_user_u32(addrlen, target_addrlen)) {
ret = -TARGET_EFAULT;
goto fail;
}
if ((int)addrlen < 0) {
ret = -TARGET_EINVAL;
goto fail;
}
addr = alloca(addrlen);
ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen));
} else {
addr = NULL; /* To keep compiler quiet. */
ret = get_errno(recv(fd, host_msg, len, flags));
}
if (!is_error(ret)) {
if (target_addr) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen)) {
ret = -TARGET_EFAULT;
goto fail;
}
}
unlock_user(host_msg, msg, len);
} else {
fail:
unlock_user(host_msg, msg, 0);
}
return ret;
}
#ifdef TARGET_NR_socketcall
/* do_socketcall() Must return target values and target errnos. */
static abi_long do_socketcall(int num, abi_ulong vptr)
{
abi_long ret;
const int n = sizeof(abi_ulong);
switch(num) {
case SOCKOP_socket:
{
abi_ulong domain, type, protocol;
if (get_user_ual(domain, vptr)
|| get_user_ual(type, vptr + n)
|| get_user_ual(protocol, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_socket(domain, type, protocol);
}
break;
case SOCKOP_bind:
{
abi_ulong sockfd;
abi_ulong target_addr;
socklen_t addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(target_addr, vptr + n)
|| get_user_ual(addrlen, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_bind(sockfd, target_addr, addrlen);
}
break;
case SOCKOP_connect:
{
abi_ulong sockfd;
abi_ulong target_addr;
socklen_t addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(target_addr, vptr + n)
|| get_user_ual(addrlen, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_connect(sockfd, target_addr, addrlen);
}
break;
case SOCKOP_listen:
{
abi_ulong sockfd, backlog;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(backlog, vptr + n))
return -TARGET_EFAULT;
ret = get_errno(listen(sockfd, backlog));
}
break;
case SOCKOP_accept:
{
abi_ulong sockfd;
abi_ulong target_addr, target_addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(target_addr, vptr + n)
|| get_user_ual(target_addrlen, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_accept(sockfd, target_addr, target_addrlen);
}
break;
case SOCKOP_getsockname:
{
abi_ulong sockfd;
abi_ulong target_addr, target_addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(target_addr, vptr + n)
|| get_user_ual(target_addrlen, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_getsockname(sockfd, target_addr, target_addrlen);
}
break;
case SOCKOP_getpeername:
{
abi_ulong sockfd;
abi_ulong target_addr, target_addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(target_addr, vptr + n)
|| get_user_ual(target_addrlen, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_getpeername(sockfd, target_addr, target_addrlen);
}
break;
case SOCKOP_socketpair:
{
abi_ulong domain, type, protocol;
abi_ulong tab;
if (get_user_ual(domain, vptr)
|| get_user_ual(type, vptr + n)
|| get_user_ual(protocol, vptr + 2 * n)
|| get_user_ual(tab, vptr + 3 * n))
return -TARGET_EFAULT;
ret = do_socketpair(domain, type, protocol, tab);
}
break;
case SOCKOP_send:
{
abi_ulong sockfd;
abi_ulong msg;
size_t len;
abi_ulong flags;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(msg, vptr + n)
|| get_user_ual(len, vptr + 2 * n)
|| get_user_ual(flags, vptr + 3 * n))
return -TARGET_EFAULT;
ret = do_sendto(sockfd, msg, len, flags, 0, 0);
}
break;
case SOCKOP_recv:
{
abi_ulong sockfd;
abi_ulong msg;
size_t len;
abi_ulong flags;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(msg, vptr + n)
|| get_user_ual(len, vptr + 2 * n)
|| get_user_ual(flags, vptr + 3 * n))
return -TARGET_EFAULT;
ret = do_recvfrom(sockfd, msg, len, flags, 0, 0);
}
break;
case SOCKOP_sendto:
{
abi_ulong sockfd;
abi_ulong msg;
size_t len;
abi_ulong flags;
abi_ulong addr;
socklen_t addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(msg, vptr + n)
|| get_user_ual(len, vptr + 2 * n)
|| get_user_ual(flags, vptr + 3 * n)
|| get_user_ual(addr, vptr + 4 * n)
|| get_user_ual(addrlen, vptr + 5 * n))
return -TARGET_EFAULT;
ret = do_sendto(sockfd, msg, len, flags, addr, addrlen);
}
break;
case SOCKOP_recvfrom:
{
abi_ulong sockfd;
abi_ulong msg;
size_t len;
abi_ulong flags;
abi_ulong addr;
socklen_t addrlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(msg, vptr + n)
|| get_user_ual(len, vptr + 2 * n)
|| get_user_ual(flags, vptr + 3 * n)
|| get_user_ual(addr, vptr + 4 * n)
|| get_user_ual(addrlen, vptr + 5 * n))
return -TARGET_EFAULT;
ret = do_recvfrom(sockfd, msg, len, flags, addr, addrlen);
}
break;
case SOCKOP_shutdown:
{
abi_ulong sockfd, how;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(how, vptr + n))
return -TARGET_EFAULT;
ret = get_errno(shutdown(sockfd, how));
}
break;
case SOCKOP_sendmsg:
case SOCKOP_recvmsg:
{
abi_ulong fd;
abi_ulong target_msg;
abi_ulong flags;
if (get_user_ual(fd, vptr)
|| get_user_ual(target_msg, vptr + n)
|| get_user_ual(flags, vptr + 2 * n))
return -TARGET_EFAULT;
ret = do_sendrecvmsg(fd, target_msg, flags,
(num == SOCKOP_sendmsg));
}
break;
case SOCKOP_setsockopt:
{
abi_ulong sockfd;
abi_ulong level;
abi_ulong optname;
abi_ulong optval;
socklen_t optlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(level, vptr + n)
|| get_user_ual(optname, vptr + 2 * n)
|| get_user_ual(optval, vptr + 3 * n)
|| get_user_ual(optlen, vptr + 4 * n))
return -TARGET_EFAULT;
ret = do_setsockopt(sockfd, level, optname, optval, optlen);
}
break;
case SOCKOP_getsockopt:
{
abi_ulong sockfd;
abi_ulong level;
abi_ulong optname;
abi_ulong optval;
socklen_t optlen;
if (get_user_ual(sockfd, vptr)
|| get_user_ual(level, vptr + n)
|| get_user_ual(optname, vptr + 2 * n)
|| get_user_ual(optval, vptr + 3 * n)
|| get_user_ual(optlen, vptr + 4 * n))
return -TARGET_EFAULT;
ret = do_getsockopt(sockfd, level, optname, optval, optlen);
}
break;
default:
gemu_log("Unsupported socketcall: %d\n", num);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
#endif
#define N_SHM_REGIONS 32
static struct shm_region {
abi_ulong start;
abi_ulong size;
} shm_regions[N_SHM_REGIONS];
struct target_ipc_perm
{
abi_long __key;
abi_ulong uid;
abi_ulong gid;
abi_ulong cuid;
abi_ulong cgid;
unsigned short int mode;
unsigned short int __pad1;
unsigned short int __seq;
unsigned short int __pad2;
abi_ulong __unused1;
abi_ulong __unused2;
};
struct target_semid_ds
{
struct target_ipc_perm sem_perm;
abi_ulong sem_otime;
abi_ulong __unused1;
abi_ulong sem_ctime;
abi_ulong __unused2;
abi_ulong sem_nsems;
abi_ulong __unused3;
abi_ulong __unused4;
};
static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
abi_ulong target_addr)
{
struct target_ipc_perm *target_ip;
struct target_semid_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
target_ip = &(target_sd->sem_perm);
host_ip->__key = tswapl(target_ip->__key);
host_ip->uid = tswapl(target_ip->uid);
host_ip->gid = tswapl(target_ip->gid);
host_ip->cuid = tswapl(target_ip->cuid);
host_ip->cgid = tswapl(target_ip->cgid);
host_ip->mode = tswapl(target_ip->mode);
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
struct ipc_perm *host_ip)
{
struct target_ipc_perm *target_ip;
struct target_semid_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
target_ip = &(target_sd->sem_perm);
target_ip->__key = tswapl(host_ip->__key);
target_ip->uid = tswapl(host_ip->uid);
target_ip->gid = tswapl(host_ip->gid);
target_ip->cuid = tswapl(host_ip->cuid);
target_ip->cgid = tswapl(host_ip->cgid);
target_ip->mode = tswapl(host_ip->mode);
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
abi_ulong target_addr)
{
struct target_semid_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
return -TARGET_EFAULT;
host_sd->sem_nsems = tswapl(target_sd->sem_nsems);
host_sd->sem_otime = tswapl(target_sd->sem_otime);
host_sd->sem_ctime = tswapl(target_sd->sem_ctime);
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
struct semid_ds *host_sd)
{
struct target_semid_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
return -TARGET_EFAULT;;
target_sd->sem_nsems = tswapl(host_sd->sem_nsems);
target_sd->sem_otime = tswapl(host_sd->sem_otime);
target_sd->sem_ctime = tswapl(host_sd->sem_ctime);
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
struct target_seminfo {
int semmap;
int semmni;
int semmns;
int semmnu;
int semmsl;
int semopm;
int semume;
int semusz;
int semvmx;
int semaem;
};
static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
struct seminfo *host_seminfo)
{
struct target_seminfo *target_seminfo;
if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_seminfo->semmap, &target_seminfo->semmap);
__put_user(host_seminfo->semmni, &target_seminfo->semmni);
__put_user(host_seminfo->semmns, &target_seminfo->semmns);
__put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
__put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
__put_user(host_seminfo->semopm, &target_seminfo->semopm);
__put_user(host_seminfo->semume, &target_seminfo->semume);
__put_user(host_seminfo->semusz, &target_seminfo->semusz);
__put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
__put_user(host_seminfo->semaem, &target_seminfo->semaem);
unlock_user_struct(target_seminfo, target_addr, 1);
return 0;
}
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
union target_semun {
int val;
abi_ulong buf;
abi_ulong array;
abi_ulong __buf;
};
static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
abi_ulong target_addr)
{
int nsems;
unsigned short *array;
union semun semun;
struct semid_ds semid_ds;
int i, ret;
semun.buf = &semid_ds;
ret = semctl(semid, 0, IPC_STAT, semun);
if (ret == -1)
return get_errno(ret);
nsems = semid_ds.sem_nsems;
*host_array = malloc(nsems*sizeof(unsigned short));
array = lock_user(VERIFY_READ, target_addr,
nsems*sizeof(unsigned short), 1);
if (!array)
return -TARGET_EFAULT;
for(i=0; i<nsems; i++) {
__get_user((*host_array)[i], &array[i]);
}
unlock_user(array, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
unsigned short **host_array)
{
int nsems;
unsigned short *array;
union semun semun;
struct semid_ds semid_ds;
int i, ret;
semun.buf = &semid_ds;
ret = semctl(semid, 0, IPC_STAT, semun);
if (ret == -1)
return get_errno(ret);
nsems = semid_ds.sem_nsems;
array = lock_user(VERIFY_WRITE, target_addr,
nsems*sizeof(unsigned short), 0);
if (!array)
return -TARGET_EFAULT;
for(i=0; i<nsems; i++) {
__put_user((*host_array)[i], &array[i]);
}
free(*host_array);
unlock_user(array, target_addr, 1);
return 0;
}
static inline abi_long do_semctl(int semid, int semnum, int cmd,
union target_semun target_su)
{
union semun arg;
struct semid_ds dsarg;
unsigned short *array = NULL;
struct seminfo seminfo;
abi_long ret = -TARGET_EINVAL;
abi_long err;
cmd &= 0xff;
switch( cmd ) {
case GETVAL:
case SETVAL:
arg.val = tswapl(target_su.val);
ret = get_errno(semctl(semid, semnum, cmd, arg));
target_su.val = tswapl(arg.val);
break;
case GETALL:
case SETALL:
err = target_to_host_semarray(semid, &array, target_su.array);
if (err)
return err;
arg.array = array;
ret = get_errno(semctl(semid, semnum, cmd, arg));
err = host_to_target_semarray(semid, target_su.array, &array);
if (err)
return err;
break;
case IPC_STAT:
case IPC_SET:
case SEM_STAT:
err = target_to_host_semid_ds(&dsarg, target_su.buf);
if (err)
return err;
arg.buf = &dsarg;
ret = get_errno(semctl(semid, semnum, cmd, arg));
err = host_to_target_semid_ds(target_su.buf, &dsarg);
if (err)
return err;
break;
case IPC_INFO:
case SEM_INFO:
arg.__buf = &seminfo;
ret = get_errno(semctl(semid, semnum, cmd, arg));
err = host_to_target_seminfo(target_su.__buf, &seminfo);
if (err)
return err;
break;
case IPC_RMID:
case GETPID:
case GETNCNT:
case GETZCNT:
ret = get_errno(semctl(semid, semnum, cmd, NULL));
break;
}
return ret;
}
struct target_sembuf {
unsigned short sem_num;
short sem_op;
short sem_flg;
};
static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
abi_ulong target_addr,
unsigned nsops)
{
struct target_sembuf *target_sembuf;
int i;
target_sembuf = lock_user(VERIFY_READ, target_addr,
nsops*sizeof(struct target_sembuf), 1);
if (!target_sembuf)
return -TARGET_EFAULT;
for(i=0; i<nsops; i++) {
__get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
__get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
__get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
}
unlock_user(target_sembuf, target_addr, 0);
return 0;
}
static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
{
struct sembuf sops[nsops];
if (target_to_host_sembuf(sops, ptr, nsops))
return -TARGET_EFAULT;
return semop(semid, sops, nsops);
}
struct target_msqid_ds
{
struct target_ipc_perm msg_perm;
abi_ulong msg_stime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused1;
#endif
abi_ulong msg_rtime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused2;
#endif
abi_ulong msg_ctime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused3;
#endif
abi_ulong __msg_cbytes;
abi_ulong msg_qnum;
abi_ulong msg_qbytes;
abi_ulong msg_lspid;
abi_ulong msg_lrpid;
abi_ulong __unused4;
abi_ulong __unused5;
};
static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
abi_ulong target_addr)
{
struct target_msqid_ds *target_md;
if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
return -TARGET_EFAULT;
if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
return -TARGET_EFAULT;
host_md->msg_stime = tswapl(target_md->msg_stime);
host_md->msg_rtime = tswapl(target_md->msg_rtime);
host_md->msg_ctime = tswapl(target_md->msg_ctime);
host_md->__msg_cbytes = tswapl(target_md->__msg_cbytes);
host_md->msg_qnum = tswapl(target_md->msg_qnum);
host_md->msg_qbytes = tswapl(target_md->msg_qbytes);
host_md->msg_lspid = tswapl(target_md->msg_lspid);
host_md->msg_lrpid = tswapl(target_md->msg_lrpid);
unlock_user_struct(target_md, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
struct msqid_ds *host_md)
{
struct target_msqid_ds *target_md;
if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
return -TARGET_EFAULT;
target_md->msg_stime = tswapl(host_md->msg_stime);
target_md->msg_rtime = tswapl(host_md->msg_rtime);
target_md->msg_ctime = tswapl(host_md->msg_ctime);
target_md->__msg_cbytes = tswapl(host_md->__msg_cbytes);
target_md->msg_qnum = tswapl(host_md->msg_qnum);
target_md->msg_qbytes = tswapl(host_md->msg_qbytes);
target_md->msg_lspid = tswapl(host_md->msg_lspid);
target_md->msg_lrpid = tswapl(host_md->msg_lrpid);
unlock_user_struct(target_md, target_addr, 1);
return 0;
}
struct target_msginfo {
int msgpool;
int msgmap;
int msgmax;
int msgmnb;
int msgmni;
int msgssz;
int msgtql;
unsigned short int msgseg;
};
static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
struct msginfo *host_msginfo)
{
struct target_msginfo *target_msginfo;
if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
__put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
__put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
__put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
__put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
__put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
__put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
__put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
unlock_user_struct(target_msginfo, target_addr, 1);
return 0;
}
static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
{
struct msqid_ds dsarg;
struct msginfo msginfo;
abi_long ret = -TARGET_EINVAL;
cmd &= 0xff;
switch (cmd) {
case IPC_STAT:
case IPC_SET:
case MSG_STAT:
if (target_to_host_msqid_ds(&dsarg,ptr))
return -TARGET_EFAULT;
ret = get_errno(msgctl(msgid, cmd, &dsarg));
if (host_to_target_msqid_ds(ptr,&dsarg))
return -TARGET_EFAULT;
break;
case IPC_RMID:
ret = get_errno(msgctl(msgid, cmd, NULL));
break;
case IPC_INFO:
case MSG_INFO:
ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
if (host_to_target_msginfo(ptr, &msginfo))
return -TARGET_EFAULT;
break;
}
return ret;
}
struct target_msgbuf {
abi_long mtype;
char mtext[1];
};
static inline abi_long do_msgsnd(int msqid, abi_long msgp,
unsigned int msgsz, int msgflg)
{
struct target_msgbuf *target_mb;
struct msgbuf *host_mb;
abi_long ret = 0;
if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
return -TARGET_EFAULT;
host_mb = malloc(msgsz+sizeof(long));
host_mb->mtype = (abi_long) tswapl(target_mb->mtype);
memcpy(host_mb->mtext, target_mb->mtext, msgsz);
ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg));
free(host_mb);
unlock_user_struct(target_mb, msgp, 0);
return ret;
}
static inline abi_long do_msgrcv(int msqid, abi_long msgp,
unsigned int msgsz, abi_long msgtyp,
int msgflg)
{
struct target_msgbuf *target_mb;
char *target_mtext;
struct msgbuf *host_mb;
abi_long ret = 0;
if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
return -TARGET_EFAULT;
host_mb = malloc(msgsz+sizeof(long));
ret = get_errno(msgrcv(msqid, host_mb, msgsz, tswapl(msgtyp), msgflg));
if (ret > 0) {
abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
if (!target_mtext) {
ret = -TARGET_EFAULT;
goto end;
}
memcpy(target_mb->mtext, host_mb->mtext, ret);
unlock_user(target_mtext, target_mtext_addr, ret);
}
target_mb->mtype = tswapl(host_mb->mtype);
free(host_mb);
end:
if (target_mb)
unlock_user_struct(target_mb, msgp, 1);
return ret;
}
struct target_shmid_ds
{
struct target_ipc_perm shm_perm;
abi_ulong shm_segsz;
abi_ulong shm_atime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused1;
#endif
abi_ulong shm_dtime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused2;
#endif
abi_ulong shm_ctime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused3;
#endif
int shm_cpid;
int shm_lpid;
abi_ulong shm_nattch;
unsigned long int __unused4;
unsigned long int __unused5;
};
static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
abi_ulong target_addr)
{
struct target_shmid_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
return -TARGET_EFAULT;
__get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
__get_user(host_sd->shm_atime, &target_sd->shm_atime);
__get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
__get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
__get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
__get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
__get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
struct shmid_ds *host_sd)
{
struct target_shmid_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
return -TARGET_EFAULT;
__put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
__put_user(host_sd->shm_atime, &target_sd->shm_atime);
__put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
__put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
__put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
__put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
__put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
struct target_shminfo {
abi_ulong shmmax;
abi_ulong shmmin;
abi_ulong shmmni;
abi_ulong shmseg;
abi_ulong shmall;
};
static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
struct shminfo *host_shminfo)
{
struct target_shminfo *target_shminfo;
if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
__put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
__put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
__put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
__put_user(host_shminfo->shmall, &target_shminfo->shmall);
unlock_user_struct(target_shminfo, target_addr, 1);
return 0;
}
struct target_shm_info {
int used_ids;
abi_ulong shm_tot;
abi_ulong shm_rss;
abi_ulong shm_swp;
abi_ulong swap_attempts;
abi_ulong swap_successes;
};
static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
struct shm_info *host_shm_info)
{
struct target_shm_info *target_shm_info;
if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
__put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
__put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
__put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
__put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
__put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
unlock_user_struct(target_shm_info, target_addr, 1);
return 0;
}
static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
{
struct shmid_ds dsarg;
struct shminfo shminfo;
struct shm_info shm_info;
abi_long ret = -TARGET_EINVAL;
cmd &= 0xff;
switch(cmd) {
case IPC_STAT:
case IPC_SET:
case SHM_STAT:
if (target_to_host_shmid_ds(&dsarg, buf))
return -TARGET_EFAULT;
ret = get_errno(shmctl(shmid, cmd, &dsarg));
if (host_to_target_shmid_ds(buf, &dsarg))
return -TARGET_EFAULT;
break;
case IPC_INFO:
ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
if (host_to_target_shminfo(buf, &shminfo))
return -TARGET_EFAULT;
break;
case SHM_INFO:
ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
if (host_to_target_shm_info(buf, &shm_info))
return -TARGET_EFAULT;
break;
case IPC_RMID:
case SHM_LOCK:
case SHM_UNLOCK:
ret = get_errno(shmctl(shmid, cmd, NULL));
break;
}
return ret;
}
static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg)
{
abi_long raddr;
void *host_raddr;
struct shmid_ds shm_info;
int i,ret;
/* find out the length of the shared memory segment */
ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
if (is_error(ret)) {
/* can't get length, bail out */
return ret;
}
mmap_lock();
if (shmaddr)
host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
else {
abi_ulong mmap_start;
mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
if (mmap_start == -1) {
errno = ENOMEM;
host_raddr = (void *)-1;
} else
host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
}
if (host_raddr == (void *)-1) {
mmap_unlock();
return get_errno((long)host_raddr);
}
raddr=h2g((unsigned long)host_raddr);
page_set_flags(raddr, raddr + shm_info.shm_segsz,
PAGE_VALID | PAGE_READ |
((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
for (i = 0; i < N_SHM_REGIONS; i++) {
if (shm_regions[i].start == 0) {
shm_regions[i].start = raddr;
shm_regions[i].size = shm_info.shm_segsz;
break;
}
}
mmap_unlock();
return raddr;
}
static inline abi_long do_shmdt(abi_ulong shmaddr)
{
int i;
for (i = 0; i < N_SHM_REGIONS; ++i) {
if (shm_regions[i].start == shmaddr) {
shm_regions[i].start = 0;
page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
break;
}
}
return get_errno(shmdt(g2h(shmaddr)));
}
#ifdef TARGET_NR_ipc
/* ??? This only works with linear mappings. */
/* do_ipc() must return target values and target errnos. */
static abi_long do_ipc(unsigned int call, int first,
int second, int third,
abi_long ptr, abi_long fifth)
{
int version;
abi_long ret = 0;
version = call >> 16;
call &= 0xffff;
switch (call) {
case IPCOP_semop:
ret = do_semop(first, ptr, second);
break;
case IPCOP_semget:
ret = get_errno(semget(first, second, third));
break;
case IPCOP_semctl:
ret = do_semctl(first, second, third, (union target_semun)(abi_ulong) ptr);
break;
case IPCOP_msgget:
ret = get_errno(msgget(first, second));
break;
case IPCOP_msgsnd:
ret = do_msgsnd(first, ptr, second, third);
break;
case IPCOP_msgctl:
ret = do_msgctl(first, second, ptr);
break;
case IPCOP_msgrcv:
switch (version) {
case 0:
{
struct target_ipc_kludge {
abi_long msgp;
abi_long msgtyp;
} *tmp;
if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
ret = -TARGET_EFAULT;
break;
}
ret = do_msgrcv(first, tmp->msgp, second, tmp->msgtyp, third);
unlock_user_struct(tmp, ptr, 0);
break;
}
default:
ret = do_msgrcv(first, ptr, second, fifth, third);
}
break;
case IPCOP_shmat:
switch (version) {
default:
{
abi_ulong raddr;
raddr = do_shmat(first, ptr, second);
if (is_error(raddr))
return get_errno(raddr);
if (put_user_ual(raddr, third))
return -TARGET_EFAULT;
break;
}
case 1:
ret = -TARGET_EINVAL;
break;
}
break;
case IPCOP_shmdt:
ret = do_shmdt(ptr);
break;
case IPCOP_shmget:
/* IPC_* flag values are the same on all linux platforms */
ret = get_errno(shmget(first, second, third));
break;
/* IPC_* and SHM_* command values are the same on all linux platforms */
case IPCOP_shmctl:
ret = do_shmctl(first, second, third);
break;
default:
gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
#endif
/* kernel structure types definitions */
#define STRUCT(name, ...) STRUCT_ ## name,
#define STRUCT_SPECIAL(name) STRUCT_ ## name,
enum {
#include "syscall_types.h"
};
#undef STRUCT
#undef STRUCT_SPECIAL
#define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
#define STRUCT_SPECIAL(name)
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
typedef struct IOCTLEntry IOCTLEntry;
typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, abi_long cmd, abi_long arg);
struct IOCTLEntry {
unsigned int target_cmd;
unsigned int host_cmd;
const char *name;
int access;
do_ioctl_fn *do_ioctl;
const argtype arg_type[5];
};
#define IOC_R 0x0001
#define IOC_W 0x0002
#define IOC_RW (IOC_R | IOC_W)
#define MAX_STRUCT_SIZE 4096
#ifdef CONFIG_FIEMAP
/* So fiemap access checks don't overflow on 32 bit systems.
* This is very slightly smaller than the limit imposed by
* the underlying kernel.
*/
#define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
/ sizeof(struct fiemap_extent))
static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, abi_long cmd, abi_long arg)
{
/* The parameter for this ioctl is a struct fiemap followed
* by an array of struct fiemap_extent whose size is set
* in fiemap->fm_extent_count. The array is filled in by the
* ioctl.
*/
int target_size_in, target_size_out;
struct fiemap *fm;
const argtype *arg_type = ie->arg_type;
const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
void *argptr, *p;
abi_long ret;
int i, extent_size = thunk_type_size(extent_arg_type, 0);
uint32_t outbufsz;
int free_fm = 0;
assert(arg_type[0] == TYPE_PTR);
assert(ie->access == IOC_RW);
arg_type++;
target_size_in = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
if (!argptr) {
return -TARGET_EFAULT;
}
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
fm = (struct fiemap *)buf_temp;
if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
return -TARGET_EINVAL;
}
outbufsz = sizeof (*fm) +
(sizeof(struct fiemap_extent) * fm->fm_extent_count);
if (outbufsz > MAX_STRUCT_SIZE) {
/* We can't fit all the extents into the fixed size buffer.
* Allocate one that is large enough and use it instead.
*/
fm = malloc(outbufsz);
if (!fm) {
return -TARGET_ENOMEM;
}
memcpy(fm, buf_temp, sizeof(struct fiemap));
free_fm = 1;
}
ret = get_errno(ioctl(fd, ie->host_cmd, fm));
if (!is_error(ret)) {
target_size_out = target_size_in;
/* An extent_count of 0 means we were only counting the extents
* so there are no structs to copy
*/
if (fm->fm_extent_count != 0) {
target_size_out += fm->fm_mapped_extents * extent_size;
}
argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
if (!argptr) {
ret = -TARGET_EFAULT;
} else {
/* Convert the struct fiemap */
thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
if (fm->fm_extent_count != 0) {
p = argptr + target_size_in;
/* ...and then all the struct fiemap_extents */
for (i = 0; i < fm->fm_mapped_extents; i++) {
thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
THUNK_TARGET);
p += extent_size;
}
}
unlock_user(argptr, arg, target_size_out);
}
}
if (free_fm) {
free(fm);
}
return ret;
}
#endif
static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, abi_long cmd, abi_long arg)
{
const argtype *arg_type = ie->arg_type;
int target_size;
void *argptr;
int ret;
struct ifconf *host_ifconf;
uint32_t outbufsz;
const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
int target_ifreq_size;
int nb_ifreq;
int free_buf = 0;
int i;
int target_ifc_len;
abi_long target_ifc_buf;
int host_ifc_len;
char *host_ifc_buf;
assert(arg_type[0] == TYPE_PTR);
assert(ie->access == IOC_RW);
arg_type++;
target_size = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
target_ifc_len = host_ifconf->ifc_len;
target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
nb_ifreq = target_ifc_len / target_ifreq_size;
host_ifc_len = nb_ifreq * sizeof(struct ifreq);
outbufsz = sizeof(*host_ifconf) + host_ifc_len;
if (outbufsz > MAX_STRUCT_SIZE) {
/* We can't fit all the extents into the fixed size buffer.
* Allocate one that is large enough and use it instead.
*/
host_ifconf = malloc(outbufsz);
if (!host_ifconf) {
return -TARGET_ENOMEM;
}
memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
free_buf = 1;
}
host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
host_ifconf->ifc_len = host_ifc_len;
host_ifconf->ifc_buf = host_ifc_buf;
ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf));
if (!is_error(ret)) {
/* convert host ifc_len to target ifc_len */
nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
target_ifc_len = nb_ifreq * target_ifreq_size;
host_ifconf->ifc_len = target_ifc_len;
/* restore target ifc_buf */
host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
/* copy struct ifconf to target user */
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
/* copy ifreq[] to target user */
argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
for (i = 0; i < nb_ifreq ; i++) {
thunk_convert(argptr + i * target_ifreq_size,
host_ifc_buf + i * sizeof(struct ifreq),
ifreq_arg_type, THUNK_TARGET);
}
unlock_user(argptr, target_ifc_buf, target_ifc_len);
}
if (free_buf) {
free(host_ifconf);
}
return ret;
}
static IOCTLEntry ioctl_entries[] = {
#define IOCTL(cmd, access, ...) \
{ TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
#define IOCTL_SPECIAL(cmd, access, dofn, ...) \
{ TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
#include "ioctls.h"
{ 0, 0, },
};
/* ??? Implement proper locking for ioctls. */
/* do_ioctl() Must return target values and target errnos. */
static abi_long do_ioctl(int fd, abi_long cmd, abi_long arg)
{
const IOCTLEntry *ie;
const argtype *arg_type;
abi_long ret;
uint8_t buf_temp[MAX_STRUCT_SIZE];
int target_size;
void *argptr;
ie = ioctl_entries;
for(;;) {
if (ie->target_cmd == 0) {
gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
return -TARGET_ENOSYS;
}
if (ie->target_cmd == cmd)
break;
ie++;
}
arg_type = ie->arg_type;
#if defined(DEBUG)
gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
#endif
if (ie->do_ioctl) {
return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
}
switch(arg_type[0]) {
case TYPE_NULL:
/* no argument */
ret = get_errno(ioctl(fd, ie->host_cmd));
break;
case TYPE_PTRVOID:
case TYPE_INT:
/* int argment */
ret = get_errno(ioctl(fd, ie->host_cmd, arg));
break;
case TYPE_PTR:
arg_type++;
target_size = thunk_type_size(arg_type, 0);
switch(ie->access) {
case IOC_R:
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
}
break;
case IOC_W:
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
break;
default:
case IOC_RW:
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
}
break;
}
break;
default:
gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
(long)cmd, arg_type[0]);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
static const bitmask_transtbl iflag_tbl[] = {
{ TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
{ TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
{ TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
{ TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
{ TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
{ TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
{ TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
{ TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
{ TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
{ TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
{ TARGET_IXON, TARGET_IXON, IXON, IXON },
{ TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
{ TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
{ TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl oflag_tbl[] = {
{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl cflag_tbl[] = {
{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl lflag_tbl[] = {
{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
{ 0, 0, 0, 0 }
};
static void target_to_host_termios (void *dst, const void *src)
{
struct host_termios *host = dst;
const struct target_termios *target = src;
host->c_iflag =
target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
host->c_oflag =
target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
host->c_cflag =
target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
host->c_lflag =
target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
host->c_line = target->c_line;
memset(host->c_cc, 0, sizeof(host->c_cc));
host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
}
static void host_to_target_termios (void *dst, const void *src)
{
struct target_termios *target = dst;
const struct host_termios *host = src;
target->c_iflag =
tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
target->c_oflag =
tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
target->c_cflag =
tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
target->c_lflag =
tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
target->c_line = host->c_line;
memset(target->c_cc, 0, sizeof(target->c_cc));
target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
}
static const StructEntry struct_termios_def = {
.convert = { host_to_target_termios, target_to_host_termios },
.size = { sizeof(struct target_termios), sizeof(struct host_termios) },
.align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
};
static bitmask_transtbl mmap_flags_tbl[] = {
{ TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
{ TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
{ TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
{ TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS },
{ TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN },
{ TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE },
{ TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE },
{ TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
{ 0, 0, 0, 0 }
};
#if defined(TARGET_I386)
/* NOTE: there is really one LDT for all the threads */
static uint8_t *ldt_table;
static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
{
int size;
void *p;
if (!ldt_table)
return 0;
size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
if (size > bytecount)
size = bytecount;
p = lock_user(VERIFY_WRITE, ptr, size, 0);
if (!p)
return -TARGET_EFAULT;
/* ??? Should this by byteswapped? */
memcpy(p, ldt_table, size);
unlock_user(p, ptr, size);
return size;
}
/* XXX: add locking support */
static abi_long write_ldt(CPUX86State *env,
abi_ulong ptr, unsigned long bytecount, int oldmode)
{
struct target_modify_ldt_ldt_s ldt_info;
struct target_modify_ldt_ldt_s *target_ldt_info;
int seg_32bit, contents, read_exec_only, limit_in_pages;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
if (bytecount != sizeof(ldt_info))
return -TARGET_EINVAL;
if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
return -TARGET_EFAULT;
ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
ldt_info.base_addr = tswapl(target_ldt_info->base_addr);
ldt_info.limit = tswap32(target_ldt_info->limit);
ldt_info.flags = tswap32(target_ldt_info->flags);
unlock_user_struct(target_ldt_info, ptr, 0);
if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
return -TARGET_EINVAL;
seg_32bit = ldt_info.flags & 1;
contents = (ldt_info.flags >> 1) & 3;
read_exec_only = (ldt_info.flags >> 3) & 1;
limit_in_pages = (ldt_info.flags >> 4) & 1;
seg_not_present = (ldt_info.flags >> 5) & 1;
useable = (ldt_info.flags >> 6) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (ldt_info.flags >> 7) & 1;
#endif
if (contents == 3) {
if (oldmode)
return -TARGET_EINVAL;
if (seg_not_present == 0)
return -TARGET_EINVAL;
}
/* allocate the LDT */
if (!ldt_table) {
env->ldt.base = target_mmap(0,
TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (env->ldt.base == -1)
return -TARGET_ENOMEM;
memset(g2h(env->ldt.base), 0,
TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
env->ldt.limit = 0xffff;
ldt_table = g2h(env->ldt.base);
}
/* NOTE: same code as Linux kernel */
/* Allow LDTs to be cleared by the user. */
if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
if (oldmode ||
(contents == 0 &&
read_exec_only == 1 &&
seg_32bit == 0 &&
limit_in_pages == 0 &&
seg_not_present == 1 &&
useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
(ldt_info.limit & 0x0ffff);
entry_2 = (ldt_info.base_addr & 0xff000000) |
((ldt_info.base_addr & 0x00ff0000) >> 16) |
(ldt_info.limit & 0xf0000) |
((read_exec_only ^ 1) << 9) |
(contents << 10) |
((seg_not_present ^ 1) << 15) |
(seg_32bit << 22) |
(limit_in_pages << 23) |
(lm << 21) |
0x7000;
if (!oldmode)
entry_2 |= (useable << 20);
/* Install the new entry ... */
install:
lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
lp[0] = tswap32(entry_1);
lp[1] = tswap32(entry_2);
return 0;
}
/* specific and weird i386 syscalls */
static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
unsigned long bytecount)
{
abi_long ret;
switch (func) {
case 0:
ret = read_ldt(ptr, bytecount);
break;
case 1:
ret = write_ldt(env, ptr, bytecount, 1);
break;
case 0x11:
ret = write_ldt(env, ptr, bytecount, 0);
break;
default:
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
#if defined(TARGET_I386) && defined(TARGET_ABI32)
static abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
{
uint64_t *gdt_table = g2h(env->gdt.base);
struct target_modify_ldt_ldt_s ldt_info;
struct target_modify_ldt_ldt_s *target_ldt_info;
int seg_32bit, contents, read_exec_only, limit_in_pages;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
int i;
lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
if (!target_ldt_info)
return -TARGET_EFAULT;
ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
ldt_info.base_addr = tswapl(target_ldt_info->base_addr);
ldt_info.limit = tswap32(target_ldt_info->limit);
ldt_info.flags = tswap32(target_ldt_info->flags);
if (ldt_info.entry_number == -1) {
for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
if (gdt_table[i] == 0) {
ldt_info.entry_number = i;
target_ldt_info->entry_number = tswap32(i);
break;
}
}
}
unlock_user_struct(target_ldt_info, ptr, 1);
if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
return -TARGET_EINVAL;
seg_32bit = ldt_info.flags & 1;
contents = (ldt_info.flags >> 1) & 3;
read_exec_only = (ldt_info.flags >> 3) & 1;
limit_in_pages = (ldt_info.flags >> 4) & 1;
seg_not_present = (ldt_info.flags >> 5) & 1;
useable = (ldt_info.flags >> 6) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (ldt_info.flags >> 7) & 1;
#endif
if (contents == 3) {
if (seg_not_present == 0)
return -TARGET_EINVAL;
}
/* NOTE: same code as Linux kernel */
/* Allow LDTs to be cleared by the user. */
if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
if ((contents == 0 &&
read_exec_only == 1 &&
seg_32bit == 0 &&
limit_in_pages == 0 &&
seg_not_present == 1 &&
useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
(ldt_info.limit & 0x0ffff);
entry_2 = (ldt_info.base_addr & 0xff000000) |
((ldt_info.base_addr & 0x00ff0000) >> 16) |
(ldt_info.limit & 0xf0000) |
((read_exec_only ^ 1) << 9) |
(contents << 10) |
((seg_not_present ^ 1) << 15) |
(seg_32bit << 22) |
(limit_in_pages << 23) |
(useable << 20) |
(lm << 21) |
0x7000;
/* Install the new entry ... */
install:
lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
lp[0] = tswap32(entry_1);
lp[1] = tswap32(entry_2);
return 0;
}
static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
{
struct target_modify_ldt_ldt_s *target_ldt_info;
uint64_t *gdt_table = g2h(env->gdt.base);
uint32_t base_addr, limit, flags;
int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
if (!target_ldt_info)
return -TARGET_EFAULT;
idx = tswap32(target_ldt_info->entry_number);
if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
idx > TARGET_GDT_ENTRY_TLS_MAX) {
unlock_user_struct(target_ldt_info, ptr, 1);
return -TARGET_EINVAL;
}
lp = (uint32_t *)(gdt_table + idx);
entry_1 = tswap32(lp[0]);
entry_2 = tswap32(lp[1]);
read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
contents = (entry_2 >> 10) & 3;
seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
seg_32bit = (entry_2 >> 22) & 1;
limit_in_pages = (entry_2 >> 23) & 1;
useable = (entry_2 >> 20) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (entry_2 >> 21) & 1;
#endif
flags = (seg_32bit << 0) | (contents << 1) |
(read_exec_only << 3) | (limit_in_pages << 4) |
(seg_not_present << 5) | (useable << 6) | (lm << 7);
limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
base_addr = (entry_1 >> 16) |
(entry_2 & 0xff000000) |
((entry_2 & 0xff) << 16);
target_ldt_info->base_addr = tswapl(base_addr);
target_ldt_info->limit = tswap32(limit);
target_ldt_info->flags = tswap32(flags);
unlock_user_struct(target_ldt_info, ptr, 1);
return 0;
}
#endif /* TARGET_I386 && TARGET_ABI32 */
#ifndef TARGET_ABI32
static abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
{
abi_long ret;
abi_ulong val;
int idx;
switch(code) {
case TARGET_ARCH_SET_GS:
case TARGET_ARCH_SET_FS:
if (code == TARGET_ARCH_SET_GS)
idx = R_GS;
else
idx = R_FS;
cpu_x86_load_seg(env, idx, 0);
env->segs[idx].base = addr;
break;
case TARGET_ARCH_GET_GS:
case TARGET_ARCH_GET_FS:
if (code == TARGET_ARCH_GET_GS)
idx = R_GS;
else
idx = R_FS;
val = env->segs[idx].base;
if (put_user(val, addr, abi_ulong))
return -TARGET_EFAULT;
break;
default:
ret = -TARGET_EINVAL;
break;
}
return 0;
}
#endif
#endif /* defined(TARGET_I386) */
#define NEW_STACK_SIZE 0x40000
#if defined(CONFIG_USE_NPTL)
static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
typedef struct {
CPUState *env;
pthread_mutex_t mutex;
pthread_cond_t cond;
pthread_t thread;
uint32_t tid;
abi_ulong child_tidptr;
abi_ulong parent_tidptr;
sigset_t sigmask;
} new_thread_info;
static void *clone_func(void *arg)
{
new_thread_info *info = arg;
CPUState *env;
TaskState *ts;
env = info->env;
thread_env = env;
ts = (TaskState *)thread_env->opaque;
info->tid = gettid();
env->host_tid = info->tid;
task_settid(ts);
if (info->child_tidptr)
put_user_u32(info->tid, info->child_tidptr);
if (info->parent_tidptr)
put_user_u32(info->tid, info->parent_tidptr);
/* Enable signals. */
sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
/* Signal to the parent that we're ready. */
pthread_mutex_lock(&info->mutex);
pthread_cond_broadcast(&info->cond);
pthread_mutex_unlock(&info->mutex);
/* Wait until the parent has finshed initializing the tls state. */
pthread_mutex_lock(&clone_lock);
pthread_mutex_unlock(&clone_lock);
cpu_loop(env);
/* never exits */
return NULL;
}
#else
static int clone_func(void *arg)
{
CPUState *env = arg;
cpu_loop(env);
/* never exits */
return 0;
}
#endif
/* do_fork() Must return host values and target errnos (unlike most
do_*() functions). */
static int do_fork(CPUState *env, unsigned int flags, abi_ulong newsp,
abi_ulong parent_tidptr, target_ulong newtls,
abi_ulong child_tidptr)
{
int ret;
TaskState *ts;
CPUState *new_env;
#if defined(CONFIG_USE_NPTL)
unsigned int nptl_flags;
sigset_t sigmask;
#else
uint8_t *new_stack;
#endif
/* Emulate vfork() with fork() */
if (flags & CLONE_VFORK)
flags &= ~(CLONE_VFORK | CLONE_VM);
if (flags & CLONE_VM) {
TaskState *parent_ts = (TaskState *)env->opaque;
#if defined(CONFIG_USE_NPTL)
new_thread_info info;
pthread_attr_t attr;
#endif
linux-user: fix memory leaks with NPTL emulation Running programs that create large numbers of threads, such as this snippet from libstdc++'s pthread7-rope.cc: const int max_thread_count = 4; const int max_loop_count = 10000; ... for (int j = 0; j < max_loop_count; j++) { ... for (int i = 0; i < max_thread_count; i++) pthread_create (&tid[i], NULL, thread_main, 0); for (int i = 0; i < max_thread_count; i++) pthread_join (tid[i], NULL); } in user-mode emulation will quickly run out of memory. This is caused by a failure to free memory in do_syscall prior to thread exit: /* TODO: Free CPU state. */ pthread_exit(NULL); The first step in fixing this is to make all TaskStates used by QEMU dynamically allocated. The TaskState used by the initial thread was not, as it was allocated on main's stack. So fix that, free the cpu_env, free the TaskState, and we're home free, right? Not exactly. When we create a thread, we do: ts = qemu_mallocz(sizeof(TaskState) + NEW_STACK_SIZE); ... new_stack = ts->stack; ... ret = pthread_attr_setstack(&attr, new_stack, NEW_STACK_SIZE); If we blindly free the TaskState, then, we yank the current (host) thread's stack out from underneath it while it still has things to do, like calling pthread_exit. That causes problems, as you might expect. The solution adopted here is to let the C library allocate the thread's stack (so the C library can properly clean it up at pthread_exit) and provide a hint that we want NEW_STACK_SIZE bytes of stack. With those two changes, we're done, right? Well, almost. You see, we're creating all these host threads and their parent threads never bother to check that their children are finished. There's no good place for the parent threads to do so. Therefore, we need to create the threads in a detached state so the parent thread doesn't have to call pthread_join on the child to release the child's resources; the child does so automatically. With those three major changes, we can comfortably run programs like the above without exhausting memory. We do need to delete 'stack' from the TaskState structure. Signed-off-by: Nathan Froyd <froydnj@codesourcery.com> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2010-10-29 18:48:57 +04:00
ts = qemu_mallocz(sizeof(TaskState));
init_task_state(ts);
/* we create a new CPU instance. */
new_env = cpu_copy(env);
#if defined(TARGET_I386) || defined(TARGET_SPARC) || defined(TARGET_PPC)
cpu_reset(new_env);
#endif
/* Init regs that differ from the parent. */
cpu_clone_regs(new_env, newsp);
new_env->opaque = ts;
ts->bprm = parent_ts->bprm;
ts->info = parent_ts->info;
#if defined(CONFIG_USE_NPTL)
nptl_flags = flags;
flags &= ~CLONE_NPTL_FLAGS2;
if (nptl_flags & CLONE_CHILD_CLEARTID) {
ts->child_tidptr = child_tidptr;
}
if (nptl_flags & CLONE_SETTLS)
cpu_set_tls (new_env, newtls);
/* Grab a mutex so that thread setup appears atomic. */
pthread_mutex_lock(&clone_lock);
memset(&info, 0, sizeof(info));
pthread_mutex_init(&info.mutex, NULL);
pthread_mutex_lock(&info.mutex);
pthread_cond_init(&info.cond, NULL);
info.env = new_env;
if (nptl_flags & CLONE_CHILD_SETTID)
info.child_tidptr = child_tidptr;
if (nptl_flags & CLONE_PARENT_SETTID)
info.parent_tidptr = parent_tidptr;
ret = pthread_attr_init(&attr);
linux-user: fix memory leaks with NPTL emulation Running programs that create large numbers of threads, such as this snippet from libstdc++'s pthread7-rope.cc: const int max_thread_count = 4; const int max_loop_count = 10000; ... for (int j = 0; j < max_loop_count; j++) { ... for (int i = 0; i < max_thread_count; i++) pthread_create (&tid[i], NULL, thread_main, 0); for (int i = 0; i < max_thread_count; i++) pthread_join (tid[i], NULL); } in user-mode emulation will quickly run out of memory. This is caused by a failure to free memory in do_syscall prior to thread exit: /* TODO: Free CPU state. */ pthread_exit(NULL); The first step in fixing this is to make all TaskStates used by QEMU dynamically allocated. The TaskState used by the initial thread was not, as it was allocated on main's stack. So fix that, free the cpu_env, free the TaskState, and we're home free, right? Not exactly. When we create a thread, we do: ts = qemu_mallocz(sizeof(TaskState) + NEW_STACK_SIZE); ... new_stack = ts->stack; ... ret = pthread_attr_setstack(&attr, new_stack, NEW_STACK_SIZE); If we blindly free the TaskState, then, we yank the current (host) thread's stack out from underneath it while it still has things to do, like calling pthread_exit. That causes problems, as you might expect. The solution adopted here is to let the C library allocate the thread's stack (so the C library can properly clean it up at pthread_exit) and provide a hint that we want NEW_STACK_SIZE bytes of stack. With those two changes, we're done, right? Well, almost. You see, we're creating all these host threads and their parent threads never bother to check that their children are finished. There's no good place for the parent threads to do so. Therefore, we need to create the threads in a detached state so the parent thread doesn't have to call pthread_join on the child to release the child's resources; the child does so automatically. With those three major changes, we can comfortably run programs like the above without exhausting memory. We do need to delete 'stack' from the TaskState structure. Signed-off-by: Nathan Froyd <froydnj@codesourcery.com> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2010-10-29 18:48:57 +04:00
ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
/* It is not safe to deliver signals until the child has finished
initializing, so temporarily block all signals. */
sigfillset(&sigmask);
sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
ret = pthread_create(&info.thread, &attr, clone_func, &info);
/* TODO: Free new CPU state if thread creation failed. */
sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
pthread_attr_destroy(&attr);
if (ret == 0) {
/* Wait for the child to initialize. */
pthread_cond_wait(&info.cond, &info.mutex);
ret = info.tid;
if (flags & CLONE_PARENT_SETTID)
put_user_u32(ret, parent_tidptr);
} else {
ret = -1;
}
pthread_mutex_unlock(&info.mutex);
pthread_cond_destroy(&info.cond);
pthread_mutex_destroy(&info.mutex);
pthread_mutex_unlock(&clone_lock);
#else
if (flags & CLONE_NPTL_FLAGS2)
return -EINVAL;
/* This is probably going to die very quickly, but do it anyway. */
linux-user: fix memory leaks with NPTL emulation Running programs that create large numbers of threads, such as this snippet from libstdc++'s pthread7-rope.cc: const int max_thread_count = 4; const int max_loop_count = 10000; ... for (int j = 0; j < max_loop_count; j++) { ... for (int i = 0; i < max_thread_count; i++) pthread_create (&tid[i], NULL, thread_main, 0); for (int i = 0; i < max_thread_count; i++) pthread_join (tid[i], NULL); } in user-mode emulation will quickly run out of memory. This is caused by a failure to free memory in do_syscall prior to thread exit: /* TODO: Free CPU state. */ pthread_exit(NULL); The first step in fixing this is to make all TaskStates used by QEMU dynamically allocated. The TaskState used by the initial thread was not, as it was allocated on main's stack. So fix that, free the cpu_env, free the TaskState, and we're home free, right? Not exactly. When we create a thread, we do: ts = qemu_mallocz(sizeof(TaskState) + NEW_STACK_SIZE); ... new_stack = ts->stack; ... ret = pthread_attr_setstack(&attr, new_stack, NEW_STACK_SIZE); If we blindly free the TaskState, then, we yank the current (host) thread's stack out from underneath it while it still has things to do, like calling pthread_exit. That causes problems, as you might expect. The solution adopted here is to let the C library allocate the thread's stack (so the C library can properly clean it up at pthread_exit) and provide a hint that we want NEW_STACK_SIZE bytes of stack. With those two changes, we're done, right? Well, almost. You see, we're creating all these host threads and their parent threads never bother to check that their children are finished. There's no good place for the parent threads to do so. Therefore, we need to create the threads in a detached state so the parent thread doesn't have to call pthread_join on the child to release the child's resources; the child does so automatically. With those three major changes, we can comfortably run programs like the above without exhausting memory. We do need to delete 'stack' from the TaskState structure. Signed-off-by: Nathan Froyd <froydnj@codesourcery.com> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2010-10-29 18:48:57 +04:00
new_stack = qemu_mallocz (NEW_STACK_SIZE);
#ifdef __ia64__
ret = __clone2(clone_func, new_stack, NEW_STACK_SIZE, flags, new_env);
#else
ret = clone(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env);
#endif
#endif
} else {
/* if no CLONE_VM, we consider it is a fork */
if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0)
return -EINVAL;
fork_start();
ret = fork();
if (ret == 0) {
/* Child Process. */
cpu_clone_regs(env, newsp);
fork_end(1);
#if defined(CONFIG_USE_NPTL)
/* There is a race condition here. The parent process could
theoretically read the TID in the child process before the child
tid is set. This would require using either ptrace
(not implemented) or having *_tidptr to point at a shared memory
mapping. We can't repeat the spinlock hack used above because
the child process gets its own copy of the lock. */
if (flags & CLONE_CHILD_SETTID)
put_user_u32(gettid(), child_tidptr);
if (flags & CLONE_PARENT_SETTID)
put_user_u32(gettid(), parent_tidptr);
ts = (TaskState *)env->opaque;
if (flags & CLONE_SETTLS)
cpu_set_tls (env, newtls);
if (flags & CLONE_CHILD_CLEARTID)
ts->child_tidptr = child_tidptr;
#endif
} else {
fork_end(0);
}
}
return ret;
}
/* warning : doesn't handle linux specific flags... */
static int target_to_host_fcntl_cmd(int cmd)
{
switch(cmd) {
case TARGET_F_DUPFD:
case TARGET_F_GETFD:
case TARGET_F_SETFD:
case TARGET_F_GETFL:
case TARGET_F_SETFL:
return cmd;
case TARGET_F_GETLK:
return F_GETLK;
case TARGET_F_SETLK:
return F_SETLK;
case TARGET_F_SETLKW:
return F_SETLKW;
case TARGET_F_GETOWN:
return F_GETOWN;
case TARGET_F_SETOWN:
return F_SETOWN;
case TARGET_F_GETSIG:
return F_GETSIG;
case TARGET_F_SETSIG:
return F_SETSIG;
#if TARGET_ABI_BITS == 32
case TARGET_F_GETLK64:
return F_GETLK64;
case TARGET_F_SETLK64:
return F_SETLK64;
case TARGET_F_SETLKW64:
return F_SETLKW64;
#endif
case TARGET_F_SETLEASE:
return F_SETLEASE;
case TARGET_F_GETLEASE:
return F_GETLEASE;
#ifdef F_DUPFD_CLOEXEC
case TARGET_F_DUPFD_CLOEXEC:
return F_DUPFD_CLOEXEC;
#endif
case TARGET_F_NOTIFY:
return F_NOTIFY;
default:
return -TARGET_EINVAL;
}
return -TARGET_EINVAL;
}
static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
{
struct flock fl;
struct target_flock *target_fl;
struct flock64 fl64;
struct target_flock64 *target_fl64;
abi_long ret;
int host_cmd = target_to_host_fcntl_cmd(cmd);
if (host_cmd == -TARGET_EINVAL)
return host_cmd;
switch(cmd) {
case TARGET_F_GETLK:
if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
return -TARGET_EFAULT;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswapl(target_fl->l_start);
fl.l_len = tswapl(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg, 0);
ret = get_errno(fcntl(fd, host_cmd, &fl));
if (ret == 0) {
if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0))
return -TARGET_EFAULT;
target_fl->l_type = tswap16(fl.l_type);
target_fl->l_whence = tswap16(fl.l_whence);
target_fl->l_start = tswapl(fl.l_start);
target_fl->l_len = tswapl(fl.l_len);
target_fl->l_pid = tswap32(fl.l_pid);
unlock_user_struct(target_fl, arg, 1);
}
break;
case TARGET_F_SETLK:
case TARGET_F_SETLKW:
if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
return -TARGET_EFAULT;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswapl(target_fl->l_start);
fl.l_len = tswapl(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg, 0);
ret = get_errno(fcntl(fd, host_cmd, &fl));
break;
case TARGET_F_GETLK64:
if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
return -TARGET_EFAULT;
fl64.l_type = tswap16(target_fl64->l_type) >> 1;
fl64.l_whence = tswap16(target_fl64->l_whence);
fl64.l_start = tswapl(target_fl64->l_start);
fl64.l_len = tswapl(target_fl64->l_len);
fl64.l_pid = tswap32(target_fl64->l_pid);
unlock_user_struct(target_fl64, arg, 0);
ret = get_errno(fcntl(fd, host_cmd, &fl64));
if (ret == 0) {
if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0))
return -TARGET_EFAULT;
target_fl64->l_type = tswap16(fl64.l_type) >> 1;
target_fl64->l_whence = tswap16(fl64.l_whence);
target_fl64->l_start = tswapl(fl64.l_start);
target_fl64->l_len = tswapl(fl64.l_len);
target_fl64->l_pid = tswap32(fl64.l_pid);
unlock_user_struct(target_fl64, arg, 1);
}
break;
case TARGET_F_SETLK64:
case TARGET_F_SETLKW64:
if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
return -TARGET_EFAULT;
fl64.l_type = tswap16(target_fl64->l_type) >> 1;
fl64.l_whence = tswap16(target_fl64->l_whence);
fl64.l_start = tswapl(target_fl64->l_start);
fl64.l_len = tswapl(target_fl64->l_len);
fl64.l_pid = tswap32(target_fl64->l_pid);
unlock_user_struct(target_fl64, arg, 0);
ret = get_errno(fcntl(fd, host_cmd, &fl64));
break;
case TARGET_F_GETFL:
ret = get_errno(fcntl(fd, host_cmd, arg));
if (ret >= 0) {
ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
}
break;
case TARGET_F_SETFL:
ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl)));
break;
case TARGET_F_SETOWN:
case TARGET_F_GETOWN:
case TARGET_F_SETSIG:
case TARGET_F_GETSIG:
case TARGET_F_SETLEASE:
case TARGET_F_GETLEASE:
ret = get_errno(fcntl(fd, host_cmd, arg));
break;
default:
ret = get_errno(fcntl(fd, cmd, arg));
break;
}
return ret;
}
#ifdef USE_UID16
static inline int high2lowuid(int uid)
{
if (uid > 65535)
return 65534;
else
return uid;
}
static inline int high2lowgid(int gid)
{
if (gid > 65535)
return 65534;
else
return gid;
}
static inline int low2highuid(int uid)
{
if ((int16_t)uid == -1)
return -1;
else
return uid;
}
static inline int low2highgid(int gid)
{
if ((int16_t)gid == -1)
return -1;
else
return gid;
}
static inline int tswapid(int id)
{
return tswap16(id);
}
#else /* !USE_UID16 */
static inline int high2lowuid(int uid)
{
return uid;
}
static inline int high2lowgid(int gid)
{
return gid;
}
static inline int low2highuid(int uid)
{
return uid;
}
static inline int low2highgid(int gid)
{
return gid;
}
static inline int tswapid(int id)
{
return tswap32(id);
}
#endif /* USE_UID16 */
void syscall_init(void)
{
IOCTLEntry *ie;
const argtype *arg_type;
int size;
int i;
#define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
#define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
/* we patch the ioctl size if necessary. We rely on the fact that
no ioctl has all the bits at '1' in the size field */
ie = ioctl_entries;
while (ie->target_cmd != 0) {
if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
TARGET_IOC_SIZEMASK) {
arg_type = ie->arg_type;
if (arg_type[0] != TYPE_PTR) {
fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
ie->target_cmd);
exit(1);
}
arg_type++;
size = thunk_type_size(arg_type, 0);
ie->target_cmd = (ie->target_cmd &
~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
(size << TARGET_IOC_SIZESHIFT);
}
/* Build target_to_host_errno_table[] table from
* host_to_target_errno_table[]. */
for (i=0; i < ERRNO_TABLE_SIZE; i++)
target_to_host_errno_table[host_to_target_errno_table[i]] = i;
/* automatic consistency check if same arch */
#if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
(defined(__x86_64__) && defined(TARGET_X86_64))
if (unlikely(ie->target_cmd != ie->host_cmd)) {
fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
ie->name, ie->target_cmd, ie->host_cmd);
}
#endif
ie++;
}
}
#if TARGET_ABI_BITS == 32
static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
{
#ifdef TARGET_WORDS_BIGENDIAN
return ((uint64_t)word0 << 32) | word1;
#else
return ((uint64_t)word1 << 32) | word0;
#endif
}
#else /* TARGET_ABI_BITS == 32 */
static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
{
return word0;
}
#endif /* TARGET_ABI_BITS != 32 */
#ifdef TARGET_NR_truncate64
static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
abi_long arg2,
abi_long arg3,
abi_long arg4)
{
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi)
{
arg2 = arg3;
arg3 = arg4;
}
#endif
return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
}
#endif
#ifdef TARGET_NR_ftruncate64
static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
abi_long arg2,
abi_long arg3,
abi_long arg4)
{
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi)
{
arg2 = arg3;
arg3 = arg4;
}
#endif
return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
}
#endif
static inline abi_long target_to_host_timespec(struct timespec *host_ts,
abi_ulong target_addr)
{
struct target_timespec *target_ts;
if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
return -TARGET_EFAULT;
host_ts->tv_sec = tswapl(target_ts->tv_sec);
host_ts->tv_nsec = tswapl(target_ts->tv_nsec);
unlock_user_struct(target_ts, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_timespec(abi_ulong target_addr,
struct timespec *host_ts)
{
struct target_timespec *target_ts;
if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
return -TARGET_EFAULT;
target_ts->tv_sec = tswapl(host_ts->tv_sec);
target_ts->tv_nsec = tswapl(host_ts->tv_nsec);
unlock_user_struct(target_ts, target_addr, 1);
return 0;
}
#if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
static inline abi_long host_to_target_stat64(void *cpu_env,
abi_ulong target_addr,
struct stat *host_st)
{
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
struct target_eabi_stat64 *target_st;
if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
return -TARGET_EFAULT;
memset(target_st, 0, sizeof(struct target_eabi_stat64));
__put_user(host_st->st_dev, &target_st->st_dev);
__put_user(host_st->st_ino, &target_st->st_ino);
#ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
__put_user(host_st->st_ino, &target_st->__st_ino);
#endif
__put_user(host_st->st_mode, &target_st->st_mode);
__put_user(host_st->st_nlink, &target_st->st_nlink);
__put_user(host_st->st_uid, &target_st->st_uid);
__put_user(host_st->st_gid, &target_st->st_gid);
__put_user(host_st->st_rdev, &target_st->st_rdev);
__put_user(host_st->st_size, &target_st->st_size);
__put_user(host_st->st_blksize, &target_st->st_blksize);
__put_user(host_st->st_blocks, &target_st->st_blocks);
__put_user(host_st->st_atime, &target_st->target_st_atime);
__put_user(host_st->st_mtime, &target_st->target_st_mtime);
__put_user(host_st->st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, target_addr, 1);
} else
#endif
{
#if TARGET_ABI_BITS == 64 && !defined(TARGET_ALPHA)
struct target_stat *target_st;
#else
struct target_stat64 *target_st;
#endif
if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
return -TARGET_EFAULT;
memset(target_st, 0, sizeof(*target_st));
__put_user(host_st->st_dev, &target_st->st_dev);
__put_user(host_st->st_ino, &target_st->st_ino);
#ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
__put_user(host_st->st_ino, &target_st->__st_ino);
#endif
__put_user(host_st->st_mode, &target_st->st_mode);
__put_user(host_st->st_nlink, &target_st->st_nlink);
__put_user(host_st->st_uid, &target_st->st_uid);
__put_user(host_st->st_gid, &target_st->st_gid);
__put_user(host_st->st_rdev, &target_st->st_rdev);
/* XXX: better use of kernel struct */
__put_user(host_st->st_size, &target_st->st_size);
__put_user(host_st->st_blksize, &target_st->st_blksize);
__put_user(host_st->st_blocks, &target_st->st_blocks);
__put_user(host_st->st_atime, &target_st->target_st_atime);
__put_user(host_st->st_mtime, &target_st->target_st_mtime);
__put_user(host_st->st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, target_addr, 1);
}
return 0;
}
#endif
#if defined(CONFIG_USE_NPTL)
/* ??? Using host futex calls even when target atomic operations
are not really atomic probably breaks things. However implementing
futexes locally would make futexes shared between multiple processes
tricky. However they're probably useless because guest atomic
operations won't work either. */
static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
target_ulong uaddr2, int val3)
{
struct timespec ts, *pts;
int base_op;
/* ??? We assume FUTEX_* constants are the same on both host
and target. */
#ifdef FUTEX_CMD_MASK
base_op = op & FUTEX_CMD_MASK;
#else
base_op = op;
#endif
switch (base_op) {
case FUTEX_WAIT:
if (timeout) {
pts = &ts;
target_to_host_timespec(pts, timeout);
} else {
pts = NULL;
}
return get_errno(sys_futex(g2h(uaddr), op, tswap32(val),
pts, NULL, 0));
case FUTEX_WAKE:
return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
case FUTEX_FD:
return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
case FUTEX_REQUEUE:
case FUTEX_CMP_REQUEUE:
case FUTEX_WAKE_OP:
/* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
TIMEOUT parameter is interpreted as a uint32_t by the kernel.
But the prototype takes a `struct timespec *'; insert casts
to satisfy the compiler. We do not need to tswap TIMEOUT
since it's not compared to guest memory. */
pts = (struct timespec *)(uintptr_t) timeout;
return get_errno(sys_futex(g2h(uaddr), op, val, pts,
g2h(uaddr2),
(base_op == FUTEX_CMP_REQUEUE
? tswap32(val3)
: val3)));
default:
return -TARGET_ENOSYS;
}
}
#endif
/* Map host to target signal numbers for the wait family of syscalls.
Assume all other status bits are the same. */
static int host_to_target_waitstatus(int status)
{
if (WIFSIGNALED(status)) {
return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
}
if (WIFSTOPPED(status)) {
return (host_to_target_signal(WSTOPSIG(status)) << 8)
| (status & 0xff);
}
return status;
}
int get_osversion(void)
{
static int osversion;
struct new_utsname buf;
const char *s;
int i, n, tmp;
if (osversion)
return osversion;
if (qemu_uname_release && *qemu_uname_release) {
s = qemu_uname_release;
} else {
if (sys_uname(&buf))
return 0;
s = buf.release;
}
tmp = 0;
for (i = 0; i < 3; i++) {
n = 0;
while (*s >= '0' && *s <= '9') {
n *= 10;
n += *s - '0';
s++;
}
tmp = (tmp << 8) + n;
if (*s == '.')
s++;
}
osversion = tmp;
return osversion;
}
/* do_syscall() should always have a single exit point at the end so
that actions, such as logging of syscall results, can be performed.
All errnos that do_syscall() returns must be -TARGET_<errcode>. */
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6)
{
abi_long ret;
struct stat st;
struct statfs stfs;
void *p;
#ifdef DEBUG
gemu_log("syscall %d", num);
#endif
if(do_strace)
print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
switch(num) {
case TARGET_NR_exit:
#ifdef CONFIG_USE_NPTL
/* In old applications this may be used to implement _exit(2).
However in threaded applictions it is used for thread termination,
and _exit_group is used for application termination.
Do thread termination if we have more then one thread. */
/* FIXME: This probably breaks if a signal arrives. We should probably
be disabling signals. */
if (first_cpu->next_cpu) {
TaskState *ts;
CPUState **lastp;
CPUState *p;
cpu_list_lock();
lastp = &first_cpu;
p = first_cpu;
while (p && p != (CPUState *)cpu_env) {
lastp = &p->next_cpu;
p = p->next_cpu;
}
/* If we didn't find the CPU for this thread then something is
horribly wrong. */
if (!p)
abort();
/* Remove the CPU from the list. */
*lastp = p->next_cpu;
cpu_list_unlock();
ts = ((CPUState *)cpu_env)->opaque;
if (ts->child_tidptr) {
put_user_u32(0, ts->child_tidptr);
sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
NULL, NULL, 0);
}
linux-user: fix memory leaks with NPTL emulation Running programs that create large numbers of threads, such as this snippet from libstdc++'s pthread7-rope.cc: const int max_thread_count = 4; const int max_loop_count = 10000; ... for (int j = 0; j < max_loop_count; j++) { ... for (int i = 0; i < max_thread_count; i++) pthread_create (&tid[i], NULL, thread_main, 0); for (int i = 0; i < max_thread_count; i++) pthread_join (tid[i], NULL); } in user-mode emulation will quickly run out of memory. This is caused by a failure to free memory in do_syscall prior to thread exit: /* TODO: Free CPU state. */ pthread_exit(NULL); The first step in fixing this is to make all TaskStates used by QEMU dynamically allocated. The TaskState used by the initial thread was not, as it was allocated on main's stack. So fix that, free the cpu_env, free the TaskState, and we're home free, right? Not exactly. When we create a thread, we do: ts = qemu_mallocz(sizeof(TaskState) + NEW_STACK_SIZE); ... new_stack = ts->stack; ... ret = pthread_attr_setstack(&attr, new_stack, NEW_STACK_SIZE); If we blindly free the TaskState, then, we yank the current (host) thread's stack out from underneath it while it still has things to do, like calling pthread_exit. That causes problems, as you might expect. The solution adopted here is to let the C library allocate the thread's stack (so the C library can properly clean it up at pthread_exit) and provide a hint that we want NEW_STACK_SIZE bytes of stack. With those two changes, we're done, right? Well, almost. You see, we're creating all these host threads and their parent threads never bother to check that their children are finished. There's no good place for the parent threads to do so. Therefore, we need to create the threads in a detached state so the parent thread doesn't have to call pthread_join on the child to release the child's resources; the child does so automatically. With those three major changes, we can comfortably run programs like the above without exhausting memory. We do need to delete 'stack' from the TaskState structure. Signed-off-by: Nathan Froyd <froydnj@codesourcery.com> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2010-10-29 18:48:57 +04:00
thread_env = NULL;
qemu_free(cpu_env);
qemu_free(ts);
pthread_exit(NULL);
}
#endif
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
_exit(arg1);
ret = 0; /* avoid warning */
break;
case TARGET_NR_read:
if (arg3 == 0)
ret = 0;
else {
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(read(arg1, p, arg3));
unlock_user(p, arg2, ret);
}
break;
case TARGET_NR_write:
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(write(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
case TARGET_NR_open:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(open(path(p),
target_to_host_bitmask(arg2, fcntl_flags_tbl),
arg3));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_openat) && defined(__NR_openat)
case TARGET_NR_openat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_openat(arg1,
path(p),
target_to_host_bitmask(arg3, fcntl_flags_tbl),
arg4));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_close:
ret = get_errno(close(arg1));
break;
case TARGET_NR_brk:
ret = do_brk(arg1);
break;
case TARGET_NR_fork:
ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
break;
#ifdef TARGET_NR_waitpid
case TARGET_NR_waitpid:
{
int status;
ret = get_errno(waitpid(arg1, &status, arg3));
if (!is_error(ret) && arg2
&& put_user_s32(host_to_target_waitstatus(status), arg2))
goto efault;
}
break;
#endif
#ifdef TARGET_NR_waitid
case TARGET_NR_waitid:
{
siginfo_t info;
info.si_pid = 0;
ret = get_errno(waitid(arg1, arg2, &info, arg4));
if (!is_error(ret) && arg3 && info.si_pid != 0) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
goto efault;
host_to_target_siginfo(p, &info);
unlock_user(p, arg3, sizeof(target_siginfo_t));
}
}
break;
#endif
#ifdef TARGET_NR_creat /* not on alpha */
case TARGET_NR_creat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(creat(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_link:
{
void * p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(link(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_linkat) && defined(__NR_linkat)
case TARGET_NR_linkat:
{
void * p2 = NULL;
if (!arg2 || !arg4)
goto efault;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_linkat(arg1, p, arg3, p2, arg5));
unlock_user(p, arg2, 0);
unlock_user(p2, arg4, 0);
}
break;
#endif
case TARGET_NR_unlink:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(unlink(p));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat)
case TARGET_NR_unlinkat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_unlinkat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_execve:
{
char **argp, **envp;
int argc, envc;
abi_ulong gp;
abi_ulong guest_argp;
abi_ulong guest_envp;
abi_ulong addr;
char **q;
argc = 0;
guest_argp = arg2;
for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
argc++;
}
envc = 0;
guest_envp = arg3;
for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
envc++;
}
argp = alloca((argc + 1) * sizeof(void *));
envp = alloca((envc + 1) * sizeof(void *));
for (gp = guest_argp, q = argp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
}
*q = NULL;
for (gp = guest_envp, q = envp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
}
*q = NULL;
if (!(p = lock_user_string(arg1)))
goto execve_efault;
ret = get_errno(execve(p, argp, envp));
unlock_user(p, arg1, 0);
goto execve_end;
execve_efault:
ret = -TARGET_EFAULT;
execve_end:
for (gp = guest_argp, q = argp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
for (gp = guest_envp, q = envp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
}
break;
case TARGET_NR_chdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chdir(p));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_time
case TARGET_NR_time:
{
time_t host_time;
ret = get_errno(time(&host_time));
if (!is_error(ret)
&& arg1
&& put_user_sal(host_time, arg1))
goto efault;
}
break;
#endif
case TARGET_NR_mknod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mknod(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_mknodat) && defined(__NR_mknodat)
case TARGET_NR_mknodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_mknodat(arg1, p, arg3, arg4));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_chmod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chmod(p, arg2));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_break
case TARGET_NR_break:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldstat
case TARGET_NR_oldstat:
goto unimplemented;
#endif
case TARGET_NR_lseek:
ret = get_errno(lseek(arg1, arg2, arg3));
break;
#if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxpid:
((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
ret = get_errno(getpid());
break;
#endif
#ifdef TARGET_NR_getpid
case TARGET_NR_getpid:
ret = get_errno(getpid());
break;
#endif
case TARGET_NR_mount:
{
/* need to look at the data field */
void *p2, *p3;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
p3 = lock_user_string(arg3);
if (!p || !p2 || !p3)
ret = -TARGET_EFAULT;
else {
/* FIXME - arg5 should be locked, but it isn't clear how to
* do that since it's not guaranteed to be a NULL-terminated
* string.
*/
if ( ! arg5 )
ret = get_errno(mount(p, p2, p3, (unsigned long)arg4, NULL));
else
ret = get_errno(mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)));
}
unlock_user(p, arg1, 0);
unlock_user(p2, arg2, 0);
unlock_user(p3, arg3, 0);
break;
}
#ifdef TARGET_NR_umount
case TARGET_NR_umount:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount(p));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_stime /* not on alpha */
case TARGET_NR_stime:
{
time_t host_time;
if (get_user_sal(host_time, arg1))
goto efault;
ret = get_errno(stime(&host_time));
}
break;
#endif
case TARGET_NR_ptrace:
goto unimplemented;
#ifdef TARGET_NR_alarm /* not on alpha */
case TARGET_NR_alarm:
ret = alarm(arg1);
break;
#endif
#ifdef TARGET_NR_oldfstat
case TARGET_NR_oldfstat:
goto unimplemented;
#endif
#ifdef TARGET_NR_pause /* not on alpha */
case TARGET_NR_pause:
ret = get_errno(pause());
break;
#endif
#ifdef TARGET_NR_utime
case TARGET_NR_utime:
{
struct utimbuf tbuf, *host_tbuf;
struct target_utimbuf *target_tbuf;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
goto efault;
tbuf.actime = tswapl(target_tbuf->actime);
tbuf.modtime = tswapl(target_tbuf->modtime);
unlock_user_struct(target_tbuf, arg2, 0);
host_tbuf = &tbuf;
} else {
host_tbuf = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utime(p, host_tbuf));
unlock_user(p, arg1, 0);
}
break;
#endif
case TARGET_NR_utimes:
{
struct timeval *tvp, tv[2];
if (arg2) {
if (copy_from_user_timeval(&tv[0], arg2)
|| copy_from_user_timeval(&tv[1],
arg2 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utimes(p, tvp));
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_futimesat) && defined(__NR_futimesat)
case TARGET_NR_futimesat:
{
struct timeval *tvp, tv[2];
if (arg3) {
if (copy_from_user_timeval(&tv[0], arg3)
|| copy_from_user_timeval(&tv[1],
arg3 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_futimesat(arg1, path(p), tvp));
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_stty
case TARGET_NR_stty:
goto unimplemented;
#endif
#ifdef TARGET_NR_gtty
case TARGET_NR_gtty:
goto unimplemented;
#endif
case TARGET_NR_access:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(access(path(p), arg2));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
case TARGET_NR_faccessat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_faccessat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_nice /* not on alpha */
case TARGET_NR_nice:
ret = get_errno(nice(arg1));
break;
#endif
#ifdef TARGET_NR_ftime
case TARGET_NR_ftime:
goto unimplemented;
#endif
case TARGET_NR_sync:
sync();
ret = 0;
break;
case TARGET_NR_kill:
ret = get_errno(kill(arg1, target_to_host_signal(arg2)));
break;
case TARGET_NR_rename:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(rename(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_renameat) && defined(__NR_renameat)
case TARGET_NR_renameat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_renameat(arg1, p, arg3, p2));
unlock_user(p2, arg4, 0);
unlock_user(p, arg2, 0);
}
break;
#endif
case TARGET_NR_mkdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mkdir(p, arg2));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat)
case TARGET_NR_mkdirat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_mkdirat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_rmdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(rmdir(p));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_dup:
ret = get_errno(dup(arg1));
break;
case TARGET_NR_pipe:
ret = do_pipe(cpu_env, arg1, 0, 0);
break;
#ifdef TARGET_NR_pipe2
case TARGET_NR_pipe2:
ret = do_pipe(cpu_env, arg1, arg2, 1);
break;
#endif
case TARGET_NR_times:
{
struct target_tms *tmsp;
struct tms tms;
ret = get_errno(times(&tms));
if (arg1) {
tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
if (!tmsp)
goto efault;
tmsp->tms_utime = tswapl(host_to_target_clock_t(tms.tms_utime));
tmsp->tms_stime = tswapl(host_to_target_clock_t(tms.tms_stime));
tmsp->tms_cutime = tswapl(host_to_target_clock_t(tms.tms_cutime));
tmsp->tms_cstime = tswapl(host_to_target_clock_t(tms.tms_cstime));
}
if (!is_error(ret))
ret = host_to_target_clock_t(ret);
}
break;
#ifdef TARGET_NR_prof
case TARGET_NR_prof:
goto unimplemented;
#endif
#ifdef TARGET_NR_signal
case TARGET_NR_signal:
goto unimplemented;
#endif
case TARGET_NR_acct:
if (arg1 == 0) {
ret = get_errno(acct(NULL));
} else {
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(acct(path(p)));
unlock_user(p, arg1, 0);
}
break;
#ifdef TARGET_NR_umount2 /* not on alpha */
case TARGET_NR_umount2:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount2(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_lock
case TARGET_NR_lock:
goto unimplemented;
#endif
case TARGET_NR_ioctl:
ret = do_ioctl(arg1, arg2, arg3);
break;
case TARGET_NR_fcntl:
ret = do_fcntl(arg1, arg2, arg3);
break;
#ifdef TARGET_NR_mpx
case TARGET_NR_mpx:
goto unimplemented;
#endif
case TARGET_NR_setpgid:
ret = get_errno(setpgid(arg1, arg2));
break;
#ifdef TARGET_NR_ulimit
case TARGET_NR_ulimit:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldolduname
case TARGET_NR_oldolduname:
goto unimplemented;
#endif
case TARGET_NR_umask:
ret = get_errno(umask(arg1));
break;
case TARGET_NR_chroot:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chroot(p));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_ustat:
goto unimplemented;
case TARGET_NR_dup2:
ret = get_errno(dup2(arg1, arg2));
break;
#if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
case TARGET_NR_dup3:
ret = get_errno(dup3(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getppid /* not on alpha */
case TARGET_NR_getppid:
ret = get_errno(getppid());
break;
#endif
case TARGET_NR_getpgrp:
ret = get_errno(getpgrp());
break;
case TARGET_NR_setsid:
ret = get_errno(setsid());
break;
#ifdef TARGET_NR_sigaction
case TARGET_NR_sigaction:
{
#if defined(TARGET_ALPHA)
struct target_sigaction act, oact, *pact = 0;
struct target_old_sigaction *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = 0;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
unlock_user_struct(old_act, arg3, 1);
}
#elif defined(TARGET_MIPS)
struct target_sigaction act, oact, *pact, *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
act.sa_flags = old_act->sa_flags;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_flags = oact.sa_flags;
old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
old_act->sa_mask.sig[1] = 0;
old_act->sa_mask.sig[2] = 0;
old_act->sa_mask.sig[3] = 0;
unlock_user_struct(old_act, arg3, 1);
}
#else
struct target_old_sigaction *old_act;
struct target_sigaction act, oact, *pact;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = old_act->sa_restorer;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
old_act->sa_restorer = oact.sa_restorer;
unlock_user_struct(old_act, arg3, 1);
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigaction:
{
#if defined(TARGET_ALPHA)
struct target_sigaction act, oact, *pact = 0;
struct target_rt_sigaction *rt_act;
/* ??? arg4 == sizeof(sigset_t). */
if (arg2) {
if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
goto efault;
act._sa_handler = rt_act->_sa_handler;
act.sa_mask = rt_act->sa_mask;
act.sa_flags = rt_act->sa_flags;
act.sa_restorer = arg5;
unlock_user_struct(rt_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
goto efault;
rt_act->_sa_handler = oact._sa_handler;
rt_act->sa_mask = oact.sa_mask;
rt_act->sa_flags = oact.sa_flags;
unlock_user_struct(rt_act, arg3, 1);
}
#else
struct target_sigaction *act;
struct target_sigaction *oact;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
goto efault;
} else
act = NULL;
if (arg3) {
if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
ret = -TARGET_EFAULT;
goto rt_sigaction_fail;
}
} else
oact = NULL;
ret = get_errno(do_sigaction(arg1, act, oact));
rt_sigaction_fail:
if (act)
unlock_user_struct(act, arg2, 0);
if (oact)
unlock_user_struct(oact, arg3, 1);
#endif
}
break;
#ifdef TARGET_NR_sgetmask /* not on alpha */
case TARGET_NR_sgetmask:
{
sigset_t cur_set;
abi_ulong target_set;
sigprocmask(0, NULL, &cur_set);
host_to_target_old_sigset(&target_set, &cur_set);
ret = target_set;
}
break;
#endif
#ifdef TARGET_NR_ssetmask /* not on alpha */
case TARGET_NR_ssetmask:
{
sigset_t set, oset, cur_set;
abi_ulong target_set = arg1;
sigprocmask(0, NULL, &cur_set);
target_to_host_old_sigset(&set, &target_set);
sigorset(&set, &set, &cur_set);
sigprocmask(SIG_SETMASK, &set, &oset);
host_to_target_old_sigset(&target_set, &oset);
ret = target_set;
}
break;
#endif
#ifdef TARGET_NR_sigprocmask
case TARGET_NR_sigprocmask:
{
#if defined(TARGET_ALPHA)
sigset_t set, oldset;
abi_ulong mask;
int how;
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
ret = get_errno(sigprocmask(how, &set, &oldset));
if (!is_error(ret)) {
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
((CPUAlphaState *)cpu_env)->[IR_V0] = 0; /* force no error */
}
#else
sigset_t set, oldset, *set_ptr;
int how;
if (arg2) {
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(how, set_ptr, &oldset));
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigprocmask:
{
int how = arg1;
sigset_t set, oldset, *set_ptr;
if (arg2) {
switch(how) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(how, set_ptr, &oldset));
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigpending
case TARGET_NR_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#endif
case TARGET_NR_rt_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigsuspend
case TARGET_NR_sigsuspend:
{
sigset_t set;
#if defined(TARGET_ALPHA)
abi_ulong mask = arg1;
target_to_host_old_sigset(&set, &mask);
#else
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&set, p);
unlock_user(p, arg1, 0);
#endif
ret = get_errno(sigsuspend(&set));
}
break;
#endif
case TARGET_NR_rt_sigsuspend:
{
sigset_t set;
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg1, 0);
ret = get_errno(sigsuspend(&set));
}
break;
case TARGET_NR_rt_sigtimedwait:
{
sigset_t set;
struct timespec uts, *puts;
siginfo_t uinfo;
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg1, 0);
if (arg3) {
puts = &uts;
target_to_host_timespec(puts, arg3);
} else {
puts = NULL;
}
ret = get_errno(sigtimedwait(&set, &uinfo, puts));
if (!is_error(ret) && arg2) {
if (!(p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 0)))
goto efault;
host_to_target_siginfo(p, &uinfo);
unlock_user(p, arg2, sizeof(target_siginfo_t));
}
}
break;
case TARGET_NR_rt_sigqueueinfo:
{
siginfo_t uinfo;
if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_siginfo(&uinfo, p);
unlock_user(p, arg1, 0);
ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
}
break;
#ifdef TARGET_NR_sigreturn
case TARGET_NR_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_sigreturn(cpu_env);
break;
#endif
case TARGET_NR_rt_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_rt_sigreturn(cpu_env);
break;
case TARGET_NR_sethostname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(sethostname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_setrlimit:
{
int resource = arg1;
struct target_rlimit *target_rlim;
struct rlimit rlim;
if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
goto efault;
rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
unlock_user_struct(target_rlim, arg2, 0);
ret = get_errno(setrlimit(resource, &rlim));
}
break;
case TARGET_NR_getrlimit:
{
int resource = arg1;
struct target_rlimit *target_rlim;
struct rlimit rlim;
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
}
break;
case TARGET_NR_getrusage:
{
struct rusage rusage;
ret = get_errno(getrusage(arg1, &rusage));
if (!is_error(ret)) {
host_to_target_rusage(arg2, &rusage);
}
}
break;
case TARGET_NR_gettimeofday:
{
struct timeval tv;
ret = get_errno(gettimeofday(&tv, NULL));
if (!is_error(ret)) {
if (copy_to_user_timeval(arg1, &tv))
goto efault;
}
}
break;
case TARGET_NR_settimeofday:
{
struct timeval tv;
if (copy_from_user_timeval(&tv, arg1))
goto efault;
ret = get_errno(settimeofday(&tv, NULL));
}
break;
#if defined(TARGET_NR_select) && !defined(TARGET_S390X) && !defined(TARGET_S390)
case TARGET_NR_select:
{
struct target_sel_arg_struct *sel;
abi_ulong inp, outp, exp, tvp;
long nsel;
if (!lock_user_struct(VERIFY_READ, sel, arg1, 1))
goto efault;
nsel = tswapl(sel->n);
inp = tswapl(sel->inp);
outp = tswapl(sel->outp);
exp = tswapl(sel->exp);
tvp = tswapl(sel->tvp);
unlock_user_struct(sel, arg1, 0);
ret = do_select(nsel, inp, outp, exp, tvp);
}
break;
#endif
#ifdef TARGET_NR_pselect6
case TARGET_NR_pselect6:
goto unimplemented_nowarn;
#endif
case TARGET_NR_symlink:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(symlink(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat)
case TARGET_NR_symlinkat:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg3);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_symlinkat(p, arg2, p2));
unlock_user(p2, arg3, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_oldlstat
case TARGET_NR_oldlstat:
goto unimplemented;
#endif
case TARGET_NR_readlink:
{
void *p2, *temp;
p = lock_user_string(arg1);
p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!p || !p2)
ret = -TARGET_EFAULT;
else {
if (strncmp((const char *)p, "/proc/self/exe", 14) == 0) {
char real[PATH_MAX];
temp = realpath(exec_path,real);
ret = (temp==NULL) ? get_errno(-1) : strlen(real) ;
snprintf((char *)p2, arg3, "%s", real);
}
else
ret = get_errno(readlink(path(p), p2, arg3));
}
unlock_user(p2, arg2, ret);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat)
case TARGET_NR_readlinkat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_readlinkat(arg1, path(p), p2, arg4));
unlock_user(p2, arg3, ret);
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_uselib
case TARGET_NR_uselib:
goto unimplemented;
#endif
#ifdef TARGET_NR_swapon
case TARGET_NR_swapon:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapon(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_reboot:
goto unimplemented;
#ifdef TARGET_NR_readdir
case TARGET_NR_readdir:
goto unimplemented;
#endif
#ifdef TARGET_NR_mmap
case TARGET_NR_mmap:
#if (defined(TARGET_I386) && defined(TARGET_ABI32)) || defined(TARGET_ARM) || \
defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
|| defined(TARGET_S390X)
{
abi_ulong *v;
abi_ulong v1, v2, v3, v4, v5, v6;
if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
goto efault;
v1 = tswapl(v[0]);
v2 = tswapl(v[1]);
v3 = tswapl(v[2]);
v4 = tswapl(v[3]);
v5 = tswapl(v[4]);
v6 = tswapl(v[5]);
unlock_user(v, arg1, 0);
ret = get_errno(target_mmap(v1, v2, v3,
target_to_host_bitmask(v4, mmap_flags_tbl),
v5, v6));
}
#else
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6));
#endif
break;
#endif
#ifdef TARGET_NR_mmap2
case TARGET_NR_mmap2:
#ifndef MMAP_SHIFT
#define MMAP_SHIFT 12
#endif
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6 << MMAP_SHIFT));
break;
#endif
case TARGET_NR_munmap:
ret = get_errno(target_munmap(arg1, arg2));
break;
case TARGET_NR_mprotect:
{
TaskState *ts = ((CPUState *)cpu_env)->opaque;
/* Special hack to detect libc making the stack executable. */
if ((arg3 & PROT_GROWSDOWN)
&& arg1 >= ts->info->stack_limit
&& arg1 <= ts->info->start_stack) {
arg3 &= ~PROT_GROWSDOWN;
arg2 = arg2 + arg1 - ts->info->stack_limit;
arg1 = ts->info->stack_limit;
}
}
ret = get_errno(target_mprotect(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_mremap
case TARGET_NR_mremap:
ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
break;
#endif
/* ??? msync/mlock/munlock are broken for softmmu. */
#ifdef TARGET_NR_msync
case TARGET_NR_msync:
ret = get_errno(msync(g2h(arg1), arg2, arg3));
break;
#endif
#ifdef TARGET_NR_mlock
case TARGET_NR_mlock:
ret = get_errno(mlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_munlock
case TARGET_NR_munlock:
ret = get_errno(munlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_mlockall
case TARGET_NR_mlockall:
ret = get_errno(mlockall(arg1));
break;
#endif
#ifdef TARGET_NR_munlockall
case TARGET_NR_munlockall:
ret = get_errno(munlockall());
break;
#endif
case TARGET_NR_truncate:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(truncate(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_ftruncate:
ret = get_errno(ftruncate(arg1, arg2));
break;
case TARGET_NR_fchmod:
ret = get_errno(fchmod(arg1, arg2));
break;
#if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat)
case TARGET_NR_fchmodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_fchmodat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getpriority:
/* libc does special remapping of the return value of
* sys_getpriority() so it's just easiest to call
* sys_getpriority() directly rather than through libc. */
ret = get_errno(sys_getpriority(arg1, arg2));
break;
case TARGET_NR_setpriority:
ret = get_errno(setpriority(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_profil
case TARGET_NR_profil:
goto unimplemented;
#endif
case TARGET_NR_statfs:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs:
if (!is_error(ret)) {
struct target_statfs *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
unlock_user_struct(target_stfs, arg2, 1);
}
break;
case TARGET_NR_fstatfs:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs;
#ifdef TARGET_NR_statfs64
case TARGET_NR_statfs64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs64:
if (!is_error(ret)) {
struct target_statfs64 *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
unlock_user_struct(target_stfs, arg3, 1);
}
break;
case TARGET_NR_fstatfs64:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs64;
#endif
#ifdef TARGET_NR_ioperm
case TARGET_NR_ioperm:
goto unimplemented;
#endif
#ifdef TARGET_NR_socketcall
case TARGET_NR_socketcall:
ret = do_socketcall(arg1, arg2);
break;
#endif
#ifdef TARGET_NR_accept
case TARGET_NR_accept:
ret = do_accept(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_bind
case TARGET_NR_bind:
ret = do_bind(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_connect
case TARGET_NR_connect:
ret = do_connect(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getpeername
case TARGET_NR_getpeername:
ret = do_getpeername(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockname
case TARGET_NR_getsockname:
ret = do_getsockname(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockopt
case TARGET_NR_getsockopt:
ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_listen
case TARGET_NR_listen:
ret = get_errno(listen(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_recv
case TARGET_NR_recv:
ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_recvfrom
case TARGET_NR_recvfrom:
ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_recvmsg
case TARGET_NR_recvmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
break;
#endif
#ifdef TARGET_NR_send
case TARGET_NR_send:
ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_sendmsg
case TARGET_NR_sendmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
break;
#endif
#ifdef TARGET_NR_sendto
case TARGET_NR_sendto:
ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_shutdown
case TARGET_NR_shutdown:
ret = get_errno(shutdown(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_socket
case TARGET_NR_socket:
ret = do_socket(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_socketpair
case TARGET_NR_socketpair:
ret = do_socketpair(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_setsockopt
case TARGET_NR_setsockopt:
ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
break;
#endif
case TARGET_NR_syslog:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
unlock_user(p, arg2, 0);
break;
case TARGET_NR_setitimer:
{
struct itimerval value, ovalue, *pvalue;
if (arg2) {
pvalue = &value;
if (copy_from_user_timeval(&pvalue->it_interval, arg2)
|| copy_from_user_timeval(&pvalue->it_value,
arg2 + sizeof(struct target_timeval)))
goto efault;
} else {
pvalue = NULL;
}
ret = get_errno(setitimer(arg1, pvalue, &ovalue));
if (!is_error(ret) && arg3) {
if (copy_to_user_timeval(arg3,
&ovalue.it_interval)
|| copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
&ovalue.it_value))
goto efault;
}
}
break;
case TARGET_NR_getitimer:
{
struct itimerval value;
ret = get_errno(getitimer(arg1, &value));
if (!is_error(ret) && arg2) {
if (copy_to_user_timeval(arg2,
&value.it_interval)
|| copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
&value.it_value))
goto efault;
}
}
break;
case TARGET_NR_stat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
case TARGET_NR_lstat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
case TARGET_NR_fstat:
{
ret = get_errno(fstat(arg1, &st));
do_stat:
if (!is_error(ret)) {
struct target_stat *target_st;
if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
goto efault;
memset(target_st, 0, sizeof(*target_st));
__put_user(st.st_dev, &target_st->st_dev);
__put_user(st.st_ino, &target_st->st_ino);
__put_user(st.st_mode, &target_st->st_mode);
__put_user(st.st_uid, &target_st->st_uid);
__put_user(st.st_gid, &target_st->st_gid);
__put_user(st.st_nlink, &target_st->st_nlink);
__put_user(st.st_rdev, &target_st->st_rdev);
__put_user(st.st_size, &target_st->st_size);
__put_user(st.st_blksize, &target_st->st_blksize);
__put_user(st.st_blocks, &target_st->st_blocks);
__put_user(st.st_atime, &target_st->target_st_atime);
__put_user(st.st_mtime, &target_st->target_st_mtime);
__put_user(st.st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, arg2, 1);
}
}
break;
#ifdef TARGET_NR_olduname
case TARGET_NR_olduname:
goto unimplemented;
#endif
#ifdef TARGET_NR_iopl
case TARGET_NR_iopl:
goto unimplemented;
#endif
case TARGET_NR_vhangup:
ret = get_errno(vhangup());
break;
#ifdef TARGET_NR_idle
case TARGET_NR_idle:
goto unimplemented;
#endif
#ifdef TARGET_NR_syscall
case TARGET_NR_syscall:
ret = do_syscall(cpu_env,arg1 & 0xffff,arg2,arg3,arg4,arg5,arg6,0);
break;
#endif
case TARGET_NR_wait4:
{
int status;
abi_long status_ptr = arg2;
struct rusage rusage, *rusage_ptr;
abi_ulong target_rusage = arg4;
if (target_rusage)
rusage_ptr = &rusage;
else
rusage_ptr = NULL;
ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr));
if (!is_error(ret)) {
if (status_ptr) {
status = host_to_target_waitstatus(status);
if (put_user_s32(status, status_ptr))
goto efault;
}
if (target_rusage)
host_to_target_rusage(target_rusage, &rusage);
}
}
break;
#ifdef TARGET_NR_swapoff
case TARGET_NR_swapoff:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapoff(p));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_sysinfo:
{
struct target_sysinfo *target_value;
struct sysinfo value;
ret = get_errno(sysinfo(&value));
if (!is_error(ret) && arg1)
{
if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
goto efault;
__put_user(value.uptime, &target_value->uptime);
__put_user(value.loads[0], &target_value->loads[0]);
__put_user(value.loads[1], &target_value->loads[1]);
__put_user(value.loads[2], &target_value->loads[2]);
__put_user(value.totalram, &target_value->totalram);
__put_user(value.freeram, &target_value->freeram);
__put_user(value.sharedram, &target_value->sharedram);
__put_user(value.bufferram, &target_value->bufferram);
__put_user(value.totalswap, &target_value->totalswap);
__put_user(value.freeswap, &target_value->freeswap);
__put_user(value.procs, &target_value->procs);
__put_user(value.totalhigh, &target_value->totalhigh);
__put_user(value.freehigh, &target_value->freehigh);
__put_user(value.mem_unit, &target_value->mem_unit);
unlock_user_struct(target_value, arg1, 1);
}
}
break;
#ifdef TARGET_NR_ipc
case TARGET_NR_ipc:
ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_semget
case TARGET_NR_semget:
ret = get_errno(semget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_semop
case TARGET_NR_semop:
ret = get_errno(do_semop(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_semctl
case TARGET_NR_semctl:
ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4);
break;
#endif
#ifdef TARGET_NR_msgctl
case TARGET_NR_msgctl:
ret = do_msgctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_msgget
case TARGET_NR_msgget:
ret = get_errno(msgget(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_msgrcv
case TARGET_NR_msgrcv:
ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_msgsnd
case TARGET_NR_msgsnd:
ret = do_msgsnd(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_shmget
case TARGET_NR_shmget:
ret = get_errno(shmget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_shmctl
case TARGET_NR_shmctl:
ret = do_shmctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmat
case TARGET_NR_shmat:
ret = do_shmat(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmdt
case TARGET_NR_shmdt:
ret = do_shmdt(arg1);
break;
#endif
case TARGET_NR_fsync:
ret = get_errno(fsync(arg1));
break;
case TARGET_NR_clone:
#if defined(TARGET_SH4) || defined(TARGET_ALPHA)
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
#elif defined(TARGET_CRIS)
ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg4, arg5));
#elif defined(TARGET_S390X)
ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
#else
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
#endif
break;
#ifdef __NR_exit_group
/* new thread calls */
case TARGET_NR_exit_group:
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
ret = get_errno(exit_group(arg1));
break;
#endif
case TARGET_NR_setdomainname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(setdomainname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_uname:
/* no need to transcode because we use the linux syscall */
{
struct new_utsname * buf;
if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
goto efault;
ret = get_errno(sys_uname(buf));
if (!is_error(ret)) {
/* Overrite the native machine name with whatever is being
emulated. */
strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
/* Allow the user to override the reported release. */
if (qemu_uname_release && *qemu_uname_release)
strcpy (buf->release, qemu_uname_release);
}
unlock_user_struct(buf, arg1, 1);
}
break;
#ifdef TARGET_I386
case TARGET_NR_modify_ldt:
ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
break;
#if !defined(TARGET_X86_64)
case TARGET_NR_vm86old:
goto unimplemented;
case TARGET_NR_vm86:
ret = do_vm86(cpu_env, arg1, arg2);
break;
#endif
#endif
case TARGET_NR_adjtimex:
goto unimplemented;
#ifdef TARGET_NR_create_module
case TARGET_NR_create_module:
#endif
case TARGET_NR_init_module:
case TARGET_NR_delete_module:
#ifdef TARGET_NR_get_kernel_syms
case TARGET_NR_get_kernel_syms:
#endif
goto unimplemented;
case TARGET_NR_quotactl:
goto unimplemented;
case TARGET_NR_getpgid:
ret = get_errno(getpgid(arg1));
break;
case TARGET_NR_fchdir:
ret = get_errno(fchdir(arg1));
break;
#ifdef TARGET_NR_bdflush /* not on x86_64 */
case TARGET_NR_bdflush:
goto unimplemented;
#endif
#ifdef TARGET_NR_sysfs
case TARGET_NR_sysfs:
goto unimplemented;
#endif
case TARGET_NR_personality:
ret = get_errno(personality(arg1));
break;
#ifdef TARGET_NR_afs_syscall
case TARGET_NR_afs_syscall:
goto unimplemented;
#endif
#ifdef TARGET_NR__llseek /* Not on alpha */
case TARGET_NR__llseek:
{
int64_t res;
#if !defined(__NR_llseek)
res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5);
if (res == -1) {
ret = get_errno(res);
} else {
ret = 0;
}
#else
ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
#endif
if ((ret == 0) && put_user_s64(res, arg4)) {
goto efault;
}
}
break;
#endif
case TARGET_NR_getdents:
#if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
{
struct target_dirent *target_dirp;
struct linux_dirent *dirp;
abi_long count = arg3;
dirp = malloc(count);
if (!dirp) {
ret = -TARGET_ENOMEM;
goto fail;
}
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
struct target_dirent *tde;
int len = ret;
int reclen, treclen;
int count1, tnamelen;
count1 = 0;
de = dirp;
if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
tde = target_dirp;
while (len > 0) {
reclen = de->d_reclen;
treclen = reclen - (2 * (sizeof(long) - sizeof(abi_long)));
tde->d_reclen = tswap16(treclen);
tde->d_ino = tswapl(de->d_ino);
tde->d_off = tswapl(de->d_off);
tnamelen = treclen - (2 * sizeof(abi_long) + 2);
if (tnamelen > 256)
tnamelen = 256;
/* XXX: may not be correct */
pstrcpy(tde->d_name, tnamelen, de->d_name);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
tde = (struct target_dirent *)((char *)tde + treclen);
count1 += treclen;
}
ret = count1;
unlock_user(target_dirp, arg2, ret);
}
free(dirp);
}
#else
{
struct linux_dirent *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswapls(&de->d_ino);
tswapls(&de->d_off);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
#endif
break;
#if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
case TARGET_NR_getdents64:
{
struct linux_dirent64 *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents64(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent64 *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswap64s((uint64_t *)&de->d_ino);
tswap64s((uint64_t *)&de->d_off);
de = (struct linux_dirent64 *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
break;
#endif /* TARGET_NR_getdents64 */
#if defined(TARGET_NR__newselect) || defined(TARGET_S390X)
#ifdef TARGET_S390X
case TARGET_NR_select:
#else
case TARGET_NR__newselect:
#endif
ret = do_select(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
# ifdef TARGET_NR_poll
case TARGET_NR_poll:
# endif
# ifdef TARGET_NR_ppoll
case TARGET_NR_ppoll:
# endif
{
struct target_pollfd *target_pfd;
unsigned int nfds = arg2;
int timeout = arg3;
struct pollfd *pfd;
unsigned int i;
target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1);
if (!target_pfd)
goto efault;
pfd = alloca(sizeof(struct pollfd) * nfds);
for(i = 0; i < nfds; i++) {
pfd[i].fd = tswap32(target_pfd[i].fd);
pfd[i].events = tswap16(target_pfd[i].events);
}
# ifdef TARGET_NR_ppoll
if (num == TARGET_NR_ppoll) {
struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg3) {
if (target_to_host_timespec(timeout_ts, arg3)) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
} else {
timeout_ts = NULL;
}
if (arg4) {
target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
if (!target_set) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
target_to_host_sigset(set, target_set);
} else {
set = NULL;
}
ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8));
if (!is_error(ret) && arg3) {
host_to_target_timespec(arg3, timeout_ts);
}
if (arg4) {
unlock_user(target_set, arg4, 0);
}
} else
# endif
ret = get_errno(poll(pfd, nfds, timeout));
if (!is_error(ret)) {
for(i = 0; i < nfds; i++) {
target_pfd[i].revents = tswap16(pfd[i].revents);
}
}
unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
}
break;
#endif
case TARGET_NR_flock:
/* NOTE: the flock constant seems to be the same for every
Linux platform */
ret = get_errno(flock(arg1, arg2));
break;
case TARGET_NR_readv:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_WRITE, vec, arg2, count, 0) < 0)
goto efault;
ret = get_errno(readv(arg1, vec, count));
unlock_iovec(vec, arg2, count, 1);
}
break;
case TARGET_NR_writev:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_READ, vec, arg2, count, 1) < 0)
goto efault;
ret = get_errno(writev(arg1, vec, count));
unlock_iovec(vec, arg2, count, 0);
}
break;
case TARGET_NR_getsid:
ret = get_errno(getsid(arg1));
break;
#if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
case TARGET_NR_fdatasync:
ret = get_errno(fdatasync(arg1));
break;
#endif
case TARGET_NR__sysctl:
/* We don't implement this, but ENOTDIR is always a safe
return value. */
ret = -TARGET_ENOTDIR;
break;
case TARGET_NR_sched_getaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_getaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
if (!is_error(ret)) {
if (copy_to_user(arg3, mask, ret)) {
goto efault;
}
}
}
break;
case TARGET_NR_sched_setaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_setaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
goto efault;
}
memcpy(mask, p, arg2);
unlock_user_struct(p, arg2, 0);
ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
}
break;
case TARGET_NR_sched_setparam:
{
struct sched_param *target_schp;
struct sched_param schp;
if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg2, 0);
ret = get_errno(sched_setparam(arg1, &schp));
}
break;
case TARGET_NR_sched_getparam:
{
struct sched_param *target_schp;
struct sched_param schp;
ret = get_errno(sched_getparam(arg1, &schp));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
goto efault;
target_schp->sched_priority = tswap32(schp.sched_priority);
unlock_user_struct(target_schp, arg2, 1);
}
}
break;
case TARGET_NR_sched_setscheduler:
{
struct sched_param *target_schp;
struct sched_param schp;
if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg3, 0);
ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
}
break;
case TARGET_NR_sched_getscheduler:
ret = get_errno(sched_getscheduler(arg1));
break;
case TARGET_NR_sched_yield:
ret = get_errno(sched_yield());
break;
case TARGET_NR_sched_get_priority_max:
ret = get_errno(sched_get_priority_max(arg1));
break;
case TARGET_NR_sched_get_priority_min:
ret = get_errno(sched_get_priority_min(arg1));
break;
case TARGET_NR_sched_rr_get_interval:
{
struct timespec ts;
ret = get_errno(sched_rr_get_interval(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
}
break;
case TARGET_NR_nanosleep:
{
struct timespec req, rem;
target_to_host_timespec(&req, arg1);
ret = get_errno(nanosleep(&req, &rem));
if (is_error(ret) && arg2) {
host_to_target_timespec(arg2, &rem);
}
}
break;
#ifdef TARGET_NR_query_module
case TARGET_NR_query_module:
goto unimplemented;
#endif
#ifdef TARGET_NR_nfsservctl
case TARGET_NR_nfsservctl:
goto unimplemented;
#endif
case TARGET_NR_prctl:
switch (arg1)
{
case PR_GET_PDEATHSIG:
{
int deathsig;
ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
if (!is_error(ret) && arg2
&& put_user_ual(deathsig, arg2))
goto efault;
}
break;
default:
ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
break;
}
break;
#ifdef TARGET_NR_arch_prctl
case TARGET_NR_arch_prctl:
#if defined(TARGET_I386) && !defined(TARGET_ABI32)
ret = do_arch_prctl(cpu_env, arg1, arg2);
break;
#else
goto unimplemented;
#endif
#endif
#ifdef TARGET_NR_pread
case TARGET_NR_pread:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi)
arg4 = arg5;
#endif
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(pread(arg1, p, arg3, arg4));
unlock_user(p, arg2, ret);
break;
case TARGET_NR_pwrite:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi)
arg4 = arg5;
#endif
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(pwrite(arg1, p, arg3, arg4));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_pread64
case TARGET_NR_pread64:
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, ret);
break;
case TARGET_NR_pwrite64:
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getcwd:
if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
goto efault;
ret = get_errno(sys_getcwd1(p, arg2));
unlock_user(p, arg1, ret);
break;
case TARGET_NR_capget:
goto unimplemented;
case TARGET_NR_capset:
goto unimplemented;
case TARGET_NR_sigaltstack:
#if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
defined(TARGET_M68K) || defined(TARGET_S390X)
ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUState *)cpu_env));
break;
#else
goto unimplemented;
#endif
case TARGET_NR_sendfile:
goto unimplemented;
#ifdef TARGET_NR_getpmsg
case TARGET_NR_getpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_putpmsg
case TARGET_NR_putpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_vfork
case TARGET_NR_vfork:
ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
0, 0, 0, 0));
break;
#endif
#ifdef TARGET_NR_ugetrlimit
case TARGET_NR_ugetrlimit:
{
struct rlimit rlim;
ret = get_errno(getrlimit(arg1, &rlim));
if (!is_error(ret)) {
struct target_rlimit *target_rlim;
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
break;
}
#endif
#ifdef TARGET_NR_truncate64
case TARGET_NR_truncate64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_ftruncate64
case TARGET_NR_ftruncate64:
ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_stat64
case TARGET_NR_stat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_lstat64
case TARGET_NR_lstat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_fstat64
case TARGET_NR_fstat64:
ret = get_errno(fstat(arg1, &st));
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \
(defined(__NR_fstatat64) || defined(__NR_newfstatat))
#ifdef TARGET_NR_fstatat64
case TARGET_NR_fstatat64:
#endif
#ifdef TARGET_NR_newfstatat
case TARGET_NR_newfstatat:
#endif
if (!(p = lock_user_string(arg2)))
goto efault;
#ifdef __NR_fstatat64
ret = get_errno(sys_fstatat64(arg1, path(p), &st, arg4));
#else
ret = get_errno(sys_newfstatat(arg1, path(p), &st, arg4));
#endif
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg3, &st);
break;
#endif
case TARGET_NR_lchown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_getuid
case TARGET_NR_getuid:
ret = get_errno(high2lowuid(getuid()));
break;
#endif
#ifdef TARGET_NR_getgid
case TARGET_NR_getgid:
ret = get_errno(high2lowgid(getgid()));
break;
#endif
#ifdef TARGET_NR_geteuid
case TARGET_NR_geteuid:
ret = get_errno(high2lowuid(geteuid()));
break;
#endif
#ifdef TARGET_NR_getegid
case TARGET_NR_getegid:
ret = get_errno(high2lowgid(getegid()));
break;
#endif
case TARGET_NR_setreuid:
ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
break;
case TARGET_NR_setregid:
ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
break;
case TARGET_NR_getgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 2, 0);
if (!target_grouplist)
goto efault;
for(i = 0;i < ret; i++)
target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
unlock_user(target_grouplist, arg2, gidsetsize * 2);
}
}
break;
case TARGET_NR_setgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 2, 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < gidsetsize; i++)
grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
unlock_user(target_grouplist, arg2, 0);
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
case TARGET_NR_fchown:
ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
break;
#if defined(TARGET_NR_fchownat) && defined(__NR_fchownat)
case TARGET_NR_fchownat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_fchownat(arg1, p, low2highuid(arg3), low2highgid(arg4), arg5));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_setresuid
case TARGET_NR_setresuid:
ret = get_errno(setresuid(low2highuid(arg1),
low2highuid(arg2),
low2highuid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresuid
case TARGET_NR_getresuid:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_u16(high2lowuid(ruid), arg1)
|| put_user_u16(high2lowuid(euid), arg2)
|| put_user_u16(high2lowuid(suid), arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_setresgid:
ret = get_errno(setresgid(low2highgid(arg1),
low2highgid(arg2),
low2highgid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_getresgid:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_u16(high2lowgid(rgid), arg1)
|| put_user_u16(high2lowgid(egid), arg2)
|| put_user_u16(high2lowgid(sgid), arg3))
goto efault;
}
}
break;
#endif
case TARGET_NR_chown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_setuid:
ret = get_errno(setuid(low2highuid(arg1)));
break;
case TARGET_NR_setgid:
ret = get_errno(setgid(low2highgid(arg1)));
break;
case TARGET_NR_setfsuid:
ret = get_errno(setfsuid(arg1));
break;
case TARGET_NR_setfsgid:
ret = get_errno(setfsgid(arg1));
break;
#ifdef TARGET_NR_lchown32
case TARGET_NR_lchown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_getuid32
case TARGET_NR_getuid32:
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxuid:
{
uid_t euid;
euid=geteuid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
}
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxgid:
{
uid_t egid;
egid=getegid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
}
ret = get_errno(getgid());
break;
#endif
#if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_getsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_GSI_IEEE_FP_CONTROL:
{
uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
/* Copied from linux ieee_fpcr_to_swcr. */
swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF);
swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE);
swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
if (put_user_u64 (swcr, arg2))
goto efault;
ret = 0;
}
break;
/* case GSI_IEEE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel.
case GSI_UACPROC:
-- Retrieves current unaligned access state; not much used.
case GSI_PROC_TYPE:
-- Retrieves implver information; surely not used.
case GSI_GET_HWRPB:
-- Grabs a copy of the HWRPB; surely not used.
*/
}
break;
#endif
#if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_setsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_SSI_IEEE_FP_CONTROL:
case TARGET_SSI_IEEE_RAISE_EXCEPTION:
{
uint64_t swcr, fpcr, orig_fpcr;
if (get_user_u64 (swcr, arg2))
goto efault;
orig_fpcr = cpu_alpha_load_fpcr (cpu_env);
fpcr = orig_fpcr & FPCR_DYN_MASK;
/* Copied from linux ieee_swcr_to_fpcr. */
fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF)) << 48;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE)) << 57;
fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
cpu_alpha_store_fpcr (cpu_env, fpcr);
ret = 0;
if (arg1 == TARGET_SSI_IEEE_RAISE_EXCEPTION) {
/* Old exceptions are not signaled. */
fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
/* If any exceptions set by this call, and are unmasked,
send a signal. */
/* ??? FIXME */
}
}
break;
/* case SSI_NVPAIRS:
-- Used with SSIN_UACPROC to enable unaligned accesses.
case SSI_IEEE_STATE_AT_SIGNAL:
case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel
*/
}
break;
#endif
#ifdef TARGET_NR_osf_sigprocmask
/* Alpha specific. */
case TARGET_NR_osf_sigprocmask:
{
abi_ulong mask;
int how = arg1;
sigset_t set, oldset;
switch(arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
sigprocmask(arg1, &set, &oldset);
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
}
break;
#endif
#ifdef TARGET_NR_getgid32
case TARGET_NR_getgid32:
ret = get_errno(getgid());
break;
#endif
#ifdef TARGET_NR_geteuid32
case TARGET_NR_geteuid32:
ret = get_errno(geteuid());
break;
#endif
#ifdef TARGET_NR_getegid32
case TARGET_NR_getegid32:
ret = get_errno(getegid());
break;
#endif
#ifdef TARGET_NR_setreuid32
case TARGET_NR_setreuid32:
ret = get_errno(setreuid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_setregid32
case TARGET_NR_setregid32:
ret = get_errno(setregid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_getgroups32
case TARGET_NR_getgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < ret; i++)
target_grouplist[i] = tswap32(grouplist[i]);
unlock_user(target_grouplist, arg2, gidsetsize * 4);
}
}
break;
#endif
#ifdef TARGET_NR_setgroups32
case TARGET_NR_setgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < gidsetsize; i++)
grouplist[i] = tswap32(target_grouplist[i]);
unlock_user(target_grouplist, arg2, 0);
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
#endif
#ifdef TARGET_NR_fchown32
case TARGET_NR_fchown32:
ret = get_errno(fchown(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_setresuid32
case TARGET_NR_setresuid32:
ret = get_errno(setresuid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresuid32
case TARGET_NR_getresuid32:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_u32(ruid, arg1)
|| put_user_u32(euid, arg2)
|| put_user_u32(suid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_setresgid32
case TARGET_NR_setresgid32:
ret = get_errno(setresgid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresgid32
case TARGET_NR_getresgid32:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_u32(rgid, arg1)
|| put_user_u32(egid, arg2)
|| put_user_u32(sgid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_chown32
case TARGET_NR_chown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_setuid32
case TARGET_NR_setuid32:
ret = get_errno(setuid(arg1));
break;
#endif
#ifdef TARGET_NR_setgid32
case TARGET_NR_setgid32:
ret = get_errno(setgid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsuid32
case TARGET_NR_setfsuid32:
ret = get_errno(setfsuid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsgid32
case TARGET_NR_setfsgid32:
ret = get_errno(setfsgid(arg1));
break;
#endif
case TARGET_NR_pivot_root:
goto unimplemented;
#ifdef TARGET_NR_mincore
case TARGET_NR_mincore:
{
void *a;
ret = -TARGET_EFAULT;
if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
goto efault;
if (!(p = lock_user_string(arg3)))
goto mincore_fail;
ret = get_errno(mincore(a, arg2, p));
unlock_user(p, arg3, ret);
mincore_fail:
unlock_user(a, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_arm_fadvise64_64
case TARGET_NR_arm_fadvise64_64:
{
/*
* arm_fadvise64_64 looks like fadvise64_64 but
* with different argument order
*/
abi_long temp;
temp = arg3;
arg3 = arg4;
arg4 = temp;
}
#endif
#if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
#ifdef TARGET_NR_fadvise64_64
case TARGET_NR_fadvise64_64:
#endif
#ifdef TARGET_NR_fadvise64
case TARGET_NR_fadvise64:
#endif
#ifdef TARGET_S390X
switch (arg4) {
case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
case 6: arg4 = POSIX_FADV_DONTNEED; break;
case 7: arg4 = POSIX_FADV_NOREUSE; break;
default: break;
}
#endif
ret = -posix_fadvise(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_madvise
case TARGET_NR_madvise:
/* A straight passthrough may not be safe because qemu sometimes
turns private flie-backed mappings into anonymous mappings.
This will break MADV_DONTNEED.
This is a hint, so ignoring and returning success is ok. */
ret = get_errno(0);
break;
#endif
#if TARGET_ABI_BITS == 32
case TARGET_NR_fcntl64:
{
int cmd;
struct flock64 fl;
struct target_flock64 *target_fl;
#ifdef TARGET_ARM
struct target_eabi_flock64 *target_efl;
#endif
cmd = target_to_host_fcntl_cmd(arg2);
if (cmd == -TARGET_EINVAL)
return cmd;
switch(arg2) {
case TARGET_F_GETLK64:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_efl->l_type);
fl.l_whence = tswap16(target_efl->l_whence);
fl.l_start = tswap64(target_efl->l_start);
fl.l_len = tswap64(target_efl->l_len);
fl.l_pid = tswap32(target_efl->l_pid);
unlock_user_struct(target_efl, arg3, 0);
} else
#endif
{
if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswap64(target_fl->l_start);
fl.l_len = tswap64(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg3, 0);
}
ret = get_errno(fcntl(arg1, cmd, &fl));
if (ret == 0) {
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0))
goto efault;
target_efl->l_type = tswap16(fl.l_type);
target_efl->l_whence = tswap16(fl.l_whence);
target_efl->l_start = tswap64(fl.l_start);
target_efl->l_len = tswap64(fl.l_len);
target_efl->l_pid = tswap32(fl.l_pid);
unlock_user_struct(target_efl, arg3, 1);
} else
#endif
{
if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0))
goto efault;
target_fl->l_type = tswap16(fl.l_type);
target_fl->l_whence = tswap16(fl.l_whence);
target_fl->l_start = tswap64(fl.l_start);
target_fl->l_len = tswap64(fl.l_len);
target_fl->l_pid = tswap32(fl.l_pid);
unlock_user_struct(target_fl, arg3, 1);
}
}
break;
case TARGET_F_SETLK64:
case TARGET_F_SETLKW64:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_efl->l_type);
fl.l_whence = tswap16(target_efl->l_whence);
fl.l_start = tswap64(target_efl->l_start);
fl.l_len = tswap64(target_efl->l_len);
fl.l_pid = tswap32(target_efl->l_pid);
unlock_user_struct(target_efl, arg3, 0);
} else
#endif
{
if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswap64(target_fl->l_start);
fl.l_len = tswap64(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg3, 0);
}
ret = get_errno(fcntl(arg1, cmd, &fl));
break;
default:
ret = do_fcntl(arg1, arg2, arg3);
break;
}
break;
}
#endif
#ifdef TARGET_NR_cacheflush
case TARGET_NR_cacheflush:
/* self-modifying code is handled automatically, so nothing needed */
ret = 0;
break;
#endif
#ifdef TARGET_NR_security
case TARGET_NR_security:
goto unimplemented;
#endif
#ifdef TARGET_NR_getpagesize
case TARGET_NR_getpagesize:
ret = TARGET_PAGE_SIZE;
break;
#endif
case TARGET_NR_gettid:
ret = get_errno(gettid());
break;
#ifdef TARGET_NR_readahead
case TARGET_NR_readahead:
#if TARGET_ABI_BITS == 32
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi)
{
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
}
#endif
ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
#else
ret = get_errno(readahead(arg1, arg2, arg3));
#endif
break;
#endif
#ifdef TARGET_NR_setxattr
case TARGET_NR_setxattr:
case TARGET_NR_lsetxattr:
case TARGET_NR_fsetxattr:
case TARGET_NR_getxattr:
case TARGET_NR_lgetxattr:
case TARGET_NR_fgetxattr:
case TARGET_NR_listxattr:
case TARGET_NR_llistxattr:
case TARGET_NR_flistxattr:
case TARGET_NR_removexattr:
case TARGET_NR_lremovexattr:
case TARGET_NR_fremovexattr:
ret = -TARGET_EOPNOTSUPP;
break;
#endif
#ifdef TARGET_NR_set_thread_area
case TARGET_NR_set_thread_area:
#if defined(TARGET_MIPS)
((CPUMIPSState *) cpu_env)->tls_value = arg1;
ret = 0;
break;
#elif defined(TARGET_CRIS)
if (arg1 & 0xff)
ret = -TARGET_EINVAL;
else {
((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
ret = 0;
}
break;
#elif defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_set_thread_area(cpu_env, arg1);
break;
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_get_thread_area
case TARGET_NR_get_thread_area:
#if defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_get_thread_area(cpu_env, arg1);
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_getdomainname
case TARGET_NR_getdomainname:
goto unimplemented_nowarn;
#endif
#ifdef TARGET_NR_clock_gettime
case TARGET_NR_clock_gettime:
{
struct timespec ts;
ret = get_errno(clock_gettime(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_getres
case TARGET_NR_clock_getres:
{
struct timespec ts;
ret = get_errno(clock_getres(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_nanosleep
case TARGET_NR_clock_nanosleep:
{
struct timespec ts;
target_to_host_timespec(&ts, arg3);
ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL));
if (arg4)
host_to_target_timespec(arg4, &ts);
break;
}
#endif
#if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
case TARGET_NR_set_tid_address:
ret = get_errno(set_tid_address((int *)g2h(arg1)));
break;
#endif
#if defined(TARGET_NR_tkill) && defined(__NR_tkill)
case TARGET_NR_tkill:
ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2)));
break;
#endif
#if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
case TARGET_NR_tgkill:
ret = get_errno(sys_tgkill((int)arg1, (int)arg2,
target_to_host_signal(arg3)));
break;
#endif
#ifdef TARGET_NR_set_robust_list
case TARGET_NR_set_robust_list:
goto unimplemented_nowarn;
#endif
#if defined(TARGET_NR_utimensat) && defined(__NR_utimensat)
case TARGET_NR_utimensat:
{
struct timespec *tsp, ts[2];
if (!arg3) {
tsp = NULL;
} else {
target_to_host_timespec(ts, arg3);
target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
tsp = ts;
}
if (!arg2)
ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
else {
if (!(p = lock_user_string(arg2))) {
ret = -TARGET_EFAULT;
goto fail;
}
ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
unlock_user(p, arg2, 0);
}
}
break;
#endif
#if defined(CONFIG_USE_NPTL)
case TARGET_NR_futex:
ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
case TARGET_NR_inotify_init:
ret = get_errno(sys_inotify_init());
break;
#endif
#ifdef CONFIG_INOTIFY1
#if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
case TARGET_NR_inotify_init1:
ret = get_errno(sys_inotify_init1(arg1));
break;
#endif
#endif
#if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
case TARGET_NR_inotify_add_watch:
p = lock_user_string(arg2);
ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
unlock_user(p, arg2, 0);
break;
#endif
#if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
case TARGET_NR_inotify_rm_watch:
ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
case TARGET_NR_mq_open:
{
struct mq_attr posix_mq_attr;
p = lock_user_string(arg1 - 1);
if (arg4 != 0)
copy_from_user_mq_attr (&posix_mq_attr, arg4);
ret = get_errno(mq_open(p, arg2, arg3, &posix_mq_attr));
unlock_user (p, arg1, 0);
}
break;
case TARGET_NR_mq_unlink:
p = lock_user_string(arg1 - 1);
ret = get_errno(mq_unlink(p));
unlock_user (p, arg1, 0);
break;
case TARGET_NR_mq_timedsend:
{
struct timespec ts;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts));
host_to_target_timespec(arg5, &ts);
}
else
ret = get_errno(mq_send(arg1, p, arg3, arg4));
unlock_user (p, arg2, arg3);
}
break;
case TARGET_NR_mq_timedreceive:
{
struct timespec ts;
unsigned int prio;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts));
host_to_target_timespec(arg5, &ts);
}
else
ret = get_errno(mq_receive(arg1, p, arg3, &prio));
unlock_user (p, arg2, arg3);
if (arg4 != 0)
put_user_u32(prio, arg4);
}
break;
/* Not implemented for now... */
/* case TARGET_NR_mq_notify: */
/* break; */
case TARGET_NR_mq_getsetattr:
{
struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
ret = 0;
if (arg3 != 0) {
ret = mq_getattr(arg1, &posix_mq_attr_out);
copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
}
if (arg2 != 0) {
copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
}
}
break;
#endif
#ifdef CONFIG_SPLICE
#ifdef TARGET_NR_tee
case TARGET_NR_tee:
{
ret = get_errno(tee(arg1,arg2,arg3,arg4));
}
break;
#endif
#ifdef TARGET_NR_splice
case TARGET_NR_splice:
{
loff_t loff_in, loff_out;
loff_t *ploff_in = NULL, *ploff_out = NULL;
if(arg2) {
get_user_u64(loff_in, arg2);
ploff_in = &loff_in;
}
if(arg4) {
get_user_u64(loff_out, arg2);
ploff_out = &loff_out;
}
ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
}
break;
#endif
#ifdef TARGET_NR_vmsplice
case TARGET_NR_vmsplice:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_READ, vec, arg2, count, 1) < 0)
goto efault;
ret = get_errno(vmsplice(arg1, vec, count, arg4));
unlock_iovec(vec, arg2, count, 0);
}
break;
#endif
#endif /* CONFIG_SPLICE */
#ifdef CONFIG_EVENTFD
#if defined(TARGET_NR_eventfd)
case TARGET_NR_eventfd:
ret = get_errno(eventfd(arg1, 0));
break;
#endif
#if defined(TARGET_NR_eventfd2)
case TARGET_NR_eventfd2:
ret = get_errno(eventfd(arg1, arg2));
break;
#endif
#endif /* CONFIG_EVENTFD */
#if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
case TARGET_NR_fallocate:
ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
break;
#endif
#if defined(CONFIG_SYNC_FILE_RANGE)
#if defined(TARGET_NR_sync_file_range)
case TARGET_NR_sync_file_range:
#if TARGET_ABI_BITS == 32
ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
target_offset64(arg4, arg5), arg6));
#else
ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
#endif
break;
#endif
#if defined(TARGET_NR_sync_file_range2)
case TARGET_NR_sync_file_range2:
/* This is like sync_file_range but the arguments are reordered */
#if TARGET_ABI_BITS == 32
ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg2));
#else
ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
#endif
break;
#endif
#endif
#if defined(CONFIG_EPOLL)
#if defined(TARGET_NR_epoll_create)
case TARGET_NR_epoll_create:
ret = get_errno(epoll_create(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
case TARGET_NR_epoll_create1:
ret = get_errno(epoll_create1(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_ctl)
case TARGET_NR_epoll_ctl:
{
struct epoll_event ep;
struct epoll_event *epp = 0;
if (arg4) {
struct target_epoll_event *target_ep;
if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
goto efault;
}
ep.events = tswap32(target_ep->events);
/* The epoll_data_t union is just opaque data to the kernel,
* so we transfer all 64 bits across and need not worry what
* actual data type it is.
*/
ep.data.u64 = tswap64(target_ep->data.u64);
unlock_user_struct(target_ep, arg4, 0);
epp = &ep;
}
ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
break;
}
#endif
#if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
#define IMPLEMENT_EPOLL_PWAIT
#endif
#if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
#endif
#if defined(IMPLEMENT_EPOLL_PWAIT)
case TARGET_NR_epoll_pwait:
#endif
{
struct target_epoll_event *target_ep;
struct epoll_event *ep;
int epfd = arg1;
int maxevents = arg3;
int timeout = arg4;
target_ep = lock_user(VERIFY_WRITE, arg2,
maxevents * sizeof(struct target_epoll_event), 1);
if (!target_ep) {
goto efault;
}
ep = alloca(maxevents * sizeof(struct epoll_event));
switch (num) {
#if defined(IMPLEMENT_EPOLL_PWAIT)
case TARGET_NR_epoll_pwait:
{
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg5) {
target_set = lock_user(VERIFY_READ, arg5,
sizeof(target_sigset_t), 1);
if (!target_set) {
unlock_user(target_ep, arg2, 0);
goto efault;
}
target_to_host_sigset(set, target_set);
unlock_user(target_set, arg5, 0);
} else {
set = NULL;
}
ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set));
break;
}
#endif
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout));
break;
#endif
default:
ret = -TARGET_ENOSYS;
}
if (!is_error(ret)) {
int i;
for (i = 0; i < ret; i++) {
target_ep[i].events = tswap32(ep[i].events);
target_ep[i].data.u64 = tswap64(ep[i].data.u64);
}
}
unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
break;
}
#endif
#endif
default:
unimplemented:
gemu_log("qemu: Unsupported syscall: %d\n", num);
#if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
unimplemented_nowarn:
#endif
ret = -TARGET_ENOSYS;
break;
}
fail:
#ifdef DEBUG
gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
#endif
if(do_strace)
print_syscall_ret(num, ret);
return ret;
efault:
ret = -TARGET_EFAULT;
goto fail;
}