qemu/hw/mips/malta.c

1479 lines
48 KiB
C
Raw Normal View History

/*
* QEMU Malta board support
*
* Copyright (c) 2006 Aurelien Jarno
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/bitops.h"
#include "qemu/datadir.h"
#include "qemu/guest-random.h"
#include "hw/clock.h"
#include "hw/southbridge/piix.h"
#include "hw/isa/superio.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/i2c/smbus_eeprom.h"
#include "hw/block/flash.h"
#include "hw/mips/mips.h"
#include "hw/mips/bootloader.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci/pci.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "hw/ide/pci.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "elf.h"
#include "qom/object.h"
#include "hw/sysbus.h" /* SysBusDevice */
#include "qemu/host-utils.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/misc/empty_slot.h"
#include "sysemu/kvm.h"
#include "semihosting/semihost.h"
#include "hw/mips/cps.h"
#include "hw/qdev-clock.h"
#define ENVP_PADDR 0x2000
#define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
#define ENVP_NB_ENTRIES 16
#define ENVP_ENTRY_SIZE 256
/* Hardware addresses */
#define FLASH_ADDRESS 0x1e000000ULL
#define FPGA_ADDRESS 0x1f000000ULL
#define RESET_ADDRESS 0x1fc00000ULL
#define FLASH_SIZE 0x400000
typedef struct {
MemoryRegion iomem;
MemoryRegion iomem_lo; /* 0 - 0x900 */
MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
uint32_t leds;
uint32_t brk;
uint32_t gpout;
uint32_t i2cin;
uint32_t i2coe;
uint32_t i2cout;
uint32_t i2csel;
CharBackend display;
char display_text[9];
SerialMM *uart;
bool display_inited;
} MaltaFPGAState;
#define TYPE_MIPS_MALTA "mips-malta"
OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
struct MaltaState {
SysBusDevice parent_obj;
Clock *cpuclk;
MIPSCPSState cps;
};
static struct _loaderparams {
int ram_size, ram_low_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
} loaderparams;
/* Malta FPGA */
static void malta_fpga_update_display(void *opaque)
{
char leds_text[9];
int i;
MaltaFPGAState *s = opaque;
for (i = 7 ; i >= 0 ; i--) {
if (s->leds & (1 << i)) {
leds_text[i] = '#';
} else {
leds_text[i] = ' ';
}
}
leds_text[8] = '\0';
qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
leds_text);
qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
s->display_text);
}
/*
* EEPROM 24C01 / 24C02 emulation.
*
* Emulation for serial EEPROMs:
* 24C01 - 1024 bit (128 x 8)
* 24C02 - 2048 bit (256 x 8)
*
* Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
*/
#if defined(DEBUG)
# define logout(fmt, ...) \
fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
# define logout(fmt, ...) ((void)0)
#endif
struct _eeprom24c0x_t {
uint8_t tick;
uint8_t address;
uint8_t command;
uint8_t ack;
uint8_t scl;
uint8_t sda;
uint8_t data;
/* uint16_t size; */
uint8_t contents[256];
};
typedef struct _eeprom24c0x_t eeprom24c0x_t;
static eeprom24c0x_t spd_eeprom = {
.contents = {
/* 00000000: */
0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
/* 00000008: */
0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
/* 00000010: */
0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
/* 00000018: */
0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
/* 00000020: */
0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
/* 00000028: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000030: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000038: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
/* 00000040: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000048: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000050: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000058: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000060: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000068: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000070: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000078: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
},
};
static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
{
enum { SDR = 0x4, DDR2 = 0x8 } type;
uint8_t *spd = spd_eeprom.contents;
uint8_t nbanks = 0;
uint16_t density = 0;
int i;
/* work in terms of MB */
ram_size /= MiB;
while ((ram_size >= 4) && (nbanks <= 2)) {
int sz_log2 = MIN(31 - clz32(ram_size), 14);
nbanks++;
density |= 1 << (sz_log2 - 2);
ram_size -= 1 << sz_log2;
}
/* split to 2 banks if possible */
if ((nbanks == 1) && (density > 1)) {
nbanks++;
density >>= 1;
}
if (density & 0xff00) {
density = (density & 0xe0) | ((density >> 8) & 0x1f);
type = DDR2;
} else if (!(density & 0x1f)) {
type = DDR2;
} else {
type = SDR;
}
if (ram_size) {
warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
" of SDRAM", ram_size);
}
/* fill in SPD memory information */
spd[2] = type;
spd[5] = nbanks;
spd[31] = density;
/* checksum */
spd[63] = 0;
for (i = 0; i < 63; i++) {
spd[63] += spd[i];
}
/* copy for SMBUS */
memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
}
static void generate_eeprom_serial(uint8_t *eeprom)
{
int i, pos = 0;
uint8_t mac[6] = { 0x00 };
uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
/* version */
eeprom[pos++] = 0x01;
/* count */
eeprom[pos++] = 0x02;
/* MAC address */
eeprom[pos++] = 0x01; /* MAC */
eeprom[pos++] = 0x06; /* length */
memcpy(&eeprom[pos], mac, sizeof(mac));
pos += sizeof(mac);
/* serial number */
eeprom[pos++] = 0x02; /* serial */
eeprom[pos++] = 0x05; /* length */
memcpy(&eeprom[pos], sn, sizeof(sn));
pos += sizeof(sn);
/* checksum */
eeprom[pos] = 0;
for (i = 0; i < pos; i++) {
eeprom[pos] += eeprom[i];
}
}
static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
{
logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
return eeprom->sda;
}
static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
{
if (eeprom->scl && scl && (eeprom->sda != sda)) {
logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
sda ? "stop" : "start");
if (!sda) {
eeprom->tick = 1;
eeprom->command = 0;
}
} else if (eeprom->tick == 0 && !eeprom->ack) {
/* Waiting for start. */
logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
} else if (!eeprom->scl && scl) {
logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
if (eeprom->ack) {
logout("\ti2c ack bit = 0\n");
sda = 0;
eeprom->ack = 0;
} else if (eeprom->sda == sda) {
uint8_t bit = (sda != 0);
logout("\ti2c bit = %d\n", bit);
if (eeprom->tick < 9) {
eeprom->command <<= 1;
eeprom->command += bit;
eeprom->tick++;
if (eeprom->tick == 9) {
logout("\tcommand 0x%04x, %s\n", eeprom->command,
bit ? "read" : "write");
eeprom->ack = 1;
}
} else if (eeprom->tick < 17) {
if (eeprom->command & 1) {
sda = ((eeprom->data & 0x80) != 0);
}
eeprom->address <<= 1;
eeprom->address += bit;
eeprom->tick++;
eeprom->data <<= 1;
if (eeprom->tick == 17) {
eeprom->data = eeprom->contents[eeprom->address];
logout("\taddress 0x%04x, data 0x%02x\n",
eeprom->address, eeprom->data);
eeprom->ack = 1;
eeprom->tick = 0;
}
} else if (eeprom->tick >= 17) {
sda = 0;
}
} else {
logout("\tsda changed with raising scl\n");
}
} else {
logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
scl, eeprom->sda, sda);
}
eeprom->scl = scl;
eeprom->sda = sda;
}
static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
unsigned size)
{
MaltaFPGAState *s = opaque;
uint32_t val = 0;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
val = 0x00000000;
break;
/* STATUS Register */
case 0x00208:
#if TARGET_BIG_ENDIAN
val = 0x00000012;
#else
val = 0x00000010;
#endif
break;
/* JMPRS Register */
case 0x00210:
val = 0x00;
break;
/* LEDBAR Register */
case 0x00408:
val = s->leds;
break;
/* BRKRES Register */
case 0x00508:
val = s->brk;
break;
/* UART Registers are handled directly by the serial device */
/* GPOUT Register */
case 0x00a00:
val = s->gpout;
break;
/* XXX: implement a real I2C controller */
/* GPINP Register */
case 0x00a08:
/* IN = OUT until a real I2C control is implemented */
if (s->i2csel) {
val = s->i2cout;
} else {
val = 0x00;
}
break;
/* I2CINP Register */
case 0x00b00:
val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
break;
/* I2COE Register */
case 0x00b08:
val = s->i2coe;
break;
/* I2COUT Register */
case 0x00b10:
val = s->i2cout;
break;
/* I2CSEL Register */
case 0x00b18:
val = s->i2csel;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
addr);
break;
}
return val;
}
static void malta_fpga_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
MaltaFPGAState *s = opaque;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
break;
/* JMPRS Register */
case 0x00210:
break;
/* LEDBAR Register */
case 0x00408:
s->leds = val & 0xff;
malta_fpga_update_display(s);
break;
/* ASCIIWORD Register */
case 0x00410:
snprintf(s->display_text, 9, "%08X", (uint32_t)val);
malta_fpga_update_display(s);
break;
/* ASCIIPOS0 to ASCIIPOS7 Registers */
case 0x00418:
case 0x00420:
case 0x00428:
case 0x00430:
case 0x00438:
case 0x00440:
case 0x00448:
case 0x00450:
s->display_text[(saddr - 0x00418) >> 3] = (char) val;
malta_fpga_update_display(s);
break;
/* SOFTRES Register */
case 0x00500:
if (val == 0x42) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
/* BRKRES Register */
case 0x00508:
s->brk = val & 0xff;
break;
/* UART Registers are handled directly by the serial device */
/* GPOUT Register */
case 0x00a00:
s->gpout = val & 0xff;
break;
/* I2COE Register */
case 0x00b08:
s->i2coe = val & 0x03;
break;
/* I2COUT Register */
case 0x00b10:
eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
s->i2cout = val;
break;
/* I2CSEL Register */
case 0x00b18:
s->i2csel = val & 0x01;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
addr);
break;
}
}
static const MemoryRegionOps malta_fpga_ops = {
.read = malta_fpga_read,
.write = malta_fpga_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void malta_fpga_reset(void *opaque)
{
MaltaFPGAState *s = opaque;
s->leds = 0x00;
s->brk = 0x0a;
s->gpout = 0x00;
s->i2cin = 0x3;
s->i2coe = 0x0;
s->i2cout = 0x3;
s->i2csel = 0x1;
s->display_text[8] = '\0';
snprintf(s->display_text, 9, " ");
}
static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
{
MaltaFPGAState *s = opaque;
if (event == CHR_EVENT_OPENED && !s->display_inited) {
qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "+ +\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "\n");
qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "+ +\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
s->display_inited = true;
}
}
static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
{
MaltaFPGAState *s;
Chardev *chr;
s = g_new0(MaltaFPGAState, 1);
memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
"malta-fpga", 0x100000);
memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
&s->iomem, 0, 0x900);
memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
&s->iomem, 0xa00, 0x100000 - 0xa00);
memory_region_add_subregion(address_space, base, &s->iomem_lo);
memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
chr = qemu_chr_new("fpga", "vc:320x200", NULL);
qemu_chr_fe_init(&s->display, chr, NULL);
qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
malta_fgpa_display_event, NULL, s, NULL, true);
s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
230400, uart_chr, DEVICE_NATIVE_ENDIAN);
malta_fpga_reset(s);
qemu_register_reset(malta_fpga_reset, s);
return s;
}
/* Network support */
static void network_init(PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
const char *default_devaddr = NULL;
if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
/* The malta board has a PCNet card using PCI SLOT 11 */
default_devaddr = "0b";
pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
}
}
static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
uint64_t kernel_entry)
{
uint16_t *p;
/* Small bootloader */
p = (uint16_t *)base;
#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
#define NM_HI2(VAL) \
(((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
#define NM_LO(VAL) ((VAL) & 0xfff)
stw_p(p++, 0x2800); stw_p(p++, 0x001c);
/* bc to_here */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
/* to_here: */
if (semihosting_get_argc()) {
/* Preserve a0 content as arguments have been passed */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
} else {
stw_p(p++, 0x0080); stw_p(p++, 0x0002);
/* li a0,2 */
}
stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
stw_p(p++, NM_HI2(ENVP_VADDR - 64));
/* lui sp,%hi(ENVP_VADDR - 64) */
stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
/* ori sp,sp,%lo(ENVP_VADDR - 64) */
stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
stw_p(p++, NM_HI2(ENVP_VADDR));
/* lui a1,%hi(ENVP_VADDR) */
stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
/* ori a1,a1,%lo(ENVP_VADDR) */
stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
stw_p(p++, NM_HI2(ENVP_VADDR + 8));
/* lui a2,%hi(ENVP_VADDR + 8) */
stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
/* ori a2,a2,%lo(ENVP_VADDR + 8) */
stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
stw_p(p++, NM_HI2(loaderparams.ram_low_size));
/* lui a3,%hi(loaderparams.ram_low_size) */
stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
/* ori a3,a3,%lo(loaderparams.ram_low_size) */
/*
* Load BAR registers as done by YAMON:
*
* - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
* - set up PCI0 MEM0 at 0x10000000, size 0x8000000
* - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
*
*/
stw_p(p++, 0xe040); stw_p(p++, 0x0681);
/* lui t1, %hi(0xb4000000) */
#if TARGET_BIG_ENDIAN
stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
/* lui t0, %hi(0xdf000000) */
/* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
stw_p(p++, 0x8422); stw_p(p++, 0x9068);
/* sw t0, 0x68(t1) */
stw_p(p++, 0xe040); stw_p(p++, 0x077d);
/* lui t1, %hi(0xbbe00000) */
stw_p(p++, 0xe020); stw_p(p++, 0x0801);
/* lui t0, %hi(0xc0000000) */
/* 0x48 corresponds to GT_PCI0IOLD */
stw_p(p++, 0x8422); stw_p(p++, 0x9048);
/* sw t0, 0x48(t1) */
stw_p(p++, 0xe020); stw_p(p++, 0x0800);
/* lui t0, %hi(0x40000000) */
/* 0x50 corresponds to GT_PCI0IOHD */
stw_p(p++, 0x8422); stw_p(p++, 0x9050);
/* sw t0, 0x50(t1) */
stw_p(p++, 0xe020); stw_p(p++, 0x0001);
/* lui t0, %hi(0x80000000) */
/* 0x58 corresponds to GT_PCI0M0LD */
stw_p(p++, 0x8422); stw_p(p++, 0x9058);
/* sw t0, 0x58(t1) */
stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
/* lui t0, %hi(0x3f000000) */
/* 0x60 corresponds to GT_PCI0M0HD */
stw_p(p++, 0x8422); stw_p(p++, 0x9060);
/* sw t0, 0x60(t1) */
stw_p(p++, 0xe020); stw_p(p++, 0x0821);
/* lui t0, %hi(0xc1000000) */
/* 0x80 corresponds to GT_PCI0M1LD */
stw_p(p++, 0x8422); stw_p(p++, 0x9080);
/* sw t0, 0x80(t1) */
stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
/* lui t0, %hi(0x5e000000) */
#else
stw_p(p++, 0x0020); stw_p(p++, 0x00df);
/* addiu[32] t0, $0, 0xdf */
/* 0x68 corresponds to GT_ISD */
stw_p(p++, 0x8422); stw_p(p++, 0x9068);
/* sw t0, 0x68(t1) */
/* Use kseg2 remapped address 0x1be00000 */
stw_p(p++, 0xe040); stw_p(p++, 0x077d);
/* lui t1, %hi(0xbbe00000) */
stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
/* addiu[32] t0, $0, 0xc0 */
/* 0x48 corresponds to GT_PCI0IOLD */
stw_p(p++, 0x8422); stw_p(p++, 0x9048);
/* sw t0, 0x48(t1) */
stw_p(p++, 0x0020); stw_p(p++, 0x0040);
/* addiu[32] t0, $0, 0x40 */
/* 0x50 corresponds to GT_PCI0IOHD */
stw_p(p++, 0x8422); stw_p(p++, 0x9050);
/* sw t0, 0x50(t1) */
stw_p(p++, 0x0020); stw_p(p++, 0x0080);
/* addiu[32] t0, $0, 0x80 */
/* 0x58 corresponds to GT_PCI0M0LD */
stw_p(p++, 0x8422); stw_p(p++, 0x9058);
/* sw t0, 0x58(t1) */
stw_p(p++, 0x0020); stw_p(p++, 0x003f);
/* addiu[32] t0, $0, 0x3f */
/* 0x60 corresponds to GT_PCI0M0HD */
stw_p(p++, 0x8422); stw_p(p++, 0x9060);
/* sw t0, 0x60(t1) */
stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
/* addiu[32] t0, $0, 0xc1 */
/* 0x80 corresponds to GT_PCI0M1LD */
stw_p(p++, 0x8422); stw_p(p++, 0x9080);
/* sw t0, 0x80(t1) */
stw_p(p++, 0x0020); stw_p(p++, 0x005e);
/* addiu[32] t0, $0, 0x5e */
#endif
/* 0x88 corresponds to GT_PCI0M1HD */
stw_p(p++, 0x8422); stw_p(p++, 0x9088);
/* sw t0, 0x88(t1) */
stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
stw_p(p++, NM_HI2(kernel_entry));
/* lui t9,%hi(kernel_entry) */
stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
/* ori t9,t9,%lo(kernel_entry) */
stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
/* jalrc t8 */
}
/*
* ROM and pseudo bootloader
*
* The following code implements a very very simple bootloader. It first
* loads the registers a0 to a3 to the values expected by the OS, and
* then jump at the kernel address.
*
* The bootloader should pass the locations of the kernel arguments and
* environment variables tables. Those tables contain the 32-bit address
* of NULL terminated strings. The environment variables table should be
* terminated by a NULL address.
*
* For a simpler implementation, the number of kernel arguments is fixed
* to two (the name of the kernel and the command line), and the two
* tables are actually the same one.
*
* The registers a0 to a3 should contain the following values:
* a0 - number of kernel arguments
* a1 - 32-bit address of the kernel arguments table
* a2 - 32-bit address of the environment variables table
* a3 - RAM size in bytes
*/
static void write_bootloader(uint8_t *base, uint64_t run_addr,
uint64_t kernel_entry)
{
uint32_t *p;
/* Small bootloader */
p = (uint32_t *)base;
stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
((run_addr + 0x580) & 0x0fffffff) >> 2);
stl_p(p++, 0x00000000); /* nop */
/* YAMON service vector */
stl_p(base + 0x500, run_addr + 0x0580); /* start: */
stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
stl_p(base + 0x520, run_addr + 0x0580); /* start: */
stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
stl_p(base + 0x534, run_addr + 0x0808); /* print: */
stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
/* Second part of the bootloader */
p = (uint32_t *) (base + 0x580);
/*
* Load BAR registers as done by YAMON:
*
* - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
* - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
* - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
*
*/
/* Bus endianess is always reversed */
#if TARGET_BIG_ENDIAN
#define cpu_to_gt32 cpu_to_le32
#else
#define cpu_to_gt32 cpu_to_be32
#endif
/* move GT64120 registers from 0x14000000 to 0x1be00000 */
bl_gen_write_u32(&p, /* GT_ISD */
cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
cpu_to_gt32(0x1be00000 << 3));
/* setup MEM-to-PCI0 mapping */
/* setup PCI0 io window to 0x18000000-0x181fffff */
bl_gen_write_u32(&p, /* GT_PCI0IOLD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
cpu_to_gt32(0x18000000 << 3));
bl_gen_write_u32(&p, /* GT_PCI0IOHD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
cpu_to_gt32(0x08000000 << 3));
/* setup PCI0 mem windows */
bl_gen_write_u32(&p, /* GT_PCI0M0LD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
cpu_to_gt32(0x10000000 << 3));
bl_gen_write_u32(&p, /* GT_PCI0M0HD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
cpu_to_gt32(0x07e00000 << 3));
bl_gen_write_u32(&p, /* GT_PCI0M1LD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
cpu_to_gt32(0x18200000 << 3));
bl_gen_write_u32(&p, /* GT_PCI0M1HD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
cpu_to_gt32(0x0bc00000 << 3));
#undef cpu_to_gt32
bl_gen_jump_kernel(&p,
true, ENVP_VADDR - 64,
/*
* If semihosting is used, arguments have already been
* passed, so we preserve $a0.
*/
!semihosting_get_argc(), 2,
true, ENVP_VADDR,
true, ENVP_VADDR + 8,
true, loaderparams.ram_low_size,
kernel_entry);
/* YAMON subroutines */
p = (uint32_t *) (base + 0x800);
stl_p(p++, 0x03e00009); /* jalr ra */
stl_p(p++, 0x24020000); /* li v0,0 */
/* 808 YAMON print */
stl_p(p++, 0x03e06821); /* move t5,ra */
stl_p(p++, 0x00805821); /* move t3,a0 */
stl_p(p++, 0x00a05021); /* move t2,a1 */
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
stl_p(p++, 0x10800005); /* beqz a0,834 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x0ff0021c); /* jal 870 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x1000fff9); /* b 814 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x01a00009); /* jalr t5 */
stl_p(p++, 0x01602021); /* move a0,t3 */
/* 0x83c YAMON print_count */
stl_p(p++, 0x03e06821); /* move t5,ra */
stl_p(p++, 0x00805821); /* move t3,a0 */
stl_p(p++, 0x00a05021); /* move t2,a1 */
stl_p(p++, 0x00c06021); /* move t4,a2 */
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
stl_p(p++, 0x0ff0021c); /* jal 870 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
stl_p(p++, 0x1580fffa); /* bnez t4,84c */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x01a00009); /* jalr t5 */
stl_p(p++, 0x01602021); /* move a0,t3 */
/* 0x870 */
stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x03e00009); /* jalr ra */
stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
}
static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
const char *string, ...)
{
va_list ap;
uint32_t table_addr;
if (index >= ENVP_NB_ENTRIES) {
return;
}
if (string == NULL) {
prom_buf[index] = 0;
return;
}
table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
va_start(ap, string);
vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
va_end(ap);
}
static void reinitialize_rng_seed(void *opaque)
{
char *rng_seed_hex = opaque;
uint8_t rng_seed[32];
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
}
}
/* Kernel */
static uint64_t load_kernel(void)
{
uint64_t kernel_entry, kernel_high, initrd_size;
long kernel_size;
ram_addr_t initrd_offset;
int big_endian;
uint32_t *prom_buf;
long prom_size;
int prom_index = 0;
uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
uint8_t rng_seed[32];
char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
size_t rng_seed_prom_offset;
#if TARGET_BIG_ENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
kernel_size = load_elf(loaderparams.kernel_filename, NULL,
cpu_mips_kseg0_to_phys, NULL,
&kernel_entry, NULL,
&kernel_high, NULL, big_endian, EM_MIPS,
hw/core/loader: Let load_elf() populate a field with CPU-specific flags While loading the executable, some platforms (like AVR) need to detect CPU type that executable is built for - and, with this patch, this is enabled by reading the field 'e_flags' of the ELF header of the executable in question. The change expands functionality of the following functions: - load_elf() - load_elf_as() - load_elf_ram() - load_elf_ram_sym() The argument added to these functions is called 'pflags' and is of type 'uint32_t*' (that matches 'pointer to 'elf_word'', 'elf_word' being the type of the field 'e_flags', in both 32-bit and 64-bit variants of ELF header). Callers are allowed to pass NULL as that argument, and in such case no lookup to the field 'e_flags' will happen, and no information will be returned, of course. CC: Richard Henderson <rth@twiddle.net> CC: Peter Maydell <peter.maydell@linaro.org> CC: Edgar E. Iglesias <edgar.iglesias@gmail.com> CC: Michael Walle <michael@walle.cc> CC: Thomas Huth <huth@tuxfamily.org> CC: Laurent Vivier <laurent@vivier.eu> CC: Philippe Mathieu-Daudé <f4bug@amsat.org> CC: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com> CC: Aurelien Jarno <aurelien@aurel32.net> CC: Jia Liu <proljc@gmail.com> CC: David Gibson <david@gibson.dropbear.id.au> CC: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> CC: BALATON Zoltan <balaton@eik.bme.hu> CC: Christian Borntraeger <borntraeger@de.ibm.com> CC: Thomas Huth <thuth@redhat.com> CC: Artyom Tarasenko <atar4qemu@gmail.com> CC: Fabien Chouteau <chouteau@adacore.com> CC: KONRAD Frederic <frederic.konrad@adacore.com> CC: Max Filippov <jcmvbkbc@gmail.com> Reviewed-by: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com> Signed-off-by: Michael Rolnik <mrolnik@gmail.com> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com> Message-Id: <1580079311-20447-24-git-send-email-aleksandar.markovic@rt-rk.com>
2020-01-27 01:55:04 +03:00
1, 0);
if (kernel_size < 0) {
hw/mips: Replace fprintf(stderr, "*\n" with error_report() Replace a large number of the fprintf(stderr, "*\n" calls with error_report(). The functions were renamed with these commands and then compiler issues where manually fixed. find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + Some lines where then manually tweaked to pass checkpatch. Signed-off-by: Alistair Francis <alistair.francis@xilinx.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Yongbok Kim <yongbok.kim@imgtec.com> Cc: "Hervé Poussineau" <hpoussin@reactos.org> Conversions that aren't followed by exit() dropped, because they might be inappropriate. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20180203084315.20497-6-armbru@redhat.com>
2018-02-03 11:43:06 +03:00
error_report("could not load kernel '%s': %s",
loaderparams.kernel_filename,
load_elf_strerror(kernel_size));
exit(1);
}
/* Check where the kernel has been linked */
if (kernel_entry & 0x80000000ll) {
if (kvm_enabled()) {
error_report("KVM guest kernels must be linked in useg. "
"Did you forget to enable CONFIG_KVM_GUEST?");
exit(1);
}
xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
} else {
/* if kernel entry is in useg it is probably a KVM T&E kernel */
mips_um_ksegs_enable();
xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
initrd_size = get_image_size(loaderparams.initrd_filename);
if (initrd_size > 0) {
/*
* The kernel allocates the bootmap memory in the low memory after
* the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
* pages.
*/
initrd_offset = ROUND_UP(loaderparams.ram_low_size
- (initrd_size + 128 * KiB),
INITRD_PAGE_SIZE);
if (kernel_high >= initrd_offset) {
hw/mips: Replace fprintf(stderr, "*\n" with error_report() Replace a large number of the fprintf(stderr, "*\n" calls with error_report(). The functions were renamed with these commands and then compiler issues where manually fixed. find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + Some lines where then manually tweaked to pass checkpatch. Signed-off-by: Alistair Francis <alistair.francis@xilinx.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Yongbok Kim <yongbok.kim@imgtec.com> Cc: "Hervé Poussineau" <hpoussin@reactos.org> Conversions that aren't followed by exit() dropped, because they might be inappropriate. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20180203084315.20497-6-armbru@redhat.com>
2018-02-03 11:43:06 +03:00
error_report("memory too small for initial ram disk '%s'",
loaderparams.initrd_filename);
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
initrd_offset,
loaderparams.ram_size - initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
hw/mips: Replace fprintf(stderr, "*\n" with error_report() Replace a large number of the fprintf(stderr, "*\n" calls with error_report(). The functions were renamed with these commands and then compiler issues where manually fixed. find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + find ./* -type f -exec sed -i \ 'N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \ {} + Some lines where then manually tweaked to pass checkpatch. Signed-off-by: Alistair Francis <alistair.francis@xilinx.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Yongbok Kim <yongbok.kim@imgtec.com> Cc: "Hervé Poussineau" <hpoussin@reactos.org> Conversions that aren't followed by exit() dropped, because they might be inappropriate. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20180203084315.20497-6-armbru@redhat.com>
2018-02-03 11:43:06 +03:00
error_report("could not load initial ram disk '%s'",
loaderparams.initrd_filename);
exit(1);
}
}
/* Setup prom parameters. */
prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
prom_buf = g_malloc(prom_size);
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
if (initrd_size > 0) {
prom_set(prom_buf, prom_index++,
"rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
xlate_to_kseg0(NULL, initrd_offset),
initrd_size, loaderparams.kernel_cmdline);
} else {
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
}
prom_set(prom_buf, prom_index++, "memsize");
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
prom_set(prom_buf, prom_index++, "ememsize");
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
prom_set(prom_buf, prom_index++, "modetty0");
prom_set(prom_buf, prom_index++, "38400n8r");
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
}
prom_set(prom_buf, prom_index++, "rngseed");
rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
sizeof(uint32_t) * ENVP_NB_ENTRIES;
prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
prom_set(prom_buf, prom_index++, NULL);
rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
g_free(prom_buf);
return kernel_entry;
}
static void malta_mips_config(MIPSCPU *cpu)
{
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
CPUMIPSState *env = &cpu->env;
CPUState *cs = CPU(cpu);
if (ase_mt_available(env)) {
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
CP0MVPC0_PTC, 8,
smp_cpus * cs->nr_threads - 1);
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
CP0MVPC0_PVPE, 4, smp_cpus - 1);
}
}
static void main_cpu_reset(void *opaque)
{
MIPSCPU *cpu = opaque;
CPUMIPSState *env = &cpu->env;
cpu_reset(CPU(cpu));
/*
* The bootloader does not need to be rewritten as it is located in a
* read only location. The kernel location and the arguments table
* location does not change.
*/
if (loaderparams.kernel_filename) {
env->CP0_Status &= ~(1 << CP0St_ERL);
}
malta_mips_config(cpu);
if (kvm_enabled()) {
/* Start running from the bootloader we wrote to end of RAM */
env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
}
}
static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
CPUMIPSState *env;
MIPSCPU *cpu;
int i;
for (i = 0; i < ms->smp.cpus; i++) {
cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
/* Init internal devices */
cpu_mips_irq_init_cpu(cpu);
cpu_mips_clock_init(cpu);
qemu_register_reset(main_cpu_reset, cpu);
}
cpu = MIPS_CPU(first_cpu);
env = &cpu->env;
*i8259_irq = env->irq[2];
*cbus_irq = env->irq[4];
}
static void create_cps(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
sysbus: Convert qdev_set_parent_bus() use with Coccinelle, part 1 I'm converting from qdev_set_parent_bus()/realize to qdev_realize(); recent commit "qdev: Convert uses of qdev_set_parent_bus() with Coccinelle" explains why. sysbus_init_child_obj() is a wrapper around object_initialize_child_with_props() and qdev_set_parent_bus(). It passes no properties. Convert sysbus_init_child_obj()/realize to object_initialize_child()/ qdev_realize(). Coccinelle script: @@ expression parent, name, size, type, errp; expression child; symbol true; @@ - sysbus_init_child_obj(parent, name, &child, size, type); + sysbus_init_child_XXX(parent, name, &child, size, type); ... - object_property_set_bool(OBJECT(&child), true, "realized", errp); + sysbus_realize(SYS_BUS_DEVICE(&child), errp); @@ expression parent, name, size, type, errp; expression child; symbol true; @@ - sysbus_init_child_obj(parent, name, child, size, type); + sysbus_init_child_XXX(parent, name, child, size, type); ... - object_property_set_bool(OBJECT(child), true, "realized", errp); + sysbus_realize(SYS_BUS_DEVICE(child), errp); @@ expression parent, name, size, type; expression child; expression dev; expression expr; @@ - sysbus_init_child_obj(parent, name, child, size, type); + sysbus_init_child_XXX(parent, name, child, size, type); ... dev = DEVICE(child); ... when != dev = expr; - qdev_init_nofail(dev); + sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal); @@ expression parent, propname, type; expression child; @@ - sysbus_init_child_XXX(parent, propname, child, sizeof(*child), type) + object_initialize_child(parent, propname, child, type) @@ expression parent, propname, type; expression child; @@ - sysbus_init_child_XXX(parent, propname, &child, sizeof(child), type) + object_initialize_child(parent, propname, &child, type) Signed-off-by: Markus Armbruster <armbru@redhat.com> Acked-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-48-armbru@redhat.com>
2020-06-10 08:32:36 +03:00
object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
qom: Put name parameter before value / visitor parameter The object_property_set_FOO() setters take property name and value in an unusual order: void object_property_set_FOO(Object *obj, FOO_TYPE value, const char *name, Error **errp) Having to pass value before name feels grating. Swap them. Same for object_property_set(), object_property_get(), and object_property_parse(). Convert callers with this Coccinelle script: @@ identifier fun = { object_property_get, object_property_parse, object_property_set_str, object_property_set_link, object_property_set_bool, object_property_set_int, object_property_set_uint, object_property_set, object_property_set_qobject }; expression obj, v, name, errp; @@ - fun(obj, v, name, errp) + fun(obj, name, v, errp) Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error message "no position information". Convert that one manually. Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by ARMSSE being used both as typedef and function-like macro there. Convert manually. Fails to convert hw/rx/rx-gdbsim.c, because Coccinelle gets confused by RXCPU being used both as typedef and function-like macro there. Convert manually. The other files using RXCPU that way don't need conversion. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Message-Id: <20200707160613.848843-27-armbru@redhat.com> [Straightforwad conflict with commit 2336172d9b "audio: set default value for pcspk.iobase property" resolved]
2020-07-07 19:05:54 +03:00
object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
&error_fatal);
qom: Put name parameter before value / visitor parameter The object_property_set_FOO() setters take property name and value in an unusual order: void object_property_set_FOO(Object *obj, FOO_TYPE value, const char *name, Error **errp) Having to pass value before name feels grating. Swap them. Same for object_property_set(), object_property_get(), and object_property_parse(). Convert callers with this Coccinelle script: @@ identifier fun = { object_property_get, object_property_parse, object_property_set_str, object_property_set_link, object_property_set_bool, object_property_set_int, object_property_set_uint, object_property_set, object_property_set_qobject }; expression obj, v, name, errp; @@ - fun(obj, v, name, errp) + fun(obj, name, v, errp) Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error message "no position information". Convert that one manually. Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by ARMSSE being used both as typedef and function-like macro there. Convert manually. Fails to convert hw/rx/rx-gdbsim.c, because Coccinelle gets confused by RXCPU being used both as typedef and function-like macro there. Convert manually. The other files using RXCPU that way don't need conversion. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Message-Id: <20200707160613.848843-27-armbru@redhat.com> [Straightforwad conflict with commit 2336172d9b "audio: set default value for pcspk.iobase property" resolved]
2020-07-07 19:05:54 +03:00
object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
&error_fatal);
qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
sysbus: Convert qdev_set_parent_bus() use with Coccinelle, part 1 I'm converting from qdev_set_parent_bus()/realize to qdev_realize(); recent commit "qdev: Convert uses of qdev_set_parent_bus() with Coccinelle" explains why. sysbus_init_child_obj() is a wrapper around object_initialize_child_with_props() and qdev_set_parent_bus(). It passes no properties. Convert sysbus_init_child_obj()/realize to object_initialize_child()/ qdev_realize(). Coccinelle script: @@ expression parent, name, size, type, errp; expression child; symbol true; @@ - sysbus_init_child_obj(parent, name, &child, size, type); + sysbus_init_child_XXX(parent, name, &child, size, type); ... - object_property_set_bool(OBJECT(&child), true, "realized", errp); + sysbus_realize(SYS_BUS_DEVICE(&child), errp); @@ expression parent, name, size, type, errp; expression child; symbol true; @@ - sysbus_init_child_obj(parent, name, child, size, type); + sysbus_init_child_XXX(parent, name, child, size, type); ... - object_property_set_bool(OBJECT(child), true, "realized", errp); + sysbus_realize(SYS_BUS_DEVICE(child), errp); @@ expression parent, name, size, type; expression child; expression dev; expression expr; @@ - sysbus_init_child_obj(parent, name, child, size, type); + sysbus_init_child_XXX(parent, name, child, size, type); ... dev = DEVICE(child); ... when != dev = expr; - qdev_init_nofail(dev); + sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal); @@ expression parent, propname, type; expression child; @@ - sysbus_init_child_XXX(parent, propname, child, sizeof(*child), type) + object_initialize_child(parent, propname, child, type) @@ expression parent, propname, type; expression child; @@ - sysbus_init_child_XXX(parent, propname, &child, sizeof(child), type) + object_initialize_child(parent, propname, &child, type) Signed-off-by: Markus Armbruster <armbru@redhat.com> Acked-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-48-armbru@redhat.com>
2020-06-10 08:32:36 +03:00
sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
*i8259_irq = get_cps_irq(&s->cps, 3);
*cbus_irq = NULL;
}
static void mips_create_cpu(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
create_cps(ms, s, cbus_irq, i8259_irq);
} else {
create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
}
}
static
void mips_malta_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
ram_addr_t ram_low_size;
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
char *filename;
PFlashCFI01 *fl;
MemoryRegion *system_memory = get_system_memory();
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
MemoryRegion *ram_low_postio;
MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
const size_t smbus_eeprom_size = 8 * 256;
uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
uint64_t kernel_entry, bootloader_run_addr;
PCIBus *pci_bus;
ISABus *isa_bus;
qemu_irq cbus_irq, i8259_irq;
I2CBus *smbus;
DriveInfo *dinfo;
int fl_idx = 0;
int be;
MaltaState *s;
PCIDevice *piix4;
DeviceState *dev;
s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
/* create CPU */
mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
/* allocate RAM */
if (ram_size > 2 * GiB) {
error_report("Too much memory for this machine: %" PRId64 "MB,"
" maximum 2048MB", ram_size / MiB);
exit(1);
}
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
/* register RAM at high address where it is undisturbed by IO */
memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
/* alias for pre IO hole access */
memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
machine->ram, 0, MIN(ram_size, 256 * MiB));
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
memory_region_add_subregion(system_memory, 0, ram_low_preio);
/* alias for post IO hole access, if there is enough RAM */
if (ram_size > 512 * MiB) {
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
ram_low_postio = g_new(MemoryRegion, 1);
memory_region_init_alias(ram_low_postio, NULL,
"mips_malta_low_postio.ram",
machine->ram, 512 * MiB,
ram_size - 512 * MiB);
memory_region_add_subregion(system_memory, 512 * MiB,
ram_low_postio);
mips_malta: support up to 2GiB RAM A Malta board can support up to 2GiB of RAM. Since the unmapped kseg0/1 regions are only 512MiB large & the latter 256MiB of those are taken up by the IO region, access to RAM beyond 256MiB must be done through a mapped region. In the case of a Linux guest this means we need to use highmem. The mainline Linux kernel does not support highmem for Malta at this time, however this can be tested using the linux-mti-3.8 kernel branch available from: git://git.linux-mips.org/pub/scm/linux-mti.git You should be able to boot a Linux kernel built from the linux-mti-3.8 branch, with CONFIG_HIGHMEM enabled, using 2GiB RAM by passing "-m 2G" to QEMU and appending the following kernel parameters: mem=256m@0x0 mem=256m@0x90000000 mem=1536m@0x20000000 Note that the upper half of the physical address space of a Malta mirrors the lower half (hence the 2GiB limit) except that the IO region (0x10000000-0x1fffffff in the lower half) is not mirrored in the upper half. That is, physical addresses 0x90000000-0x9fffffff access RAM rather than the IO region, resulting in a physical address space resembling the following: 0x00000000 -> 0x0fffffff RAM 0x10000000 -> 0x1fffffff I/O 0x20000000 -> 0x7fffffff RAM 0x80000000 -> 0x8fffffff RAM (mirror of 0x00000000 -> 0x0fffffff) 0x90000000 -> 0x9fffffff RAM 0xa0000000 -> 0xffffffff RAM (mirror of 0x20000000 -> 0x7fffffff) The second mem parameter provided to the kernel above accesses the second 256MiB of RAM through the upper half of the physical address space, making use of the aliasing described above in order to avoid the IO region and use the whole 2GiB RAM. The memory setup may be seen as 'backwards' in this commit since the 'real' memory is mapped in the upper half of the physical address space and the lower half contains the aliases. On real hardware it would be typical to see the upper half of the physical address space as the alias since the bus addresses generated match the lower half of the physical address space. However since the memory accessible in the upper half of the physical address space is uninterrupted by the IO region it is easiest to map the RAM as a whole there, and functionally it makes no difference to the target code. Due to the requirements of accessing the second 256MiB of RAM through a mapping to the upper half of the physical address space it is usual for the bootloader to indicate a maximum of 256MiB memory to a kernel. This allows kernels which do not support such access to boot on systems with more than 256MiB of RAM. It is also the behaviour assumed by Linux. QEMUs small generated bootloader is modified to provide this behaviour. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Signed-off-by: Yongbok Kim <yongbok.kim@imgtec.com> Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2013-09-06 16:57:44 +04:00
}
#if TARGET_BIG_ENDIAN
be = 1;
#else
be = 0;
#endif
/* FPGA */
/* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
/* Load firmware in flash / BIOS. */
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
FLASH_SIZE,
dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
65536,
4, 0x0000, 0x0000, 0x0000, 0x0000, be);
bios = pflash_cfi01_get_memory(fl);
fl_idx++;
if (kernel_filename) {
ram_low_size = MIN(ram_size, 256 * MiB);
/* For KVM we reserve 1MB of RAM for running bootloader */
if (kvm_enabled()) {
ram_low_size -= 0x100000;
bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
} else {
bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
}
/* Write a small bootloader to the flash location. */
loaderparams.ram_size = ram_size;
loaderparams.ram_low_size = ram_low_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
kernel_entry = load_kernel();
if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
write_bootloader(memory_region_get_ram_ptr(bios),
bootloader_run_addr, kernel_entry);
} else {
write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
bootloader_run_addr, kernel_entry);
}
if (kvm_enabled()) {
/* Write the bootloader code @ the end of RAM, 1MB reserved */
write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
ram_low_size,
bootloader_run_addr, kernel_entry);
}
} else {
target_long bios_size = FLASH_SIZE;
/* The flash region isn't executable from a KVM guest */
if (kvm_enabled()) {
error_report("KVM enabled but no -kernel argument was specified. "
"Booting from flash is not supported with KVM.");
exit(1);
}
/* Load firmware from flash. */
if (!dinfo) {
/* Load a BIOS image. */
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
machine->firmware ?: BIOS_FILENAME);
if (filename) {
bios_size = load_image_targphys(filename, FLASH_ADDRESS,
BIOS_SIZE);
g_free(filename);
} else {
bios_size = -1;
}
if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
machine->firmware && !qtest_enabled()) {
error_report("Could not load MIPS bios '%s'", machine->firmware);
exit(1);
}
}
/*
* In little endian mode the 32bit words in the bios are swapped,
* a neat trick which allows bi-endian firmware.
*/
#if !TARGET_BIG_ENDIAN
{
uint32_t *end, *addr;
const size_t swapsize = MIN(bios_size, 0x3e0000);
addr = rom_ptr(FLASH_ADDRESS, swapsize);
if (!addr) {
addr = memory_region_get_ram_ptr(bios);
}
end = (void *)addr + swapsize;
while (addr < end) {
bswap32s(addr);
addr++;
}
}
#endif
}
/*
* Map the BIOS at a 2nd physical location, as on the real board.
* Copy it so that we can patch in the MIPS revision, which cannot be
* handled by an overlapping region as the resulting ROM code subpage
* regions are not executable.
*/
memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
&error_fatal);
if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
FLASH_ADDRESS, BIOS_SIZE)) {
memcpy(memory_region_get_ram_ptr(bios_copy),
memory_region_get_ram_ptr(bios), BIOS_SIZE);
}
memory_region_set_readonly(bios_copy, true);
memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
/* Board ID = 0x420 (Malta Board with CoreLV) */
stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
/* Northbridge */
dev = sysbus_create_simple("gt64120", -1, NULL);
pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
/*
* The whole address space decoded by the GT-64120A doesn't generate
* exception when accessing invalid memory. Create an empty slot to
* emulate this feature.
*/
empty_slot_init("GT64120", 0, 0x20000000);
/* Southbridge */
piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true,
TYPE_PIIX4_PCI_DEVICE);
isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
pci_ide_create_devs(PCI_DEVICE(dev));
/* Interrupt controller */
qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
/* generate SPD EEPROM data */
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
g_free(smbus_eeprom_buf);
/* Super I/O: SMS FDC37M817 */
isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
/* Network card */
network_init(pci_bus);
/* Optional PCI video card */
pci_vga_init(pci_bus);
}
static void mips_malta_instance_init(Object *obj)
{
MaltaState *s = MIPS_MALTA(obj);
s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
}
static const TypeInfo mips_malta_device = {
.name = TYPE_MIPS_MALTA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MaltaState),
.instance_init = mips_malta_instance_init,
};
GlobalProperty malta_compat[] = {
{ "PIIX4_PM", "memory-hotplug-support", "off" },
{ "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
{ "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
{ "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
};
const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
static void mips_malta_machine_init(MachineClass *mc)
{
mc->desc = "MIPS Malta Core LV";
mc->init = mips_malta_init;
mc->block_default_type = IF_IDE;
mc->max_cpus = 16;
mc->is_default = true;
#ifdef TARGET_MIPS64
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
#else
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
#endif
mc->default_ram_id = "mips_malta.ram";
compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
}
DEFINE_MACHINE("malta", mips_malta_machine_init)
static void mips_malta_register_types(void)
{
type_register_static(&mips_malta_device);
}
type_init(mips_malta_register_types)