qemu/hw/dma/xlnx-zdma.c

848 lines
28 KiB
C
Raw Normal View History

/*
* QEMU model of the ZynqMP generic DMA
*
* Copyright (c) 2014 Xilinx Inc.
* Copyright (c) 2018 FEIMTECH AB
*
* Written by Edgar E. Iglesias <edgar.iglesias@xilinx.com>,
* Francisco Iglesias <francisco.iglesias@feimtech.se>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/dma/xlnx-zdma.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#ifndef XLNX_ZDMA_ERR_DEBUG
#define XLNX_ZDMA_ERR_DEBUG 0
#endif
REG32(ZDMA_ERR_CTRL, 0x0)
FIELD(ZDMA_ERR_CTRL, APB_ERR_RES, 0, 1)
REG32(ZDMA_CH_ISR, 0x100)
FIELD(ZDMA_CH_ISR, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_ISR, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_ISR, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_ISR, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_ISR, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_ISR, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_ISR, INV_APB, 0, 1)
REG32(ZDMA_CH_IMR, 0x104)
FIELD(ZDMA_CH_IMR, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IMR, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IMR, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IMR, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IMR, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IMR, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IMR, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IMR, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IMR, INV_APB, 0, 1)
REG32(ZDMA_CH_IEN, 0x108)
FIELD(ZDMA_CH_IEN, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IEN, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IEN, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IEN, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IEN, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IEN, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IEN, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IEN, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IEN, INV_APB, 0, 1)
REG32(ZDMA_CH_IDS, 0x10c)
FIELD(ZDMA_CH_IDS, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IDS, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IDS, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IDS, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IDS, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IDS, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IDS, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IDS, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IDS, INV_APB, 0, 1)
REG32(ZDMA_CH_CTRL0, 0x110)
FIELD(ZDMA_CH_CTRL0, OVR_FETCH, 7, 1)
FIELD(ZDMA_CH_CTRL0, POINT_TYPE, 6, 1)
FIELD(ZDMA_CH_CTRL0, MODE, 4, 2)
FIELD(ZDMA_CH_CTRL0, RATE_CTRL, 3, 1)
FIELD(ZDMA_CH_CTRL0, CONT_ADDR, 2, 1)
FIELD(ZDMA_CH_CTRL0, CONT, 1, 1)
REG32(ZDMA_CH_CTRL1, 0x114)
FIELD(ZDMA_CH_CTRL1, DST_ISSUE, 5, 5)
FIELD(ZDMA_CH_CTRL1, SRC_ISSUE, 0, 5)
REG32(ZDMA_CH_FCI, 0x118)
FIELD(ZDMA_CH_FCI, PROG_CELL_CNT, 2, 2)
FIELD(ZDMA_CH_FCI, SIDE, 1, 1)
FIELD(ZDMA_CH_FCI, EN, 0, 1)
REG32(ZDMA_CH_STATUS, 0x11c)
FIELD(ZDMA_CH_STATUS, STATE, 0, 2)
REG32(ZDMA_CH_DATA_ATTR, 0x120)
FIELD(ZDMA_CH_DATA_ATTR, ARBURST, 26, 2)
FIELD(ZDMA_CH_DATA_ATTR, ARCACHE, 22, 4)
FIELD(ZDMA_CH_DATA_ATTR, ARQOS, 18, 4)
FIELD(ZDMA_CH_DATA_ATTR, ARLEN, 14, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWBURST, 12, 2)
FIELD(ZDMA_CH_DATA_ATTR, AWCACHE, 8, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWQOS, 4, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWLEN, 0, 4)
REG32(ZDMA_CH_DSCR_ATTR, 0x124)
FIELD(ZDMA_CH_DSCR_ATTR, AXCOHRNT, 8, 1)
FIELD(ZDMA_CH_DSCR_ATTR, AXCACHE, 4, 4)
FIELD(ZDMA_CH_DSCR_ATTR, AXQOS, 0, 4)
REG32(ZDMA_CH_SRC_DSCR_WORD0, 0x128)
REG32(ZDMA_CH_SRC_DSCR_WORD1, 0x12c)
FIELD(ZDMA_CH_SRC_DSCR_WORD1, MSB, 0, 17)
REG32(ZDMA_CH_SRC_DSCR_WORD2, 0x130)
FIELD(ZDMA_CH_SRC_DSCR_WORD2, SIZE, 0, 30)
REG32(ZDMA_CH_SRC_DSCR_WORD3, 0x134)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, CMD, 3, 2)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, INTR, 2, 1)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, TYPE, 1, 1)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, COHRNT, 0, 1)
REG32(ZDMA_CH_DST_DSCR_WORD0, 0x138)
REG32(ZDMA_CH_DST_DSCR_WORD1, 0x13c)
FIELD(ZDMA_CH_DST_DSCR_WORD1, MSB, 0, 17)
REG32(ZDMA_CH_DST_DSCR_WORD2, 0x140)
FIELD(ZDMA_CH_DST_DSCR_WORD2, SIZE, 0, 30)
REG32(ZDMA_CH_DST_DSCR_WORD3, 0x144)
FIELD(ZDMA_CH_DST_DSCR_WORD3, INTR, 2, 1)
FIELD(ZDMA_CH_DST_DSCR_WORD3, TYPE, 1, 1)
FIELD(ZDMA_CH_DST_DSCR_WORD3, COHRNT, 0, 1)
REG32(ZDMA_CH_WR_ONLY_WORD0, 0x148)
REG32(ZDMA_CH_WR_ONLY_WORD1, 0x14c)
REG32(ZDMA_CH_WR_ONLY_WORD2, 0x150)
REG32(ZDMA_CH_WR_ONLY_WORD3, 0x154)
REG32(ZDMA_CH_SRC_START_LSB, 0x158)
REG32(ZDMA_CH_SRC_START_MSB, 0x15c)
FIELD(ZDMA_CH_SRC_START_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_START_LSB, 0x160)
REG32(ZDMA_CH_DST_START_MSB, 0x164)
FIELD(ZDMA_CH_DST_START_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_RATE_CTRL, 0x18c)
FIELD(ZDMA_CH_RATE_CTRL, CNT, 0, 12)
REG32(ZDMA_CH_SRC_CUR_PYLD_LSB, 0x168)
REG32(ZDMA_CH_SRC_CUR_PYLD_MSB, 0x16c)
FIELD(ZDMA_CH_SRC_CUR_PYLD_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_CUR_PYLD_LSB, 0x170)
REG32(ZDMA_CH_DST_CUR_PYLD_MSB, 0x174)
FIELD(ZDMA_CH_DST_CUR_PYLD_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_SRC_CUR_DSCR_LSB, 0x178)
REG32(ZDMA_CH_SRC_CUR_DSCR_MSB, 0x17c)
FIELD(ZDMA_CH_SRC_CUR_DSCR_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_CUR_DSCR_LSB, 0x180)
REG32(ZDMA_CH_DST_CUR_DSCR_MSB, 0x184)
FIELD(ZDMA_CH_DST_CUR_DSCR_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_TOTAL_BYTE, 0x188)
REG32(ZDMA_CH_RATE_CNTL, 0x18c)
FIELD(ZDMA_CH_RATE_CNTL, CNT, 0, 12)
REG32(ZDMA_CH_IRQ_SRC_ACCT, 0x190)
FIELD(ZDMA_CH_IRQ_SRC_ACCT, CNT, 0, 8)
REG32(ZDMA_CH_IRQ_DST_ACCT, 0x194)
FIELD(ZDMA_CH_IRQ_DST_ACCT, CNT, 0, 8)
REG32(ZDMA_CH_DBG0, 0x198)
FIELD(ZDMA_CH_DBG0, CMN_BUF_FREE, 0, 9)
REG32(ZDMA_CH_DBG1, 0x19c)
FIELD(ZDMA_CH_DBG1, CMN_BUF_OCC, 0, 9)
REG32(ZDMA_CH_CTRL2, 0x200)
FIELD(ZDMA_CH_CTRL2, EN, 0, 1)
enum {
PT_REG = 0,
PT_MEM = 1,
};
enum {
CMD_HALT = 1,
CMD_STOP = 2,
};
enum {
RW_MODE_RW = 0,
RW_MODE_WO = 1,
RW_MODE_RO = 2,
};
enum {
DTYPE_LINEAR = 0,
DTYPE_LINKED = 1,
};
enum {
AXI_BURST_FIXED = 0,
AXI_BURST_INCR = 1,
};
static void zdma_ch_imr_update_irq(XlnxZDMA *s)
{
bool pending;
pending = s->regs[R_ZDMA_CH_ISR] & ~s->regs[R_ZDMA_CH_IMR];
qemu_set_irq(s->irq_zdma_ch_imr, pending);
}
static void zdma_ch_isr_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_ch_ien_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
uint32_t val = val64;
s->regs[R_ZDMA_CH_IMR] &= ~val;
zdma_ch_imr_update_irq(s);
return 0;
}
static uint64_t zdma_ch_ids_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
uint32_t val = val64;
s->regs[R_ZDMA_CH_IMR] |= val;
zdma_ch_imr_update_irq(s);
return 0;
}
static void zdma_set_state(XlnxZDMA *s, XlnxZDMAState state)
{
s->state = state;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, state);
/* Signal error if we have an error condition. */
if (s->error) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, 3);
}
}
static void zdma_src_done(XlnxZDMA *s)
{
unsigned int cnt;
cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT);
cnt++;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT, cnt);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, SRC_DSCR_DONE, true);
/* Did we overflow? */
if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, true);
}
zdma_ch_imr_update_irq(s);
}
static void zdma_dst_done(XlnxZDMA *s)
{
unsigned int cnt;
cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT);
cnt++;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT, cnt);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DST_DSCR_DONE, true);
/* Did we overflow? */
if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, true);
}
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_get_regaddr64(XlnxZDMA *s, unsigned int basereg)
{
uint64_t addr;
addr = s->regs[basereg + 1];
addr <<= 32;
addr |= s->regs[basereg];
return addr;
}
static void zdma_put_regaddr64(XlnxZDMA *s, unsigned int basereg, uint64_t addr)
{
s->regs[basereg] = addr;
s->regs[basereg + 1] = addr >> 32;
}
static void zdma_load_descriptor_reg(XlnxZDMA *s, unsigned int reg,
XlnxZDMADescr *descr)
{
descr->addr = zdma_get_regaddr64(s, reg);
descr->size = s->regs[reg + 2];
descr->attr = s->regs[reg + 3];
}
static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr,
XlnxZDMADescr *descr)
{
/* ZDMA descriptors must be aligned to their own size. */
if (addr % sizeof(XlnxZDMADescr)) {
qemu_log_mask(LOG_GUEST_ERROR,
"zdma: unaligned descriptor at %" PRIx64,
addr);
memset(descr, 0x0, sizeof(XlnxZDMADescr));
s->error = true;
return false;
}
descr->addr = address_space_ldq_le(s->dma_as, addr, s->attr, NULL);
descr->size = address_space_ldl_le(s->dma_as, addr + 8, s->attr, NULL);
descr->attr = address_space_ldl_le(s->dma_as, addr + 12, s->attr, NULL);
return true;
}
static void zdma_load_src_descriptor(XlnxZDMA *s)
{
uint64_t src_addr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
if (ptype == PT_REG) {
zdma_load_descriptor_reg(s, R_ZDMA_CH_SRC_DSCR_WORD0, &s->dsc_src);
return;
}
src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB);
if (!zdma_load_descriptor(s, src_addr, &s->dsc_src)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_SRC_DSCR, true);
}
}
static void zdma_update_descr_addr(XlnxZDMA *s, bool type,
unsigned int basereg)
{
uint64_t addr, next;
if (type == DTYPE_LINEAR) {
addr = zdma_get_regaddr64(s, basereg);
next = addr + sizeof(s->dsc_dst);
} else {
addr = zdma_get_regaddr64(s, basereg);
addr += sizeof(s->dsc_dst);
next = address_space_ldq_le(s->dma_as, addr, s->attr, NULL);
}
zdma_put_regaddr64(s, basereg, next);
}
static void zdma_load_dst_descriptor(XlnxZDMA *s)
{
uint64_t dst_addr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
bool dst_type;
if (ptype == PT_REG) {
zdma_load_descriptor_reg(s, R_ZDMA_CH_DST_DSCR_WORD0, &s->dsc_dst);
return;
}
dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB);
if (!zdma_load_descriptor(s, dst_addr, &s->dsc_dst)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_DST_DSCR, true);
}
/* Advance the descriptor pointer. */
dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, TYPE);
zdma_update_descr_addr(s, dst_type, R_ZDMA_CH_DST_CUR_DSCR_LSB);
}
static void zdma_write_dst(XlnxZDMA *s, uint8_t *buf, uint32_t len)
{
uint32_t dst_size, dlen;
bool dst_intr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE);
unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR,
AWBURST);
/* FIXED burst types are only supported in simple dma mode. */
if (ptype != PT_REG) {
burst_type = AXI_BURST_INCR;
}
while (len) {
dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
if (dst_size == 0 && ptype == PT_MEM) {
zdma_load_dst_descriptor(s);
dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
}
/* Match what hardware does by ignoring the dst_size and only using
* the src size for Simple register mode. */
if (ptype == PT_REG && rw_mode != RW_MODE_WO) {
dst_size = len;
}
dst_intr = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3,
INTR);
dlen = len > dst_size ? dst_size : len;
if (burst_type == AXI_BURST_FIXED) {
if (dlen > (s->cfg.bus_width / 8)) {
dlen = s->cfg.bus_width / 8;
}
}
Avoid address_space_rw() with a constant is_write argument The address_space_rw() function allows either reads or writes depending on the is_write argument passed to it; this is useful when the direction of the access is determined programmatically (as for instance when handling the KVM_EXIT_MMIO exit reason). Under the hood it just calls either address_space_write() or address_space_read_full(). We also use it a lot with a constant is_write argument, though, which has two issues: * when reading "address_space_rw(..., 1)" this is less immediately clear to the reader as being a write than "address_space_write(...)" * calling address_space_rw() bypasses the optimization in address_space_read() that fast-paths reads of a fixed length This commit was produced with the included Coccinelle script scripts/coccinelle/exec_rw_const.cocci. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Message-Id: <20200218112457.22712-1-peter.maydell@linaro.org> [PMD: Update macvm_set_cr0() reported by Laurent Vivier] Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-02-18 14:24:57 +03:00
address_space_write(s->dma_as, s->dsc_dst.addr, s->attr, buf, dlen);
if (burst_type == AXI_BURST_INCR) {
s->dsc_dst.addr += dlen;
}
dst_size -= dlen;
buf += dlen;
len -= dlen;
if (dst_size == 0 && dst_intr) {
zdma_dst_done(s);
}
/* Write back to buffered descriptor. */
s->dsc_dst.words[2] = FIELD_DP32(s->dsc_dst.words[2],
ZDMA_CH_DST_DSCR_WORD2,
SIZE,
dst_size);
}
}
static void zdma_process_descr(XlnxZDMA *s)
{
uint64_t src_addr;
uint32_t src_size, len;
unsigned int src_cmd;
bool src_intr, src_type;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE);
unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR,
ARBURST);
src_addr = s->dsc_src.addr;
src_size = FIELD_EX32(s->dsc_src.words[2], ZDMA_CH_SRC_DSCR_WORD2, SIZE);
src_cmd = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, CMD);
src_type = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, TYPE);
src_intr = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, INTR);
/* FIXED burst types and non-rw modes are only supported in
* simple dma mode.
*/
if (ptype != PT_REG) {
if (rw_mode != RW_MODE_RW) {
qemu_log_mask(LOG_GUEST_ERROR,
"zDMA: rw-mode=%d but not simple DMA mode.\n",
rw_mode);
}
if (burst_type != AXI_BURST_INCR) {
qemu_log_mask(LOG_GUEST_ERROR,
"zDMA: burst_type=%d but not simple DMA mode.\n",
burst_type);
}
burst_type = AXI_BURST_INCR;
rw_mode = RW_MODE_RW;
}
if (rw_mode == RW_MODE_WO) {
/* In Simple DMA Write-Only, we need to push DST size bytes
* regardless of what SRC size is set to. */
src_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
memcpy(s->buf, &s->regs[R_ZDMA_CH_WR_ONLY_WORD0], s->cfg.bus_width / 8);
}
while (src_size) {
len = src_size > ARRAY_SIZE(s->buf) ? ARRAY_SIZE(s->buf) : src_size;
if (burst_type == AXI_BURST_FIXED) {
if (len > (s->cfg.bus_width / 8)) {
len = s->cfg.bus_width / 8;
}
}
if (rw_mode == RW_MODE_WO) {
if (len > s->cfg.bus_width / 8) {
len = s->cfg.bus_width / 8;
}
} else {
Avoid address_space_rw() with a constant is_write argument The address_space_rw() function allows either reads or writes depending on the is_write argument passed to it; this is useful when the direction of the access is determined programmatically (as for instance when handling the KVM_EXIT_MMIO exit reason). Under the hood it just calls either address_space_write() or address_space_read_full(). We also use it a lot with a constant is_write argument, though, which has two issues: * when reading "address_space_rw(..., 1)" this is less immediately clear to the reader as being a write than "address_space_write(...)" * calling address_space_rw() bypasses the optimization in address_space_read() that fast-paths reads of a fixed length This commit was produced with the included Coccinelle script scripts/coccinelle/exec_rw_const.cocci. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Message-Id: <20200218112457.22712-1-peter.maydell@linaro.org> [PMD: Update macvm_set_cr0() reported by Laurent Vivier] Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-02-18 14:24:57 +03:00
address_space_read(s->dma_as, src_addr, s->attr, s->buf, len);
if (burst_type == AXI_BURST_INCR) {
src_addr += len;
}
}
if (rw_mode != RW_MODE_RO) {
zdma_write_dst(s, s->buf, len);
}
s->regs[R_ZDMA_CH_TOTAL_BYTE] += len;
src_size -= len;
}
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, true);
if (src_intr) {
zdma_src_done(s);
}
if (ptype == PT_REG || src_cmd == CMD_STOP) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL2, EN, 0);
zdma_set_state(s, DISABLED);
}
if (src_cmd == CMD_HALT) {
zdma_set_state(s, PAUSED);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_PAUSE, 1);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, false);
zdma_ch_imr_update_irq(s);
return;
}
zdma_update_descr_addr(s, src_type, R_ZDMA_CH_SRC_CUR_DSCR_LSB);
}
static void zdma_run(XlnxZDMA *s)
{
while (s->state == ENABLED && !s->error) {
zdma_load_src_descriptor(s);
if (s->error) {
zdma_set_state(s, DISABLED);
} else {
zdma_process_descr(s);
}
}
zdma_ch_imr_update_irq(s);
}
static void zdma_update_descr_addr_from_start(XlnxZDMA *s)
{
uint64_t src_addr, dst_addr;
src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_START_LSB);
zdma_put_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB, src_addr);
dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_START_LSB);
zdma_put_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB, dst_addr);
zdma_load_dst_descriptor(s);
}
static void zdma_ch_ctrlx_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL2, EN)) {
s->error = false;
if (s->state == PAUSED &&
ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) {
if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT_ADDR) == 1) {
zdma_update_descr_addr_from_start(s);
} else {
bool src_type = FIELD_EX32(s->dsc_src.words[3],
ZDMA_CH_SRC_DSCR_WORD3, TYPE);
zdma_update_descr_addr(s, src_type,
R_ZDMA_CH_SRC_CUR_DSCR_LSB);
}
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL0, CONT, false);
zdma_set_state(s, ENABLED);
} else if (s->state == DISABLED) {
zdma_update_descr_addr_from_start(s);
zdma_set_state(s, ENABLED);
}
} else {
/* Leave Paused state? */
if (s->state == PAUSED &&
ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) {
zdma_set_state(s, DISABLED);
}
}
zdma_run(s);
}
static RegisterAccessInfo zdma_regs_info[] = {
{ .name = "ZDMA_ERR_CTRL", .addr = A_ZDMA_ERR_CTRL,
.rsvd = 0xfffffffe,
},{ .name = "ZDMA_CH_ISR", .addr = A_ZDMA_CH_ISR,
.rsvd = 0xfffff000,
.w1c = 0xfff,
.post_write = zdma_ch_isr_postw,
},{ .name = "ZDMA_CH_IMR", .addr = A_ZDMA_CH_IMR,
.reset = 0xfff,
.rsvd = 0xfffff000,
.ro = 0xfff,
},{ .name = "ZDMA_CH_IEN", .addr = A_ZDMA_CH_IEN,
.rsvd = 0xfffff000,
.pre_write = zdma_ch_ien_prew,
},{ .name = "ZDMA_CH_IDS", .addr = A_ZDMA_CH_IDS,
.rsvd = 0xfffff000,
.pre_write = zdma_ch_ids_prew,
},{ .name = "ZDMA_CH_CTRL0", .addr = A_ZDMA_CH_CTRL0,
.reset = 0x80,
.rsvd = 0xffffff01,
.post_write = zdma_ch_ctrlx_postw,
},{ .name = "ZDMA_CH_CTRL1", .addr = A_ZDMA_CH_CTRL1,
.reset = 0x3ff,
.rsvd = 0xfffffc00,
},{ .name = "ZDMA_CH_FCI", .addr = A_ZDMA_CH_FCI,
.rsvd = 0xffffffc0,
},{ .name = "ZDMA_CH_STATUS", .addr = A_ZDMA_CH_STATUS,
.rsvd = 0xfffffffc,
.ro = 0x3,
},{ .name = "ZDMA_CH_DATA_ATTR", .addr = A_ZDMA_CH_DATA_ATTR,
.reset = 0x483d20f,
.rsvd = 0xf0000000,
},{ .name = "ZDMA_CH_DSCR_ATTR", .addr = A_ZDMA_CH_DSCR_ATTR,
.rsvd = 0xfffffe00,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD0", .addr = A_ZDMA_CH_SRC_DSCR_WORD0,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD1", .addr = A_ZDMA_CH_SRC_DSCR_WORD1,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD2", .addr = A_ZDMA_CH_SRC_DSCR_WORD2,
.rsvd = 0xc0000000,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD3", .addr = A_ZDMA_CH_SRC_DSCR_WORD3,
.rsvd = 0xffffffe0,
},{ .name = "ZDMA_CH_DST_DSCR_WORD0", .addr = A_ZDMA_CH_DST_DSCR_WORD0,
},{ .name = "ZDMA_CH_DST_DSCR_WORD1", .addr = A_ZDMA_CH_DST_DSCR_WORD1,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_DST_DSCR_WORD2", .addr = A_ZDMA_CH_DST_DSCR_WORD2,
.rsvd = 0xc0000000,
},{ .name = "ZDMA_CH_DST_DSCR_WORD3", .addr = A_ZDMA_CH_DST_DSCR_WORD3,
.rsvd = 0xfffffffa,
},{ .name = "ZDMA_CH_WR_ONLY_WORD0", .addr = A_ZDMA_CH_WR_ONLY_WORD0,
},{ .name = "ZDMA_CH_WR_ONLY_WORD1", .addr = A_ZDMA_CH_WR_ONLY_WORD1,
},{ .name = "ZDMA_CH_WR_ONLY_WORD2", .addr = A_ZDMA_CH_WR_ONLY_WORD2,
},{ .name = "ZDMA_CH_WR_ONLY_WORD3", .addr = A_ZDMA_CH_WR_ONLY_WORD3,
},{ .name = "ZDMA_CH_SRC_START_LSB", .addr = A_ZDMA_CH_SRC_START_LSB,
},{ .name = "ZDMA_CH_SRC_START_MSB", .addr = A_ZDMA_CH_SRC_START_MSB,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_DST_START_LSB", .addr = A_ZDMA_CH_DST_START_LSB,
},{ .name = "ZDMA_CH_DST_START_MSB", .addr = A_ZDMA_CH_DST_START_MSB,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_SRC_CUR_PYLD_LSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_SRC_CUR_PYLD_MSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_DST_CUR_PYLD_LSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_DST_CUR_PYLD_MSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_SRC_CUR_DSCR_LSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_SRC_CUR_DSCR_MSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_DST_CUR_DSCR_LSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_DST_CUR_DSCR_MSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_TOTAL_BYTE", .addr = A_ZDMA_CH_TOTAL_BYTE,
.w1c = 0xffffffff,
},{ .name = "ZDMA_CH_RATE_CNTL", .addr = A_ZDMA_CH_RATE_CNTL,
.rsvd = 0xfffff000,
},{ .name = "ZDMA_CH_IRQ_SRC_ACCT", .addr = A_ZDMA_CH_IRQ_SRC_ACCT,
.rsvd = 0xffffff00,
.ro = 0xff,
.cor = 0xff,
},{ .name = "ZDMA_CH_IRQ_DST_ACCT", .addr = A_ZDMA_CH_IRQ_DST_ACCT,
.rsvd = 0xffffff00,
.ro = 0xff,
.cor = 0xff,
},{ .name = "ZDMA_CH_DBG0", .addr = A_ZDMA_CH_DBG0,
.rsvd = 0xfffffe00,
.ro = 0x1ff,
/*
* There's SW out there that will check the debug regs for free space.
* Claim that we always have 0x100 free.
*/
.reset = 0x100
},{ .name = "ZDMA_CH_DBG1", .addr = A_ZDMA_CH_DBG1,
.rsvd = 0xfffffe00,
.ro = 0x1ff,
},{ .name = "ZDMA_CH_CTRL2", .addr = A_ZDMA_CH_CTRL2,
.rsvd = 0xfffffffe,
.post_write = zdma_ch_ctrlx_postw,
}
};
static void zdma_reset(DeviceState *dev)
{
XlnxZDMA *s = XLNX_ZDMA(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
register_reset(&s->regs_info[i]);
}
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_read(void *opaque, hwaddr addr, unsigned size)
{
XlnxZDMA *s = XLNX_ZDMA(opaque);
RegisterInfo *r = &s->regs_info[addr / 4];
if (!r->data) {
char *path = object_get_canonical_path(OBJECT(s));
qemu_log("%s: Decode error: read from %" HWADDR_PRIx "\n",
path,
addr);
g_free(path);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true);
zdma_ch_imr_update_irq(s);
return 0;
}
return register_read(r, ~0, NULL, false);
}
static void zdma_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
XlnxZDMA *s = XLNX_ZDMA(opaque);
RegisterInfo *r = &s->regs_info[addr / 4];
if (!r->data) {
char *path = object_get_canonical_path(OBJECT(s));
qemu_log("%s: Decode error: write to %" HWADDR_PRIx "=%" PRIx64 "\n",
path,
addr, value);
g_free(path);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true);
zdma_ch_imr_update_irq(s);
return;
}
register_write(r, value, ~0, NULL, false);
}
static const MemoryRegionOps zdma_ops = {
.read = zdma_read,
.write = zdma_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void zdma_realize(DeviceState *dev, Error **errp)
{
XlnxZDMA *s = XLNX_ZDMA(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(zdma_regs_info); ++i) {
RegisterInfo *r = &s->regs_info[zdma_regs_info[i].addr / 4];
*r = (RegisterInfo) {
.data = (uint8_t *)&s->regs[
zdma_regs_info[i].addr / 4],
.data_size = sizeof(uint32_t),
.access = &zdma_regs_info[i],
.opaque = s,
};
}
if (s->dma_mr) {
s->dma_as = g_malloc0(sizeof(AddressSpace));
address_space_init(s->dma_as, s->dma_mr, NULL);
} else {
s->dma_as = &address_space_memory;
}
s->attr = MEMTXATTRS_UNSPECIFIED;
}
static void zdma_init(Object *obj)
{
XlnxZDMA *s = XLNX_ZDMA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &zdma_ops, s,
TYPE_XLNX_ZDMA, ZDMA_R_MAX * 4);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq_zdma_ch_imr);
object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
(Object **)&s->dma_mr,
qdev_prop_allow_set_link_before_realize,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 18:29:22 +03:00
OBJ_PROP_LINK_STRONG);
}
static const VMStateDescription vmstate_zdma = {
.name = TYPE_XLNX_ZDMA,
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, XlnxZDMA, ZDMA_R_MAX),
VMSTATE_UINT32(state, XlnxZDMA),
VMSTATE_UINT32_ARRAY(dsc_src.words, XlnxZDMA, 4),
VMSTATE_UINT32_ARRAY(dsc_dst.words, XlnxZDMA, 4),
VMSTATE_END_OF_LIST(),
}
};
static Property zdma_props[] = {
DEFINE_PROP_UINT32("bus-width", XlnxZDMA, cfg.bus_width, 64),
DEFINE_PROP_END_OF_LIST(),
};
static void zdma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = zdma_reset;
dc->realize = zdma_realize;
device_class_set_props(dc, zdma_props);
dc->vmsd = &vmstate_zdma;
}
static const TypeInfo zdma_info = {
.name = TYPE_XLNX_ZDMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxZDMA),
.class_init = zdma_class_init,
.instance_init = zdma_init,
};
static void zdma_register_types(void)
{
type_register_static(&zdma_info);
}
type_init(zdma_register_types)