2013-12-17 23:42:30 +04:00
|
|
|
/*
|
|
|
|
* ARM implementation of KVM hooks, 64 bit specific code
|
|
|
|
*
|
|
|
|
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
#include "config-host.h"
|
2013-12-17 23:42:30 +04:00
|
|
|
#include "qemu-common.h"
|
|
|
|
#include "qemu/timer.h"
|
|
|
|
#include "sysemu/sysemu.h"
|
|
|
|
#include "sysemu/kvm.h"
|
|
|
|
#include "kvm_arm.h"
|
|
|
|
#include "cpu.h"
|
2014-08-04 17:41:54 +04:00
|
|
|
#include "internals.h"
|
2013-12-17 23:42:30 +04:00
|
|
|
#include "hw/arm/arm.h"
|
|
|
|
|
|
|
|
static inline void set_feature(uint64_t *features, int feature)
|
|
|
|
{
|
|
|
|
*features |= 1ULL << feature;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
|
|
|
|
{
|
|
|
|
/* Identify the feature bits corresponding to the host CPU, and
|
|
|
|
* fill out the ARMHostCPUClass fields accordingly. To do this
|
|
|
|
* we have to create a scratch VM, create a single CPU inside it,
|
|
|
|
* and then query that CPU for the relevant ID registers.
|
|
|
|
* For AArch64 we currently don't care about ID registers at
|
|
|
|
* all; we just want to know the CPU type.
|
|
|
|
*/
|
|
|
|
int fdarray[3];
|
|
|
|
uint64_t features = 0;
|
|
|
|
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
|
|
|
|
* we know these will only support creating one kind of guest CPU,
|
|
|
|
* which is its preferred CPU type. Fortunately these old kernels
|
|
|
|
* support only a very limited number of CPUs.
|
|
|
|
*/
|
|
|
|
static const uint32_t cpus_to_try[] = {
|
|
|
|
KVM_ARM_TARGET_AEM_V8,
|
|
|
|
KVM_ARM_TARGET_FOUNDATION_V8,
|
|
|
|
KVM_ARM_TARGET_CORTEX_A57,
|
|
|
|
QEMU_KVM_ARM_TARGET_NONE
|
|
|
|
};
|
|
|
|
struct kvm_vcpu_init init;
|
|
|
|
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
ahcc->target = init.target;
|
|
|
|
ahcc->dtb_compatible = "arm,arm-v8";
|
|
|
|
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
|
|
|
|
/* We can assume any KVM supporting CPU is at least a v8
|
|
|
|
* with VFPv4+Neon; this in turn implies most of the other
|
|
|
|
* feature bits.
|
|
|
|
*/
|
|
|
|
set_feature(&features, ARM_FEATURE_V8);
|
|
|
|
set_feature(&features, ARM_FEATURE_VFP4);
|
|
|
|
set_feature(&features, ARM_FEATURE_NEON);
|
|
|
|
set_feature(&features, ARM_FEATURE_AARCH64);
|
|
|
|
|
|
|
|
ahcc->features = features;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-06-15 20:06:09 +03:00
|
|
|
#define ARM_MPIDR_HWID_BITMASK 0xFF00FFFFFFULL
|
|
|
|
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
|
|
{
|
|
|
|
int ret;
|
2015-06-15 20:06:09 +03:00
|
|
|
uint64_t mpidr;
|
2014-06-19 21:06:26 +04:00
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
2013-12-17 23:42:30 +04:00
|
|
|
|
|
|
|
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
|
2015-02-13 08:46:08 +03:00
|
|
|
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
|
2013-12-17 23:42:30 +04:00
|
|
|
fprintf(stderr, "KVM is not supported for this guest CPU type\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2014-06-19 21:06:26 +04:00
|
|
|
/* Determine init features for this CPU */
|
|
|
|
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
|
2013-12-17 23:42:30 +04:00
|
|
|
if (cpu->start_powered_off) {
|
2014-06-19 21:06:26 +04:00
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
|
|
|
|
}
|
2014-06-19 21:06:26 +04:00
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
|
2014-06-19 21:06:26 +04:00
|
|
|
cpu->psci_version = 2;
|
2014-06-19 21:06:26 +04:00
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
|
|
|
|
}
|
2015-02-13 08:46:08 +03:00
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
|
|
|
|
}
|
2014-06-19 21:06:26 +04:00
|
|
|
|
|
|
|
/* Do KVM_ARM_VCPU_INIT ioctl */
|
|
|
|
ret = kvm_arm_vcpu_init(cs);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
2013-12-17 23:42:30 +04:00
|
|
|
}
|
|
|
|
|
2015-06-15 20:06:09 +03:00
|
|
|
/*
|
|
|
|
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
|
|
|
|
* Currently KVM has its own idea about MPIDR assignment, so we
|
|
|
|
* override our defaults with what we get from KVM.
|
|
|
|
*/
|
|
|
|
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
cpu->mp_affinity = mpidr & ARM_MPIDR_HWID_BITMASK;
|
|
|
|
|
2014-12-11 15:07:53 +03:00
|
|
|
return kvm_arm_init_cpreg_list(cpu);
|
|
|
|
}
|
2013-12-17 23:42:30 +04:00
|
|
|
|
2014-12-11 15:07:53 +03:00
|
|
|
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
|
|
|
{
|
|
|
|
/* Return true if the regidx is a register we should synchronize
|
|
|
|
* via the cpreg_tuples array (ie is not a core reg we sync by
|
|
|
|
* hand in kvm_arch_get/put_registers())
|
|
|
|
*/
|
|
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
|
|
case KVM_REG_ARM_CORE:
|
|
|
|
return false;
|
|
|
|
default:
|
|
|
|
return true;
|
|
|
|
}
|
2013-12-17 23:42:30 +04:00
|
|
|
}
|
|
|
|
|
2015-07-21 13:18:45 +03:00
|
|
|
typedef struct CPRegStateLevel {
|
|
|
|
uint64_t regidx;
|
|
|
|
int level;
|
|
|
|
} CPRegStateLevel;
|
|
|
|
|
|
|
|
/* All system registers not listed in the following table are assumed to be
|
|
|
|
* of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
|
|
|
|
* often, you must add it to this table with a state of either
|
|
|
|
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
|
|
|
|
*/
|
|
|
|
static const CPRegStateLevel non_runtime_cpregs[] = {
|
|
|
|
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
|
|
|
|
};
|
|
|
|
|
|
|
|
int kvm_arm_cpreg_level(uint64_t regidx)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
|
|
|
|
const CPRegStateLevel *l = &non_runtime_cpregs[i];
|
|
|
|
if (l->regidx == regidx) {
|
|
|
|
return l->level;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return KVM_PUT_RUNTIME_STATE;
|
|
|
|
}
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
|
|
|
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
|
|
{
|
|
|
|
struct kvm_one_reg reg;
|
2015-04-01 19:57:30 +03:00
|
|
|
uint32_t fpr;
|
2013-12-17 23:42:30 +04:00
|
|
|
uint64_t val;
|
|
|
|
int i;
|
|
|
|
int ret;
|
2015-04-01 19:57:30 +03:00
|
|
|
unsigned int el;
|
2013-12-17 23:42:30 +04:00
|
|
|
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
2015-02-13 08:46:08 +03:00
|
|
|
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
|
|
|
|
* AArch64 registers before pushing them out to 64-bit KVM.
|
|
|
|
*/
|
|
|
|
if (!is_a64(env)) {
|
|
|
|
aarch64_sync_32_to_64(env);
|
|
|
|
}
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
for (i = 0; i < 31; i++) {
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.regs[i]);
|
|
|
|
reg.addr = (uintptr_t) &env->xregs[i];
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:43 +04:00
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
|
|
*/
|
2014-08-04 17:41:54 +04:00
|
|
|
aarch64_save_sp(env, 1);
|
2014-04-15 22:18:43 +04:00
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
reg.id = AARCH64_CORE_REG(regs.sp);
|
2014-04-15 22:18:43 +04:00
|
|
|
reg.addr = (uintptr_t) &env->sp_el[0];
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.id = AARCH64_CORE_REG(sp_el1);
|
|
|
|
reg.addr = (uintptr_t) &env->sp_el[1];
|
2013-12-17 23:42:30 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
|
2015-02-13 08:46:08 +03:00
|
|
|
if (is_a64(env)) {
|
|
|
|
val = pstate_read(env);
|
|
|
|
} else {
|
|
|
|
val = cpsr_read(env);
|
|
|
|
}
|
2013-12-17 23:42:30 +04:00
|
|
|
reg.id = AARCH64_CORE_REG(regs.pstate);
|
|
|
|
reg.addr = (uintptr_t) &val;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.pc);
|
|
|
|
reg.addr = (uintptr_t) &env->pc;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:42 +04:00
|
|
|
reg.id = AARCH64_CORE_REG(elr_el1);
|
2014-05-27 20:09:51 +04:00
|
|
|
reg.addr = (uintptr_t) &env->elr_el[1];
|
2014-04-15 22:18:42 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
/* Saved Program State Registers
|
|
|
|
*
|
|
|
|
* Before we restore from the banked_spsr[] array we need to
|
|
|
|
* ensure that any modifications to env->spsr are correctly
|
|
|
|
* reflected in the banks.
|
|
|
|
*/
|
|
|
|
el = arm_current_el(env);
|
|
|
|
if (el > 0 && !is_a64(env)) {
|
|
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* KVM 0-4 map to QEMU banks 1-5 */
|
2014-04-15 22:18:43 +04:00
|
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
|
|
reg.id = AARCH64_CORE_REG(spsr[i]);
|
2015-04-01 19:57:30 +03:00
|
|
|
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
|
2014-04-15 22:18:43 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
/* Advanced SIMD and FP registers
|
|
|
|
* We map Qn = regs[2n+1]:regs[2n]
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
int rd = i << 1;
|
|
|
|
uint64_t fp_val[2];
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
|
|
fp_val[0] = env->vfp.regs[rd + 1];
|
|
|
|
fp_val[1] = env->vfp.regs[rd];
|
|
|
|
#else
|
|
|
|
fp_val[1] = env->vfp.regs[rd + 1];
|
|
|
|
fp_val[0] = env->vfp.regs[rd];
|
|
|
|
#endif
|
|
|
|
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
|
|
|
|
reg.addr = (uintptr_t)(&fp_val);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
|
|
fpr = vfp_get_fpsr(env);
|
|
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpr = vfp_get_fpcr(env);
|
|
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-07-21 13:18:45 +03:00
|
|
|
if (!write_list_to_kvmstate(cpu, level)) {
|
2015-02-05 16:37:25 +03:00
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
kvm_arm_sync_mpstate_to_kvm(cpu);
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
|
|
{
|
|
|
|
struct kvm_one_reg reg;
|
|
|
|
uint64_t val;
|
2015-04-01 19:57:30 +03:00
|
|
|
uint32_t fpr;
|
2015-04-01 19:57:30 +03:00
|
|
|
unsigned int el;
|
2013-12-17 23:42:30 +04:00
|
|
|
int i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.regs[i]);
|
|
|
|
reg.addr = (uintptr_t) &env->xregs[i];
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.sp);
|
2014-04-15 22:18:43 +04:00
|
|
|
reg.addr = (uintptr_t) &env->sp_el[0];
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.id = AARCH64_CORE_REG(sp_el1);
|
|
|
|
reg.addr = (uintptr_t) &env->sp_el[1];
|
2013-12-17 23:42:30 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.pstate);
|
|
|
|
reg.addr = (uintptr_t) &val;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
2015-02-13 08:46:08 +03:00
|
|
|
|
|
|
|
env->aarch64 = ((val & PSTATE_nRW) == 0);
|
|
|
|
if (is_a64(env)) {
|
|
|
|
pstate_write(env, val);
|
|
|
|
} else {
|
|
|
|
env->uncached_cpsr = val & CPSR_M;
|
|
|
|
cpsr_write(env, val, 0xffffffff);
|
|
|
|
}
|
2013-12-17 23:42:30 +04:00
|
|
|
|
2014-04-15 22:18:43 +04:00
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
|
|
*/
|
2014-08-04 17:41:54 +04:00
|
|
|
aarch64_restore_sp(env, 1);
|
2014-04-15 22:18:43 +04:00
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
reg.id = AARCH64_CORE_REG(regs.pc);
|
|
|
|
reg.addr = (uintptr_t) &env->pc;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-02-13 08:46:08 +03:00
|
|
|
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
|
|
|
|
* incoming AArch64 regs received from 64-bit KVM.
|
|
|
|
* We must perform this after all of the registers have been acquired from
|
|
|
|
* the kernel.
|
|
|
|
*/
|
|
|
|
if (!is_a64(env)) {
|
|
|
|
aarch64_sync_64_to_32(env);
|
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:42 +04:00
|
|
|
reg.id = AARCH64_CORE_REG(elr_el1);
|
2014-05-27 20:09:51 +04:00
|
|
|
reg.addr = (uintptr_t) &env->elr_el[1];
|
2014-04-15 22:18:42 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
/* Fetch the SPSR registers
|
|
|
|
*
|
|
|
|
* KVM SPSRs 0-4 map to QEMU banks 1-5
|
|
|
|
*/
|
2014-04-15 22:18:43 +04:00
|
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
|
|
reg.id = AARCH64_CORE_REG(spsr[i]);
|
2015-04-01 19:57:30 +03:00
|
|
|
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
|
2014-04-15 22:18:43 +04:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
el = arm_current_el(env);
|
|
|
|
if (el > 0 && !is_a64(env)) {
|
|
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
|
|
env->spsr = env->banked_spsr[i];
|
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
/* Advanced SIMD and FP registers
|
|
|
|
* We map Qn = regs[2n+1]:regs[2n]
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
uint64_t fp_val[2];
|
|
|
|
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
|
|
|
|
reg.addr = (uintptr_t)(&fp_val);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
int rd = i << 1;
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
|
|
env->vfp.regs[rd + 1] = fp_val[0];
|
|
|
|
env->vfp.regs[rd] = fp_val[1];
|
|
|
|
#else
|
|
|
|
env->vfp.regs[rd + 1] = fp_val[1];
|
|
|
|
env->vfp.regs[rd] = fp_val[0];
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vfp_set_fpsr(env, fpr);
|
|
|
|
|
|
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vfp_set_fpcr(env, fpr);
|
|
|
|
|
2015-02-05 16:37:25 +03:00
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
|
|
* so we can ignore a failure return here.
|
|
|
|
*/
|
|
|
|
write_list_to_cpustate(cpu);
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
kvm_arm_sync_mpstate_to_qemu(cpu);
|
|
|
|
|
2013-12-17 23:42:30 +04:00
|
|
|
/* TODO: other registers */
|
|
|
|
return ret;
|
|
|
|
}
|