qemu/target/arm/tlb_helper.c

215 lines
7.2 KiB
C
Raw Normal View History

/*
* ARM TLB (Translation lookaside buffer) helpers.
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
unsigned int target_el,
bool same_el, bool ea,
bool s1ptw, bool is_write,
int fsc)
{
uint32_t syn;
/*
* ISV is only set for data aborts routed to EL2 and
* never for stage-1 page table walks faulting on stage 2.
*
* Furthermore, ISV is only set for certain kinds of load/stores.
* If the template syndrome does not have ISV set, we should leave
* it cleared.
*
* See ARMv8 specs, D7-1974:
* ISS encoding for an exception from a Data Abort, the
* ISV field.
*/
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
target-arm: kvm64: handle SIGBUS signal from kernel or KVM Add a SIGBUS signal handler. In this handler, it checks the SIGBUS type, translates the host VA delivered by host to guest PA, then fills this PA to guest APEI GHES memory, then notifies guest according to the SIGBUS type. When guest accesses the poisoned memory, it will generate a Synchronous External Abort(SEA). Then host kernel gets an APEI notification and calls memory_failure() to unmapped the affected page in stage 2, finally returns to guest. Guest continues to access the PG_hwpoison page, it will trap to KVM as stage2 fault, then a SIGBUS_MCEERR_AR synchronous signal is delivered to Qemu, Qemu records this error address into guest APEI GHES memory and notifes guest using Synchronous-External-Abort(SEA). In order to inject a vSEA, we introduce the kvm_inject_arm_sea() function in which we can setup the type of exception and the syndrome information. When switching to guest, the target vcpu will jump to the synchronous external abort vector table entry. The ESR_ELx.DFSC is set to synchronous external abort(0x10), and the ESR_ELx.FnV is set to not valid(0x1), which will tell guest that FAR is not valid and hold an UNKNOWN value. These values will be set to KVM register structures through KVM_SET_ONE_REG IOCTL. Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com> Signed-off-by: Xiang Zheng <zhengxiang9@huawei.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Xiang Zheng <zhengxiang9@huawei.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Message-id: 20200512030609.19593-10-gengdongjiu@huawei.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-05-12 06:06:08 +03:00
syn = syn_data_abort_no_iss(same_el, 0,
ea, 0, s1ptw, is_write, fsc);
} else {
/*
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
* syndrome created at translation time.
* Now we create the runtime syndrome with the remaining fields.
*/
syn = syn_data_abort_with_iss(same_el,
0, 0, 0, 0, 0,
ea, 0, s1ptw, is_write, fsc,
true);
/* Merge the runtime syndrome with the template syndrome. */
syn |= template_syn;
}
return syn;
}
static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, ARMMMUFaultInfo *fi)
{
CPUARMState *env = &cpu->env;
int target_el;
bool same_el;
uint32_t syn, exc, fsr, fsc;
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
target_el = exception_target_el(env);
if (fi->stage2) {
target_el = 2;
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
if (arm_is_secure_below_el3(env) && fi->s1ns) {
env->cp15.hpfar_el2 |= HPFAR_NS;
}
}
same_el = (arm_current_el(env) == target_el);
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
/*
* LPAE format fault status register : bottom 6 bits are
* status code in the same form as needed for syndrome
*/
fsr = arm_fi_to_lfsc(fi);
fsc = extract32(fsr, 0, 6);
} else {
fsr = arm_fi_to_sfsc(fi);
/*
* Short format FSR : this fault will never actually be reported
* to an EL that uses a syndrome register. Use a (currently)
* reserved FSR code in case the constructed syndrome does leak
* into the guest somehow.
*/
fsc = 0x3f;
}
if (access_type == MMU_INST_FETCH) {
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
exc = EXCP_PREFETCH_ABORT;
} else {
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
same_el, fi->ea, fi->s1ptw,
access_type == MMU_DATA_STORE,
fsc);
if (access_type == MMU_DATA_STORE
&& arm_feature(env, ARM_FEATURE_V6)) {
fsr |= (1 << 11);
}
exc = EXCP_DATA_ABORT;
}
env->exception.vaddress = addr;
env->exception.fsr = fsr;
raise_exception(env, exc, syn, target_el);
}
/* Raise a data fault alignment exception for the specified virtual address */
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
fi.type = ARMFault_Alignment;
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
}
#if !defined(CONFIG_USER_ONLY)
/*
* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
fi.ea = arm_extabort_type(response);
fi.type = ARMFault_SyncExternal;
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
}
#endif /* !defined(CONFIG_USER_ONLY) */
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
#ifdef CONFIG_USER_ONLY
int flags = page_get_flags(useronly_clean_ptr(address));
if (flags & PAGE_VALID) {
fi.type = ARMFault_Permission;
} else {
fi.type = ARMFault_Translation;
}
fi.level = 3;
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
#else
hwaddr phys_addr;
target_ulong page_size;
int prot, ret;
MemTxAttrs attrs = {};
ARMCacheAttrs cacheattrs = {};
/*
* Walk the page table and (if the mapping exists) add the page
* to the TLB. On success, return true. Otherwise, if probing,
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
* register format, and signal the fault.
*/
ret = get_phys_addr(&cpu->env, address, access_type,
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
&phys_addr, &attrs, &prot, &page_size,
&fi, &cacheattrs);
if (likely(!ret)) {
/*
* Map a single [sub]page. Regions smaller than our declared
* target page size are handled specially, so for those we
* pass in the exact addresses.
*/
if (page_size >= TARGET_PAGE_SIZE) {
phys_addr &= TARGET_PAGE_MASK;
address &= TARGET_PAGE_MASK;
}
/* Notice and record tagged memory. */
if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) {
arm_tlb_mte_tagged(&attrs) = true;
}
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
prot, mmu_idx, page_size);
return true;
} else if (probe) {
return false;
} else {
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
}
#endif
}