qemu/hw/onenand.c

663 lines
19 KiB
C
Raw Normal View History

/*
* OneNAND flash memories emulation.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "qemu-common.h"
#include "flash.h"
#include "irq.h"
#include "sysemu.h"
#include "block.h"
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
#define PAGE_SHIFT 11
/* Fixed */
#define BLOCK_SHIFT (PAGE_SHIFT + 6)
struct onenand_s {
uint32_t id;
int shift;
target_phys_addr_t base;
qemu_irq intr;
qemu_irq rdy;
BlockDriverState *bdrv;
BlockDriverState *bdrv_cur;
uint8_t *image;
uint8_t *otp;
uint8_t *current;
ram_addr_t ram;
uint8_t *boot[2];
uint8_t *data[2][2];
int iomemtype;
int cycle;
int otpmode;
uint16_t addr[8];
uint16_t unladdr[8];
int bufaddr;
int count;
uint16_t command;
uint16_t config[2];
uint16_t status;
uint16_t intstatus;
uint16_t wpstatus;
struct ecc_state_s ecc;
int density_mask;
int secs;
int secs_cur;
int blocks;
uint8_t *blockwp;
};
enum {
ONEN_BUF_BLOCK = 0,
ONEN_BUF_BLOCK2 = 1,
ONEN_BUF_DEST_BLOCK = 2,
ONEN_BUF_DEST_PAGE = 3,
ONEN_BUF_PAGE = 7,
};
enum {
ONEN_ERR_CMD = 1 << 10,
ONEN_ERR_ERASE = 1 << 11,
ONEN_ERR_PROG = 1 << 12,
ONEN_ERR_LOAD = 1 << 13,
};
enum {
ONEN_INT_RESET = 1 << 4,
ONEN_INT_ERASE = 1 << 5,
ONEN_INT_PROG = 1 << 6,
ONEN_INT_LOAD = 1 << 7,
ONEN_INT = 1 << 15,
};
enum {
ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
ONEN_LOCK_LOCKED = 1 << 1,
ONEN_LOCK_UNLOCKED = 1 << 2,
};
void onenand_base_update(void *opaque, target_phys_addr_t new)
{
struct onenand_s *s = (struct onenand_s *) opaque;
s->base = new;
/* XXX: We should use IO_MEM_ROMD but we broke it earlier...
* Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
* write boot commands. Also take note of the BWPS bit. */
cpu_register_physical_memory(s->base + (0x0000 << s->shift),
0x0200 << s->shift, s->iomemtype);
cpu_register_physical_memory(s->base + (0x0200 << s->shift),
0xbe00 << s->shift,
(s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
if (s->iomemtype)
cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
}
void onenand_base_unmap(void *opaque)
{
struct onenand_s *s = (struct onenand_s *) opaque;
cpu_register_physical_memory(s->base,
0x10000 << s->shift, IO_MEM_UNASSIGNED);
}
static void onenand_intr_update(struct onenand_s *s)
{
qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
}
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
static void onenand_reset(struct onenand_s *s, int cold)
{
memset(&s->addr, 0, sizeof(s->addr));
s->command = 0;
s->count = 1;
s->bufaddr = 0;
s->config[0] = 0x40c0;
s->config[1] = 0x0000;
onenand_intr_update(s);
qemu_irq_raise(s->rdy);
s->status = 0x0000;
s->intstatus = cold ? 0x8080 : 0x8010;
s->unladdr[0] = 0;
s->unladdr[1] = 0;
s->wpstatus = 0x0002;
s->cycle = 0;
s->otpmode = 0;
s->bdrv_cur = s->bdrv;
s->current = s->image;
s->secs_cur = s->secs;
if (cold) {
/* Lock the whole flash */
memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
}
}
static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
void *dest)
{
if (s->bdrv_cur)
return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
else if (sec + secn > s->secs_cur)
return 1;
memcpy(dest, s->current + (sec << 9), secn << 9);
return 0;
}
static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
void *src)
{
if (s->bdrv_cur)
return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
else if (sec + secn > s->secs_cur)
return 1;
memcpy(s->current + (sec << 9), src, secn << 9);
return 0;
}
static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
void *dest)
{
uint8_t buf[512];
if (s->bdrv_cur) {
if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
return 1;
memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
} else if (sec + secn > s->secs_cur)
return 1;
else
memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
return 0;
}
static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
void *src)
{
uint8_t buf[512];
if (s->bdrv_cur) {
if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
return 1;
memcpy(buf + ((sec & 31) << 4), src, secn << 4);
return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
} else if (sec + secn > s->secs_cur)
return 1;
memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
return 0;
}
static inline int onenand_erase(struct onenand_s *s, int sec, int num)
{
/* TODO: optimise */
uint8_t buf[512];
memset(buf, 0xff, sizeof(buf));
for (; num > 0; num --, sec ++) {
if (onenand_prog_main(s, sec, 1, buf))
return 1;
if (onenand_prog_spare(s, sec, 1, buf))
return 1;
}
return 0;
}
static void onenand_command(struct onenand_s *s, int cmd)
{
int b;
int sec;
void *buf;
#define SETADDR(block, page) \
sec = (s->addr[page] & 3) + \
((((s->addr[page] >> 2) & 0x3f) + \
(((s->addr[block] & 0xfff) | \
(s->addr[block] >> 15 ? \
s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
#define SETBUF_M() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
buf += (s->bufaddr & 3) << 9;
#define SETBUF_S() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
buf += (s->bufaddr & 3) << 4;
switch (cmd) {
case 0x00: /* Load single/multiple sector data unit into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#if 0
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x13: /* Load single/multiple spare sector into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x80: /* Program single/multiple sector data unit from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#if 0
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1a: /* Program single/multiple spare area sector from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1b: /* Copy-back program */
SETBUF_S()
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: spare areas */
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x23: /* Unlock NAND array block(s) */
s->intstatus |= ONEN_INT;
/* XXX the previous (?) area should be locked automatically */
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
}
break;
case 0x27: /* Unlock All NAND array blocks */
s->intstatus |= ONEN_INT;
for (b = 0; b < s->blocks; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
}
break;
case 0x2a: /* Lock NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
}
break;
case 0x2c: /* Lock-tight NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
continue;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
}
break;
case 0x71: /* Erase-Verify-Read */
s->intstatus |= ONEN_INT;
break;
case 0x95: /* Multi-block erase */
qemu_irq_pulse(s->intr);
/* Fall through. */
case 0x94: /* Block erase */
sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
(s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
<< (BLOCK_SHIFT - 9);
if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xb0: /* Erase suspend */
break;
case 0x30: /* Erase resume */
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xf0: /* Reset NAND Flash core */
onenand_reset(s, 0);
break;
case 0xf3: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x65: /* OTP Access */
s->intstatus |= ONEN_INT;
s->bdrv_cur = 0;
s->current = s->otp;
s->secs_cur = 1 << (BLOCK_SHIFT - 9);
s->addr[ONEN_BUF_BLOCK] = 0;
s->otpmode = 1;
break;
default:
s->status |= ONEN_ERR_CMD;
s->intstatus |= ONEN_INT;
fprintf(stderr, "%s: unknown OneNAND command %x\n",
__FUNCTION__, cmd);
}
onenand_intr_update(s);
}
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
{
struct onenand_s *s = (struct onenand_s *) opaque;
int offset = addr >> s->shift;
switch (offset) {
case 0x0000 ... 0xc000:
return lduw_le_p(s->boot[0] + addr);
case 0xf000: /* Manufacturer ID */
return (s->id >> 16) & 0xff;
case 0xf001: /* Device ID */
return (s->id >> 8) & 0xff;
/* TODO: get the following values from a real chip! */
case 0xf002: /* Version ID */
return (s->id >> 0) & 0xff;
case 0xf003: /* Data Buffer size */
return 1 << PAGE_SHIFT;
case 0xf004: /* Boot Buffer size */
return 0x200;
case 0xf005: /* Amount of buffers */
return 1 | (2 << 8);
case 0xf006: /* Technology */
return 0;
case 0xf100 ... 0xf107: /* Start addresses */
return s->addr[offset - 0xf100];
case 0xf200: /* Start buffer */
return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
case 0xf220: /* Command */
return s->command;
case 0xf221: /* System Configuration 1 */
return s->config[0] & 0xffe0;
case 0xf222: /* System Configuration 2 */
return s->config[1];
case 0xf240: /* Controller Status */
return s->status;
case 0xf241: /* Interrupt */
return s->intstatus;
case 0xf24c: /* Unlock Start Block Address */
return s->unladdr[0];
case 0xf24d: /* Unlock End Block Address */
return s->unladdr[1];
case 0xf24e: /* Write Protection Status */
return s->wpstatus;
case 0xff00: /* ECC Status */
return 0x00;
case 0xff01: /* ECC Result of main area data */
case 0xff02: /* ECC Result of spare area data */
case 0xff03: /* ECC Result of main area data */
case 0xff04: /* ECC Result of spare area data */
hw_error("%s: imeplement ECC\n", __FUNCTION__);
return 0x0000;
}
fprintf(stderr, "%s: unknown OneNAND register %x\n",
__FUNCTION__, offset);
return 0;
}
static void onenand_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct onenand_s *s = (struct onenand_s *) opaque;
int offset = addr >> s->shift;
int sec;
switch (offset) {
case 0x0000 ... 0x01ff:
case 0x8000 ... 0x800f:
if (s->cycle) {
s->cycle = 0;
if (value == 0x0000) {
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
onenand_load_main(s, sec,
1 << (PAGE_SHIFT - 9), s->data[0][0]);
s->addr[ONEN_BUF_PAGE] += 4;
s->addr[ONEN_BUF_PAGE] &= 0xff;
}
break;
}
switch (value) {
case 0x00f0: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x00e0: /* Load Data into Buffer */
s->cycle = 1;
break;
case 0x0090: /* Read Identification Data */
memset(s->boot[0], 0, 3 << s->shift);
s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff;
s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
break;
default:
fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
__FUNCTION__, value);
}
break;
case 0xf100 ... 0xf107: /* Start addresses */
s->addr[offset - 0xf100] = value;
break;
case 0xf200: /* Start buffer */
s->bufaddr = (value >> 8) & 0xf;
if (PAGE_SHIFT == 11)
s->count = (value & 3) ?: 4;
else if (PAGE_SHIFT == 10)
s->count = (value & 1) ?: 2;
break;
case 0xf220: /* Command */
if (s->intstatus & (1 << 15))
break;
s->command = value;
onenand_command(s, s->command);
break;
case 0xf221: /* System Configuration 1 */
s->config[0] = value;
onenand_intr_update(s);
qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
break;
case 0xf222: /* System Configuration 2 */
s->config[1] = value;
break;
case 0xf241: /* Interrupt */
s->intstatus &= value;
if ((1 << 15) & ~s->intstatus)
s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
ONEN_ERR_PROG | ONEN_ERR_LOAD);
onenand_intr_update(s);
break;
case 0xf24c: /* Unlock Start Block Address */
s->unladdr[0] = value & (s->blocks - 1);
/* For some reason we have to set the end address to by default
* be same as start because the software forgets to write anything
* in there. */
s->unladdr[1] = value & (s->blocks - 1);
break;
case 0xf24d: /* Unlock End Block Address */
s->unladdr[1] = value & (s->blocks - 1);
break;
default:
fprintf(stderr, "%s: unknown OneNAND register %x\n",
__FUNCTION__, offset);
}
}
static CPUReadMemoryFunc *onenand_readfn[] = {
onenand_read, /* TODO */
onenand_read,
onenand_read,
};
static CPUWriteMemoryFunc *onenand_writefn[] = {
onenand_write, /* TODO */
onenand_write,
onenand_write,
};
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
{
struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
int bdrv_index = drive_get_index(IF_MTD, 0, 0);
uint32_t size = 1 << (24 + ((id >> 12) & 7));
void *ram;
s->shift = regshift;
s->intr = irq;
s->rdy = 0;
s->id = id;
s->blocks = size >> BLOCK_SHIFT;
s->secs = size >> 9;
s->blockwp = qemu_malloc(s->blocks);
s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
onenand_writefn, s);
if (bdrv_index == -1)
s->image = memset(qemu_malloc(size + (size >> 5)),
0xff, size + (size >> 5));
else
s->bdrv = drives_table[bdrv_index].bdrv;
s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
0xff, (64 + 2) << PAGE_SHIFT);
s->ram = qemu_ram_alloc(0xc000 << s->shift);
ram = qemu_get_ram_ptr(s->ram);
s->boot[0] = ram + (0x0000 << s->shift);
s->boot[1] = ram + (0x8000 << s->shift);
s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
onenand_reset(s, 1);
return s;
}
void *onenand_raw_otp(void *opaque)
{
struct onenand_s *s = (struct onenand_s *) opaque;
return s->otp;
}