qemu/bsd-user/elfload.c

834 lines
24 KiB
C
Raw Normal View History

/*
* ELF loading code
*
* Copyright (c) 2013 Stacey D. Son
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "disas/disas.h"
#include "qemu/path.h"
static abi_ulong target_auxents; /* Where the AUX entries are in target */
static size_t target_auxents_sz; /* Size of AUX entries including AT_NULL */
#include "target_arch_reg.h"
#include "target_os_elf.h"
#include "target_os_stack.h"
#include "target_os_thread.h"
#include "target_os_user.h"
abi_ulong target_stksiz;
abi_ulong target_stkbas;
static int elf_core_dump(int signr, CPUArchState *env);
static int load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr,
int fd, abi_ulong rbase, abi_ulong *baddrp);
static inline void memcpy_fromfs(void *to, const void *from, unsigned long n)
{
memcpy(to, from, n);
}
#ifdef BSWAP_NEEDED
static void bswap_ehdr(struct elfhdr *ehdr)
{
bswap16s(&ehdr->e_type); /* Object file type */
bswap16s(&ehdr->e_machine); /* Architecture */
bswap32s(&ehdr->e_version); /* Object file version */
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
}
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
{
int i;
for (i = 0; i < phnum; i++, phdr++) {
bswap32s(&phdr->p_type); /* Segment type */
bswap32s(&phdr->p_flags); /* Segment flags */
bswaptls(&phdr->p_offset); /* Segment file offset */
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
bswaptls(&phdr->p_paddr); /* Segment physical address */
bswaptls(&phdr->p_filesz); /* Segment size in file */
bswaptls(&phdr->p_memsz); /* Segment size in memory */
bswaptls(&phdr->p_align); /* Segment alignment */
}
}
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
{
int i;
for (i = 0; i < shnum; i++, shdr++) {
bswap32s(&shdr->sh_name);
bswap32s(&shdr->sh_type);
bswaptls(&shdr->sh_flags);
bswaptls(&shdr->sh_addr);
bswaptls(&shdr->sh_offset);
bswaptls(&shdr->sh_size);
bswap32s(&shdr->sh_link);
bswap32s(&shdr->sh_info);
bswaptls(&shdr->sh_addralign);
bswaptls(&shdr->sh_entsize);
}
}
static void bswap_sym(struct elf_sym *sym)
{
bswap32s(&sym->st_name);
bswaptls(&sym->st_value);
bswaptls(&sym->st_size);
bswap16s(&sym->st_shndx);
}
static void bswap_note(struct elf_note *en)
{
bswap32s(&en->n_namesz);
bswap32s(&en->n_descsz);
bswap32s(&en->n_type);
}
#else /* ! BSWAP_NEEDED */
static void bswap_ehdr(struct elfhdr *ehdr) { }
static void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
static void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
static void bswap_sym(struct elf_sym *sym) { }
static void bswap_note(struct elf_note *en) { }
#endif /* ! BSWAP_NEEDED */
#include "elfcore.c"
/*
* 'copy_elf_strings()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*
*/
static abi_ulong copy_elf_strings(int argc, char **argv, void **page,
abi_ulong p)
{
char *tmp, *tmp1, *pag = NULL;
int len, offset = 0;
if (!p) {
return 0; /* bullet-proofing */
}
while (argc-- > 0) {
tmp = argv[argc];
if (!tmp) {
fprintf(stderr, "VFS: argc is wrong");
exit(-1);
}
tmp1 = tmp;
while (*tmp++) {
continue;
}
len = tmp - tmp1;
if (p < len) { /* this shouldn't happen - 128kB */
return 0;
}
while (len) {
--p; --tmp; --len;
if (--offset < 0) {
offset = p % TARGET_PAGE_SIZE;
pag = page[p / TARGET_PAGE_SIZE];
if (!pag) {
pag = g_try_malloc0(TARGET_PAGE_SIZE);
page[p / TARGET_PAGE_SIZE] = pag;
if (!pag) {
return 0;
}
}
}
if (len == 0 || offset == 0) {
*(pag + offset) = *tmp;
} else {
int bytes_to_copy = (len > offset) ? offset : len;
tmp -= bytes_to_copy;
p -= bytes_to_copy;
offset -= bytes_to_copy;
len -= bytes_to_copy;
memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
}
}
}
return p;
}
static void setup_arg_pages(struct bsd_binprm *bprm, struct image_info *info,
abi_ulong *stackp, abi_ulong *stringp)
{
abi_ulong stack_base, size;
abi_long addr;
/*
* Create enough stack to hold everything. If we don't use it for args,
* we'll use it for something else...
*/
size = target_dflssiz;
stack_base = TARGET_USRSTACK - size;
addr = target_mmap(stack_base , size + qemu_host_page_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
if (addr == -1) {
perror("stk mmap");
exit(-1);
}
/* we reserve one extra page at the top of the stack as guard */
target_mprotect(addr + size, qemu_host_page_size, PROT_NONE);
target_stksiz = size;
target_stkbas = addr;
if (setup_initial_stack(bprm, stackp, stringp) != 0) {
perror("stk setup");
exit(-1);
}
}
static void set_brk(abi_ulong start, abi_ulong end)
{
/* page-align the start and end addresses... */
start = HOST_PAGE_ALIGN(start);
end = HOST_PAGE_ALIGN(end);
if (end <= start) {
return;
}
if (target_mmap(start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
perror("cannot mmap brk");
exit(-1);
}
}
/*
* We need to explicitly zero any fractional pages after the data
* section (i.e. bss). This would contain the junk from the file that
* should not be in memory.
*/
static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
{
abi_ulong nbyte;
if (elf_bss >= last_bss) {
return;
}
/*
* XXX: this is really a hack : if the real host page size is
* smaller than the target page size, some pages after the end
* of the file may not be mapped. A better fix would be to
* patch target_mmap(), but it is more complicated as the file
* size must be known.
*/
if (qemu_real_host_page_size() < qemu_host_page_size) {
abi_ulong end_addr, end_addr1;
end_addr1 = REAL_HOST_PAGE_ALIGN(elf_bss);
end_addr = HOST_PAGE_ALIGN(elf_bss);
if (end_addr1 < end_addr) {
mmap((void *)g2h_untagged(end_addr1), end_addr - end_addr1,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0);
}
}
nbyte = elf_bss & (qemu_host_page_size - 1);
if (nbyte) {
nbyte = qemu_host_page_size - nbyte;
do {
/* FIXME - what to do if put_user() fails? */
put_user_u8(0, elf_bss);
elf_bss++;
} while (--nbyte);
}
}
static abi_ulong load_elf_interp(struct elfhdr *interp_elf_ex,
int interpreter_fd,
abi_ulong *interp_load_addr)
{
struct elf_phdr *elf_phdata = NULL;
abi_ulong rbase;
int retval;
abi_ulong baddr, error;
error = 0;
bswap_ehdr(interp_elf_ex);
/* First of all, some simple consistency checks */
if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) ||
!elf_check_arch(interp_elf_ex->e_machine)) {
return ~((abi_ulong)0UL);
}
/* Now read in all of the header information */
if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) {
return ~(abi_ulong)0UL;
}
elf_phdata = (struct elf_phdr *) malloc(sizeof(struct elf_phdr) *
interp_elf_ex->e_phnum);
if (!elf_phdata) {
return ~((abi_ulong)0UL);
}
/*
* If the size of this structure has changed, then punt, since
* we will be doing the wrong thing.
*/
if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
free(elf_phdata);
return ~((abi_ulong)0UL);
}
retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
if (retval >= 0) {
retval = read(interpreter_fd, (char *) elf_phdata,
sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
}
if (retval < 0) {
perror("load_elf_interp");
exit(-1);
free(elf_phdata);
return retval;
}
bswap_phdr(elf_phdata, interp_elf_ex->e_phnum);
rbase = 0;
if (interp_elf_ex->e_type == ET_DYN) {
/*
* In order to avoid hardcoding the interpreter load
* address in qemu, we allocate a big enough memory zone.
*/
rbase = target_mmap(0, INTERP_MAP_SIZE, PROT_NONE,
MAP_PRIVATE | MAP_ANON, -1, 0);
if (rbase == -1) {
perror("mmap");
exit(-1);
}
}
error = load_elf_sections(interp_elf_ex, elf_phdata, interpreter_fd, rbase,
&baddr);
if (error != 0) {
perror("load_elf_sections");
exit(-1);
}
/* Now use mmap to map the library into memory. */
close(interpreter_fd);
free(elf_phdata);
*interp_load_addr = baddr;
return ((abi_ulong) interp_elf_ex->e_entry) + rbase;
}
static int symfind(const void *s0, const void *s1)
{
struct elf_sym *sym = (struct elf_sym *)s1;
__typeof(sym->st_value) addr = *(uint64_t *)s0;
int result = 0;
if (addr < sym->st_value) {
result = -1;
} else if (addr >= sym->st_value + sym->st_size) {
result = 1;
}
return result;
}
static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
{
#if ELF_CLASS == ELFCLASS32
struct elf_sym *syms = s->disas_symtab.elf32;
#else
struct elf_sym *syms = s->disas_symtab.elf64;
#endif
/* binary search */
struct elf_sym *sym;
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
if (sym != NULL) {
return s->disas_strtab + sym->st_name;
}
return "";
}
/* FIXME: This should use elf_ops.h.inc */
static int symcmp(const void *s0, const void *s1)
{
struct elf_sym *sym0 = (struct elf_sym *)s0;
struct elf_sym *sym1 = (struct elf_sym *)s1;
return (sym0->st_value < sym1->st_value) ? -1 :
((sym0->st_value > sym1->st_value) ? 1 : 0);
}
/* Best attempt to load symbols from this ELF object. */
static void load_symbols(struct elfhdr *hdr, int fd)
{
unsigned int i, nsyms;
struct elf_shdr sechdr, symtab, strtab;
char *strings;
struct syminfo *s;
struct elf_sym *syms, *new_syms;
lseek(fd, hdr->e_shoff, SEEK_SET);
for (i = 0; i < hdr->e_shnum; i++) {
if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) {
return;
}
bswap_shdr(&sechdr, 1);
if (sechdr.sh_type == SHT_SYMTAB) {
symtab = sechdr;
lseek(fd, hdr->e_shoff + sizeof(sechdr) * sechdr.sh_link,
SEEK_SET);
if (read(fd, &strtab, sizeof(strtab)) != sizeof(strtab)) {
return;
}
bswap_shdr(&strtab, 1);
goto found;
}
}
return; /* Shouldn't happen... */
found:
/* Now know where the strtab and symtab are. Snarf them. */
s = malloc(sizeof(*s));
syms = malloc(symtab.sh_size);
if (!syms) {
free(s);
return;
}
s->disas_strtab = strings = malloc(strtab.sh_size);
if (!s->disas_strtab) {
free(s);
free(syms);
return;
}
lseek(fd, symtab.sh_offset, SEEK_SET);
if (read(fd, syms, symtab.sh_size) != symtab.sh_size) {
free(s);
free(syms);
free(strings);
return;
}
nsyms = symtab.sh_size / sizeof(struct elf_sym);
i = 0;
while (i < nsyms) {
bswap_sym(syms + i);
/* Throw away entries which we do not need. */
if (syms[i].st_shndx == SHN_UNDEF ||
syms[i].st_shndx >= SHN_LORESERVE ||
ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
nsyms--;
if (i < nsyms) {
syms[i] = syms[nsyms];
}
continue;
}
#if defined(TARGET_ARM) || defined(TARGET_MIPS)
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
syms[i].st_value &= ~(target_ulong)1;
#endif
i++;
}
/*
* Attempt to free the storage associated with the local symbols
* that we threw away. Whether or not this has any effect on the
* memory allocation depends on the malloc implementation and how
* many symbols we managed to discard.
*/
new_syms = realloc(syms, nsyms * sizeof(*syms));
if (new_syms == NULL) {
free(s);
free(syms);
free(strings);
return;
}
syms = new_syms;
qsort(syms, nsyms, sizeof(*syms), symcmp);
lseek(fd, strtab.sh_offset, SEEK_SET);
if (read(fd, strings, strtab.sh_size) != strtab.sh_size) {
free(s);
free(syms);
free(strings);
return;
}
s->disas_num_syms = nsyms;
#if ELF_CLASS == ELFCLASS32
s->disas_symtab.elf32 = syms;
s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
#else
s->disas_symtab.elf64 = syms;
s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
#endif
s->next = syminfos;
syminfos = s;
}
/* Check the elf header and see if this a target elf binary. */
int is_target_elf_binary(int fd)
{
uint8_t buf[128];
struct elfhdr elf_ex;
if (lseek(fd, 0L, SEEK_SET) < 0) {
return 0;
}
if (read(fd, buf, sizeof(buf)) < 0) {
return 0;
}
elf_ex = *((struct elfhdr *)buf);
bswap_ehdr(&elf_ex);
if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
(!elf_check_arch(elf_ex.e_machine))) {
return 0;
} else {
return 1;
}
}
static int
load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, int fd,
abi_ulong rbase, abi_ulong *baddrp)
{
struct elf_phdr *elf_ppnt;
abi_ulong baddr;
int i;
bool first;
/*
* Now we do a little grungy work by mmaping the ELF image into
* the correct location in memory. At this point, we assume that
* the image should be loaded at fixed address, not at a variable
* address.
*/
first = true;
for (i = 0, elf_ppnt = phdr; i < hdr->e_phnum; i++, elf_ppnt++) {
int elf_prot = 0;
abi_ulong error;
/* XXX Skip memsz == 0. */
if (elf_ppnt->p_type != PT_LOAD) {
continue;
}
if (elf_ppnt->p_flags & PF_R) {
elf_prot |= PROT_READ;
}
if (elf_ppnt->p_flags & PF_W) {
elf_prot |= PROT_WRITE;
}
if (elf_ppnt->p_flags & PF_X) {
elf_prot |= PROT_EXEC;
}
error = target_mmap(TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr),
(elf_ppnt->p_filesz +
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
elf_prot,
(MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
fd,
(elf_ppnt->p_offset -
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
if (error == -1) {
perror("mmap");
exit(-1);
} else if (elf_ppnt->p_memsz != elf_ppnt->p_filesz) {
abi_ulong start_bss, end_bss;
start_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
end_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
/*
* Calling set_brk effectively mmaps the pages that we need for the
* bss and break sections.
*/
set_brk(start_bss, end_bss);
padzero(start_bss, end_bss);
}
if (first) {
baddr = TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr);
first = false;
}
}
if (baddrp != NULL) {
*baddrp = baddr;
}
return 0;
}
int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
struct image_info *info)
{
struct elfhdr elf_ex;
struct elfhdr interp_elf_ex;
int interpreter_fd = -1; /* avoid warning */
abi_ulong load_addr;
int i;
struct elf_phdr *elf_ppnt;
struct elf_phdr *elf_phdata;
abi_ulong elf_brk;
int error, retval;
char *elf_interpreter;
abi_ulong baddr, elf_entry, et_dyn_addr, interp_load_addr = 0;
abi_ulong reloc_func_desc = 0;
load_addr = 0;
elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
bswap_ehdr(&elf_ex);
/* First of all, some simple consistency checks */
if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
(!elf_check_arch(elf_ex.e_machine))) {
return -ENOEXEC;
}
bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, bprm->page, bprm->p);
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, bprm->page, bprm->p);
if (!bprm->p) {
retval = -E2BIG;
}
/* Now read in all of the header information */
elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize * elf_ex.e_phnum);
if (elf_phdata == NULL) {
return -ENOMEM;
}
retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
if (retval > 0) {
retval = read(bprm->fd, (char *)elf_phdata,
elf_ex.e_phentsize * elf_ex.e_phnum);
}
if (retval < 0) {
perror("load_elf_binary");
exit(-1);
free(elf_phdata);
return -errno;
}
bswap_phdr(elf_phdata, elf_ex.e_phnum);
elf_ppnt = elf_phdata;
elf_brk = 0;
elf_interpreter = NULL;
for (i = 0; i < elf_ex.e_phnum; i++) {
if (elf_ppnt->p_type == PT_INTERP) {
if (elf_interpreter != NULL) {
free(elf_phdata);
free(elf_interpreter);
close(bprm->fd);
return -EINVAL;
}
elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
if (elf_interpreter == NULL) {
free(elf_phdata);
close(bprm->fd);
return -ENOMEM;
}
retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
if (retval >= 0) {
retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
}
if (retval < 0) {
perror("load_elf_binary2");
exit(-1);
}
if (retval >= 0) {
retval = open(path(elf_interpreter), O_RDONLY);
if (retval >= 0) {
interpreter_fd = retval;
} else {
perror(elf_interpreter);
exit(-1);
/* retval = -errno; */
}
}
if (retval >= 0) {
retval = lseek(interpreter_fd, 0, SEEK_SET);
if (retval >= 0) {
retval = read(interpreter_fd, bprm->buf, 128);
}
}
if (retval >= 0) {
interp_elf_ex = *((struct elfhdr *) bprm->buf);
}
if (retval < 0) {
perror("load_elf_binary3");
exit(-1);
free(elf_phdata);
free(elf_interpreter);
close(bprm->fd);
return retval;
}
}
elf_ppnt++;
}
/* Some simple consistency checks for the interpreter */
if (elf_interpreter) {
if (interp_elf_ex.e_ident[0] != 0x7f ||
strncmp((char *)&interp_elf_ex.e_ident[1], "ELF", 3) != 0) {
free(elf_interpreter);
free(elf_phdata);
close(bprm->fd);
return -ELIBBAD;
}
}
/*
* OK, we are done with that, now set up the arg stuff, and then start this
* sucker up
*/
if (!bprm->p) {
free(elf_interpreter);
free(elf_phdata);
close(bprm->fd);
return -E2BIG;
}
/* OK, This is the point of no return */
info->end_data = 0;
info->end_code = 0;
elf_entry = (abi_ulong) elf_ex.e_entry;
/* XXX Join this with PT_INTERP search? */
baddr = 0;
for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
if (elf_ppnt->p_type != PT_LOAD) {
continue;
}
baddr = elf_ppnt->p_vaddr;
break;
}
et_dyn_addr = 0;
if (elf_ex.e_type == ET_DYN && baddr == 0) {
et_dyn_addr = ELF_ET_DYN_LOAD_ADDR;
}
/*
* Do this so that we can load the interpreter, if need be. We will
* change some of these later
*/
info->rss = 0;
setup_arg_pages(bprm, info, &bprm->p, &bprm->stringp);
info->start_stack = bprm->p;
info->elf_flags = elf_ex.e_flags;
error = load_elf_sections(&elf_ex, elf_phdata, bprm->fd, et_dyn_addr,
&load_addr);
for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
if (elf_ppnt->p_type != PT_LOAD) {
continue;
}
if (elf_ppnt->p_memsz > elf_ppnt->p_filesz)
elf_brk = MAX(elf_brk, et_dyn_addr + elf_ppnt->p_vaddr +
elf_ppnt->p_memsz);
}
if (error != 0) {
perror("load_elf_sections");
exit(-1);
}
if (elf_interpreter) {
elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
&interp_load_addr);
reloc_func_desc = interp_load_addr;
close(interpreter_fd);
free(elf_interpreter);
if (elf_entry == ~((abi_ulong)0UL)) {
printf("Unable to load interpreter\n");
free(elf_phdata);
exit(-1);
return 0;
}
} else {
interp_load_addr = et_dyn_addr;
elf_entry += interp_load_addr;
}
free(elf_phdata);
if (qemu_log_enabled()) {
load_symbols(&elf_ex, bprm->fd);
}
close(bprm->fd);
bprm->p = target_create_elf_tables(bprm->p, bprm->argc, bprm->envc,
bprm->stringp, &elf_ex, load_addr,
et_dyn_addr, interp_load_addr, info);
info->load_addr = reloc_func_desc;
info->brk = elf_brk;
info->start_stack = bprm->p;
info->load_bias = 0;
info->entry = elf_entry;
#ifdef USE_ELF_CORE_DUMP
bprm->core_dump = &elf_core_dump;
#else
bprm->core_dump = NULL;
#endif
return 0;
}
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
target_thread_init(regs, infop);
}