qemu/hw/intc/xics.c

722 lines
18 KiB
C
Raw Normal View History

Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* PAPR Virtualized Interrupt System, aka ICS/ICP aka xics
*
* Copyright (c) 2010,2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "trace.h"
#include "qemu/timer.h"
#include "hw/ppc/xics.h"
#include "qemu/error-report.h"
#include "qapi/visitor.h"
#include "monitor/monitor.h"
#include "hw/intc/intc.h"
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
void xics_cpu_destroy(XICSFabric *xi, PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
ICPState *icp = ICP(cpu->intc);
assert(icp);
assert(cs == icp->cs);
icp->output = NULL;
icp->cs = NULL;
}
void xics_cpu_setup(XICSFabric *xi, PowerPCCPU *cpu, ICPState *icp)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
ICPStateClass *icpc;
assert(icp);
cpu->intc = OBJECT(icp);
icp->cs = cs;
icpc = ICP_GET_CLASS(icp);
if (icpc->cpu_setup) {
icpc->cpu_setup(icp, cpu);
}
switch (PPC_INPUT(env)) {
case PPC_FLAGS_INPUT_POWER7:
icp->output = env->irq_inputs[POWER7_INPUT_INT];
break;
case PPC_FLAGS_INPUT_970:
icp->output = env->irq_inputs[PPC970_INPUT_INT];
break;
default:
error_report("XICS interrupt controller does not support this CPU "
"bus model");
abort();
}
}
void icp_pic_print_info(ICPState *icp, Monitor *mon)
{
int cpu_index = icp->cs ? icp->cs->cpu_index : -1;
if (!icp->output) {
return;
}
monitor_printf(mon, "CPU %d XIRR=%08x (%p) PP=%02x MFRR=%02x\n",
cpu_index, icp->xirr, icp->xirr_owner,
icp->pending_priority, icp->mfrr);
}
void ics_pic_print_info(ICSState *ics, Monitor *mon)
{
uint32_t i;
monitor_printf(mon, "ICS %4x..%4x %p\n",
ics->offset, ics->offset + ics->nr_irqs - 1, ics);
if (!ics->irqs) {
return;
}
for (i = 0; i < ics->nr_irqs; i++) {
ICSIRQState *irq = ics->irqs + i;
if (!(irq->flags & XICS_FLAGS_IRQ_MASK)) {
continue;
}
monitor_printf(mon, " %4x %s %02x %02x\n",
ics->offset + i,
(irq->flags & XICS_FLAGS_IRQ_LSI) ?
"LSI" : "MSI",
irq->priority, irq->status);
}
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
/*
* ICP: Presentation layer
*/
#define XISR_MASK 0x00ffffff
#define CPPR_MASK 0xff000000
#define XISR(icp) (((icp)->xirr) & XISR_MASK)
#define CPPR(icp) (((icp)->xirr) >> 24)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
static void ics_reject(ICSState *ics, uint32_t nr)
{
ICSStateClass *k = ICS_BASE_GET_CLASS(ics);
if (k->reject) {
k->reject(ics, nr);
}
}
void ics_resend(ICSState *ics)
{
ICSStateClass *k = ICS_BASE_GET_CLASS(ics);
if (k->resend) {
k->resend(ics);
}
}
static void ics_eoi(ICSState *ics, int nr)
{
ICSStateClass *k = ICS_BASE_GET_CLASS(ics);
if (k->eoi) {
k->eoi(ics, nr);
}
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
static void icp_check_ipi(ICPState *icp)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
if (XISR(icp) && (icp->pending_priority <= icp->mfrr)) {
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
return;
}
trace_xics_icp_check_ipi(icp->cs->cpu_index, icp->mfrr);
if (XISR(icp) && icp->xirr_owner) {
ics_reject(icp->xirr_owner, XISR(icp));
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
icp->xirr = (icp->xirr & ~XISR_MASK) | XICS_IPI;
icp->pending_priority = icp->mfrr;
icp->xirr_owner = NULL;
qemu_irq_raise(icp->output);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
void icp_resend(ICPState *icp)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
XICSFabric *xi = icp->xics;
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
if (icp->mfrr < CPPR(icp)) {
icp_check_ipi(icp);
}
xic->ics_resend(xi);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
void icp_set_cppr(ICPState *icp, uint8_t cppr)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
uint8_t old_cppr;
uint32_t old_xisr;
old_cppr = CPPR(icp);
icp->xirr = (icp->xirr & ~CPPR_MASK) | (cppr << 24);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
if (cppr < old_cppr) {
if (XISR(icp) && (cppr <= icp->pending_priority)) {
old_xisr = XISR(icp);
icp->xirr &= ~XISR_MASK; /* Clear XISR */
icp->pending_priority = 0xff;
qemu_irq_lower(icp->output);
if (icp->xirr_owner) {
ics_reject(icp->xirr_owner, old_xisr);
icp->xirr_owner = NULL;
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
} else {
if (!XISR(icp)) {
icp_resend(icp);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
}
void icp_set_mfrr(ICPState *icp, uint8_t mfrr)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
icp->mfrr = mfrr;
if (mfrr < CPPR(icp)) {
icp_check_ipi(icp);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
uint32_t icp_accept(ICPState *icp)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
uint32_t xirr = icp->xirr;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
qemu_irq_lower(icp->output);
icp->xirr = icp->pending_priority << 24;
icp->pending_priority = 0xff;
icp->xirr_owner = NULL;
trace_xics_icp_accept(xirr, icp->xirr);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
return xirr;
}
uint32_t icp_ipoll(ICPState *icp, uint32_t *mfrr)
{
if (mfrr) {
*mfrr = icp->mfrr;
}
return icp->xirr;
}
void icp_eoi(ICPState *icp, uint32_t xirr)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
XICSFabric *xi = icp->xics;
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
ICSState *ics;
uint32_t irq;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
/* Send EOI -> ICS */
icp->xirr = (icp->xirr & ~CPPR_MASK) | (xirr & CPPR_MASK);
trace_xics_icp_eoi(icp->cs->cpu_index, xirr, icp->xirr);
irq = xirr & XISR_MASK;
ics = xic->ics_get(xi, irq);
if (ics) {
ics_eoi(ics, irq);
}
if (!XISR(icp)) {
icp_resend(icp);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
static void icp_irq(ICSState *ics, int server, int nr, uint8_t priority)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
ICPState *icp = xics_icp_get(ics->xics, server);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
trace_xics_icp_irq(server, nr, priority);
if ((priority >= CPPR(icp))
|| (XISR(icp) && (icp->pending_priority <= priority))) {
ics_reject(ics, nr);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
} else {
if (XISR(icp) && icp->xirr_owner) {
ics_reject(icp->xirr_owner, XISR(icp));
icp->xirr_owner = NULL;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
icp->xirr = (icp->xirr & ~XISR_MASK) | (nr & XISR_MASK);
icp->xirr_owner = ics;
icp->pending_priority = priority;
trace_xics_icp_raise(icp->xirr, icp->pending_priority);
qemu_irq_raise(icp->output);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
static void icp_dispatch_pre_save(void *opaque)
{
ICPState *icp = opaque;
ICPStateClass *info = ICP_GET_CLASS(icp);
if (info->pre_save) {
info->pre_save(icp);
}
}
static int icp_dispatch_post_load(void *opaque, int version_id)
{
ICPState *icp = opaque;
ICPStateClass *info = ICP_GET_CLASS(icp);
if (info->post_load) {
return info->post_load(icp, version_id);
}
return 0;
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
static const VMStateDescription vmstate_icp_server = {
.name = "icp/server",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = icp_dispatch_pre_save,
.post_load = icp_dispatch_post_load,
.fields = (VMStateField[]) {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
/* Sanity check */
VMSTATE_UINT32(xirr, ICPState),
VMSTATE_UINT8(pending_priority, ICPState),
VMSTATE_UINT8(mfrr, ICPState),
VMSTATE_END_OF_LIST()
},
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
};
static void icp_reset(void *dev)
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
{
ICPState *icp = ICP(dev);
icp->xirr = 0;
icp->pending_priority = 0xff;
icp->mfrr = 0xff;
/* Make all outputs are deasserted */
qemu_set_irq(icp->output, 0);
}
static void icp_realize(DeviceState *dev, Error **errp)
{
ICPState *icp = ICP(dev);
ICPStateClass *icpc = ICP_GET_CLASS(dev);
Object *obj;
Error *err = NULL;
obj = object_property_get_link(OBJECT(dev), "xics", &err);
if (!obj) {
error_setg(errp, "%s: required link 'xics' not found: %s",
__func__, error_get_pretty(err));
return;
}
icp->xics = XICS_FABRIC(obj);
if (icpc->realize) {
icpc->realize(dev, errp);
}
qemu_register_reset(icp_reset, dev);
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
static void icp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_icp_server;
dc->realize = icp_realize;
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
}
static const TypeInfo icp_info = {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.name = TYPE_ICP,
.parent = TYPE_DEVICE,
.instance_size = sizeof(ICPState),
.class_init = icp_class_init,
.class_size = sizeof(ICPStateClass),
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
};
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
/*
* ICS: Source layer
*/
static void ics_simple_resend_msi(ICSState *ics, int srcno)
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
/* FIXME: filter by server#? */
if (irq->status & XICS_STATUS_REJECTED) {
irq->status &= ~XICS_STATUS_REJECTED;
if (irq->priority != 0xff) {
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
}
}
static void ics_simple_resend_lsi(ICSState *ics, int srcno)
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
if ((irq->priority != 0xff)
&& (irq->status & XICS_STATUS_ASSERTED)
&& !(irq->status & XICS_STATUS_SENT)) {
irq->status |= XICS_STATUS_SENT;
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
}
}
static void ics_simple_set_irq_msi(ICSState *ics, int srcno, int val)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
trace_xics_ics_simple_set_irq_msi(srcno, srcno + ics->offset);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
if (val) {
if (irq->priority == 0xff) {
irq->status |= XICS_STATUS_MASKED_PENDING;
trace_xics_masked_pending();
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
} else {
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
}
static void ics_simple_set_irq_lsi(ICSState *ics, int srcno, int val)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
trace_xics_ics_simple_set_irq_lsi(srcno, srcno + ics->offset);
if (val) {
irq->status |= XICS_STATUS_ASSERTED;
} else {
irq->status &= ~XICS_STATUS_ASSERTED;
}
ics_simple_resend_lsi(ics, srcno);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
static void ics_simple_set_irq(void *opaque, int srcno, int val)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSState *ics = (ICSState *)opaque;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
ics_simple_set_irq_lsi(ics, srcno, val);
} else {
ics_simple_set_irq_msi(ics, srcno, val);
}
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
static void ics_simple_write_xive_msi(ICSState *ics, int srcno)
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
if (!(irq->status & XICS_STATUS_MASKED_PENDING)
|| (irq->priority == 0xff)) {
return;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
irq->status &= ~XICS_STATUS_MASKED_PENDING;
icp_irq(ics, irq->server, srcno + ics->offset, irq->priority);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
static void ics_simple_write_xive_lsi(ICSState *ics, int srcno)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
ics_simple_resend_lsi(ics, srcno);
}
void ics_simple_write_xive(ICSState *ics, int srcno, int server,
uint8_t priority, uint8_t saved_priority)
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
irq->server = server;
irq->priority = priority;
irq->saved_priority = saved_priority;
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
trace_xics_ics_simple_write_xive(ics->offset + srcno, srcno, server,
priority);
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
ics_simple_write_xive_lsi(ics, srcno);
} else {
ics_simple_write_xive_msi(ics, srcno);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
}
static void ics_simple_reject(ICSState *ics, uint32_t nr)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + nr - ics->offset;
trace_xics_ics_simple_reject(nr, nr - ics->offset);
if (irq->flags & XICS_FLAGS_IRQ_MSI) {
irq->status |= XICS_STATUS_REJECTED;
} else if (irq->flags & XICS_FLAGS_IRQ_LSI) {
irq->status &= ~XICS_STATUS_SENT;
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
static void ics_simple_resend(ICSState *ics)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
int i;
for (i = 0; i < ics->nr_irqs; i++) {
/* FIXME: filter by server#? */
if (ics->irqs[i].flags & XICS_FLAGS_IRQ_LSI) {
ics_simple_resend_lsi(ics, i);
} else {
ics_simple_resend_msi(ics, i);
}
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
static void ics_simple_eoi(ICSState *ics, uint32_t nr)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
int srcno = nr - ics->offset;
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ICSIRQState *irq = ics->irqs + srcno;
trace_xics_ics_simple_eoi(nr);
if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_LSI) {
irq->status &= ~XICS_STATUS_SENT;
}
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
static void ics_simple_reset(void *dev)
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
{
ICSState *ics = ICS_SIMPLE(dev);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
int i;
uint8_t flags[ics->nr_irqs];
for (i = 0; i < ics->nr_irqs; i++) {
flags[i] = ics->irqs[i].flags;
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
memset(ics->irqs, 0, sizeof(ICSIRQState) * ics->nr_irqs);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
for (i = 0; i < ics->nr_irqs; i++) {
ics->irqs[i].priority = 0xff;
ics->irqs[i].saved_priority = 0xff;
ics->irqs[i].flags = flags[i];
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
}
}
static void ics_simple_dispatch_pre_save(void *opaque)
{
ICSState *ics = opaque;
ICSStateClass *info = ICS_BASE_GET_CLASS(ics);
if (info->pre_save) {
info->pre_save(ics);
}
}
static int ics_simple_dispatch_post_load(void *opaque, int version_id)
{
ICSState *ics = opaque;
ICSStateClass *info = ICS_BASE_GET_CLASS(ics);
if (info->post_load) {
return info->post_load(ics, version_id);
}
return 0;
}
static const VMStateDescription vmstate_ics_simple_irq = {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.name = "ics/irq",
.version_id = 2,
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.minimum_version_id = 1,
.fields = (VMStateField[]) {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
VMSTATE_UINT32(server, ICSIRQState),
VMSTATE_UINT8(priority, ICSIRQState),
VMSTATE_UINT8(saved_priority, ICSIRQState),
VMSTATE_UINT8(status, ICSIRQState),
VMSTATE_UINT8(flags, ICSIRQState),
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_ics_simple = {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.name = "ics",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = ics_simple_dispatch_pre_save,
.post_load = ics_simple_dispatch_post_load,
.fields = (VMStateField[]) {
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
/* Sanity check */
VMSTATE_UINT32_EQUAL(nr_irqs, ICSState),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(irqs, ICSState, nr_irqs,
vmstate_ics_simple_irq,
ICSIRQState),
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
VMSTATE_END_OF_LIST()
},
};
static void ics_simple_initfn(Object *obj)
{
ICSState *ics = ICS_SIMPLE(obj);
ics->offset = XICS_IRQ_BASE;
}
static void ics_simple_realize(DeviceState *dev, Error **errp)
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
{
ICSState *ics = ICS_SIMPLE(dev);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
if (!ics->nr_irqs) {
error_setg(errp, "Number of interrupts needs to be greater 0");
return;
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
ics->irqs = g_malloc0(ics->nr_irqs * sizeof(ICSIRQState));
ics->qirqs = qemu_allocate_irqs(ics_simple_set_irq, ics, ics->nr_irqs);
qemu_register_reset(ics_simple_reset, dev);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
}
static Property ics_simple_properties[] = {
DEFINE_PROP_UINT32("nr-irqs", ICSState, nr_irqs, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void ics_simple_class_init(ObjectClass *klass, void *data)
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
{
DeviceClass *dc = DEVICE_CLASS(klass);
ICSStateClass *isc = ICS_BASE_CLASS(klass);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
isc->realize = ics_simple_realize;
dc->props = ics_simple_properties;
dc->vmsd = &vmstate_ics_simple;
isc->reject = ics_simple_reject;
isc->resend = ics_simple_resend;
isc->eoi = ics_simple_eoi;
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
}
static const TypeInfo ics_simple_info = {
.name = TYPE_ICS_SIMPLE,
.parent = TYPE_ICS_BASE,
.instance_size = sizeof(ICSState),
.class_init = ics_simple_class_init,
.class_size = sizeof(ICSStateClass),
.instance_init = ics_simple_initfn,
};
static void ics_base_realize(DeviceState *dev, Error **errp)
{
ICSStateClass *icsc = ICS_BASE_GET_CLASS(dev);
ICSState *ics = ICS_BASE(dev);
Object *obj;
Error *err = NULL;
obj = object_property_get_link(OBJECT(dev), "xics", &err);
if (!obj) {
error_setg(errp, "%s: required link 'xics' not found: %s",
__func__, error_get_pretty(err));
return;
}
ics->xics = XICS_FABRIC(obj);
if (icsc->realize) {
icsc->realize(dev, errp);
}
}
static void ics_base_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = ics_base_realize;
}
static const TypeInfo ics_base_info = {
.name = TYPE_ICS_BASE,
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.parent = TYPE_DEVICE,
.abstract = true,
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
.instance_size = sizeof(ICSState),
.class_init = ics_base_class_init,
.class_size = sizeof(ICSStateClass),
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
};
static const TypeInfo xics_fabric_info = {
.name = TYPE_XICS_FABRIC,
.parent = TYPE_INTERFACE,
.class_size = sizeof(XICSFabricClass),
};
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
/*
* Exported functions
*/
qemu_irq xics_get_qirq(XICSFabric *xi, int irq)
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
{
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
ICSState *ics = xic->ics_get(xi, irq);
if (ics) {
return ics->qirqs[irq - ics->offset];
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
return NULL;
}
ICPState *xics_icp_get(XICSFabric *xi, int server)
{
XICSFabricClass *xic = XICS_FABRIC_GET_CLASS(xi);
return xic->icp_get(xi, server);
}
void ics_set_irq_type(ICSState *ics, int srcno, bool lsi)
{
assert(!(ics->irqs[srcno].flags & XICS_FLAGS_IRQ_MASK));
ics->irqs[srcno].flags |=
lsi ? XICS_FLAGS_IRQ_LSI : XICS_FLAGS_IRQ_MSI;
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
static void xics_register_types(void)
{
type_register_static(&ics_simple_info);
type_register_static(&ics_base_info);
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
type_register_static(&icp_info);
type_register_static(&xics_fabric_info);
Implement the PAPR (pSeries) virtualized interrupt controller (xics) PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-04-01 08:15:25 +04:00
}
xics: rename types to be sane and follow coding style Basically, in HW the layout of the interrupt network is: - One ICP per processor thread (the "presenter"). This contains the registers to fetch a pending interrupt (ack), EOI, and control the processor priority. - One ICS per logical source of interrupts (ie, one per PCI host bridge, and a few others here or there). This contains the per-interrupt source configuration (target processor(s), priority, mask) and the per-interrupt internal state. Under PAPR, there is a single "virtual" ICS ... somewhat (it's a bit oddball what pHyp does here, arguably there are two but we can ignore that distinction). There is no register level access. A pair of firmware (RTAS) calls is used to configure each virtual interrupt. So our model here is somewhat the same. We have one ICS in the emulated XICS which arguably *is* the emulated XICS, there's no point making it a separate "device", that would just be gross, and each VCPU has an associated ICP. Yet we call the "XICS" struct icp_state and then the ICPs 'struct icp_server_state'. It's particularly confusing when all of the functions have xics_prefixes yet take *icp arguments. Rename: struct icp_state -> XICSState struct icp_server_state -> ICPState struct ics_state -> ICSState struct ics_irq_state -> ICSIRQState Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Message-id: 1374175984-8930-12-git-send-email-aliguori@us.ibm.com [aik: added ics_resend() on post_load] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-18 23:33:04 +04:00
type_init(xics_register_types)