qemu/target/hexagon/imported/macros.def

1558 lines
29 KiB
Modula-2
Raw Normal View History

/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
DEF_MACRO(
LIKELY, /* NAME */
__builtin_expect((X),1), /* BEH */
() /* attribs */
)
DEF_MACRO(
UNLIKELY, /* NAME */
__builtin_expect((X),0), /* BEH */
() /* attribs */
)
DEF_MACRO(
CANCEL, /* macro name */
{if (thread->last_pkt) thread->last_pkt->slot_cancelled |= (1<<insn->slot); return;} , /* behavior */
(A_CONDEXEC)
)
DEF_MACRO(
LOAD_CANCEL, /* macro name */
{mem_general_load_cancelled(thread,EA,insn);CANCEL;} , /* behavior */
(A_CONDEXEC)
)
DEF_MACRO(
STORE_CANCEL, /* macro name */
{mem_general_store_cancelled(thread,EA,insn);CANCEL;} , /* behavior */
(A_CONDEXEC)
)
DEF_MACRO(
fMAX, /* macro name */
(((A) > (B)) ? (A) : (B)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fMIN, /* macro name */
(((A) < (B)) ? (A) : (B)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fABS, /* macro name */
(((A)<0)?(-(A)):(A)), /* behavior */
/* optional attributes */
)
/* Bit insert */
DEF_MACRO(
fINSERT_BITS,
{
REG = ((REG) & ~(((fCONSTLL(1)<<(WIDTH))-1)<<(OFFSET))) | (((INVAL) & ((fCONSTLL(1)<<(WIDTH))-1)) << (OFFSET));
},
/* attribs */
)
/* Bit extract */
DEF_MACRO(
fEXTRACTU_BITS,
(fZXTN(WIDTH,32,(INREG >> OFFSET))),
/* attribs */
)
DEF_MACRO(
fEXTRACTU_BIDIR,
(fZXTN(WIDTH,32,fBIDIR_LSHIFTR((INREG),(OFFSET),4_8))),
/* attribs */
)
DEF_MACRO(
fEXTRACTU_RANGE,
(fZXTN((HIBIT-LOWBIT+1),32,(INREG >> LOWBIT))),
/* attribs */
)
DEF_MACRO(
f8BITSOF,
( (VAL) ? 0xff : 0x00),
/* attribs */
)
DEF_MACRO(
fLSBOLD,
((VAL) & 1),
()
)
DEF_MACRO(
fLSBNEW,
predlog_read(thread,PNUM),
()
)
DEF_MACRO(
fLSBNEW0,
predlog_read(thread,0),
()
)
DEF_MACRO(
fLSBNEW1,
predlog_read(thread,1),
()
)
DEF_MACRO(
fLSBOLDNOT,
(!fLSBOLD(VAL)),
()
)
DEF_MACRO(
fLSBNEWNOT,
(!fLSBNEW(PNUM)),
()
)
DEF_MACRO(
fLSBNEW0NOT,
(!fLSBNEW0),
()
)
DEF_MACRO(
fLSBNEW1NOT,
(!fLSBNEW1),
()
)
DEF_MACRO(
fNEWREG,
({if (newvalue_missing(thread,RNUM) ||
IS_CANCELLED(insn->new_value_producer_slot)) CANCEL; reglog_read(thread,RNUM);}),
(A_DOTNEWVALUE,A_RESTRICT_SLOT0ONLY)
)
// Store new with a missing newvalue or cancelled goes out as a zero byte store in V65
// take advantage of the fact that reglog_read returns zero for not valid rnum
DEF_MACRO(
fNEWREG_ST,
({if (newvalue_missing(thread,RNUM) ||
IS_CANCELLED(insn->new_value_producer_slot)) { STORE_ZERO; RNUM = -1; }; reglog_read(thread,RNUM);}),
(A_DOTNEWVALUE,A_RESTRICT_SLOT0ONLY)
)
DEF_MACRO(
fSATUVALN,
({fSET_OVERFLOW(); ((VAL) < 0) ? 0 : ((1LL<<(N))-1);}),
()
)
DEF_MACRO(
fSATVALN,
({fSET_OVERFLOW(); ((VAL) < 0) ? (-(1LL<<((N)-1))) : ((1LL<<((N)-1))-1);}),
()
)
DEF_MACRO(
fZXTN, /* macro name */
((VAL) & ((1LL<<(N))-1)),
/* attribs */
)
DEF_MACRO(
fSXTN, /* macro name */
((fZXTN(N,M,VAL) ^ (1LL<<((N)-1))) - (1LL<<((N)-1))),
/* attribs */
)
DEF_MACRO(
fSATN,
((fSXTN(N,64,VAL) == (VAL)) ? (VAL) : fSATVALN(N,VAL)),
()
)
DEF_MACRO(
fADDSAT64,
{
size8u_t __a = fCAST8u(A);
size8u_t __b = fCAST8u(B);
size8u_t __sum = __a + __b;
size8u_t __xor = __a ^ __b;
const size8u_t __mask = 0x8000000000000000ULL;
if (__xor & __mask) {
/* Opposite signs, OK */
DST = __sum;
} else if ((__a ^ __sum) & __mask) {
/* Signs mismatch */
if (__sum & __mask) {
/* overflowed to negative, make max pos */
DST=0x7FFFFFFFFFFFFFFFLL; fSET_OVERFLOW();
} else {
/* overflowed to positive, make max neg */
DST=0x8000000000000000LL; fSET_OVERFLOW();
}
} else {
/* signs did not mismatch, OK */
DST = __sum;
}
},
()
)
DEF_MACRO(
fSATUN,
((fZXTN(N,64,VAL) == (VAL)) ? (VAL) : fSATUVALN(N,VAL)),
()
)
DEF_MACRO(
fSATH,
(fSATN(16,VAL)),
()
)
DEF_MACRO(
fSATUH,
(fSATUN(16,VAL)),
()
)
DEF_MACRO(
fSATUB,
(fSATUN(8,VAL)),
()
)
DEF_MACRO(
fSATB,
(fSATN(8,VAL)),
()
)
/*************************************/
/* immediate extension */
/*************************************/
DEF_MACRO(
fIMMEXT,
(IMM = IMM),
(A_EXTENDABLE)
)
DEF_MACRO(
fMUST_IMMEXT,
fIMMEXT(IMM),
(A_EXTENDABLE)
)
DEF_MACRO(
fPCALIGN,
IMM=(IMM & ~PCALIGN_MASK),
(A_EXTENDABLE)
)
/*************************************/
/* Read and Write Implicit Regs */
/*************************************/
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
DEF_MACRO(
fREAD_IREG, /* read modifier register */
(fSXTN(11,64,(((VAL) & 0xf0000000)>>21) | ((VAL>>17)&0x7f) )), /* behavior */
()
)
DEF_MACRO(
fREAD_LR, /* read link register */
(READ_RREG(REG_LR)), /* behavior */
()
)
DEF_MACRO(
fWRITE_LR, /* write lr */
WRITE_RREG(REG_LR,A), /* behavior */
(A_IMPLICIT_WRITES_LR)
)
DEF_MACRO(
fWRITE_FP, /* write sp */
WRITE_RREG(REG_FP,A), /* behavior */
(A_IMPLICIT_WRITES_FP)
)
DEF_MACRO(
fWRITE_SP, /* write sp */
WRITE_RREG(REG_SP,A), /* behavior */
(A_IMPLICIT_WRITES_SP)
)
DEF_MACRO(
fREAD_SP, /* read stack pointer */
(READ_RREG(REG_SP)), /* behavior */
()
)
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
DEF_MACRO(
fREAD_CSREG, /* read CS register */
(READ_RREG(REG_CSA+N)), /* behavior */
()
)
DEF_MACRO(
fREAD_LC0, /* read loop count */
(READ_RREG(REG_LC0)), /* behavior */
()
)
DEF_MACRO(
fREAD_LC1, /* read loop count */
(READ_RREG(REG_LC1)), /* behavior */
()
)
DEF_MACRO(
fREAD_SA0, /* read start addr */
(READ_RREG(REG_SA0)), /* behavior */
()
)
DEF_MACRO(
fREAD_SA1, /* read start addr */
(READ_RREG(REG_SA1)), /* behavior */
()
)
DEF_MACRO(
fREAD_FP, /* read frame pointer */
(READ_RREG(REG_FP)), /* behavior */
()
)
DEF_MACRO(
fREAD_GP, /* read global pointer */
(insn->extension_valid ? 0 : READ_RREG(REG_GP)), /* behavior */
()
)
DEF_MACRO(
fREAD_PC, /* read PC */
(READ_RREG(REG_PC)), /* behavior */
()
)
DEF_MACRO(
fREAD_NPC, /* read next PC */
(thread->next_PC & (0xfffffffe)), /* behavior */
()
)
DEF_MACRO(
fREAD_P0, /* read Predicate 0 */
(READ_PREG(0)), /* behavior */
()
)
DEF_MACRO(
fREAD_P3, /* read Predicate 3 */
(READ_PREG(3)), /* behavior */
()
)
DEF_MACRO(
fCHECK_PCALIGN,
if (((A) & PCALIGN_MASK)) {
register_error_exception(thread,PRECISE_CAUSE_PC_NOT_ALIGNED,thread->Regs[REG_BADVA0],thread->Regs[REG_BADVA1],GET_SSR_FIELD(SSR_BVS),GET_SSR_FIELD(SSR_V0),GET_SSR_FIELD(SSR_V1),0);
},
()
)
DEF_MACRO(
fWRITE_NPC, /* write next PC */
if (!thread->branch_taken) {
if (A != thread->next_PC) {
thread->next_pkt_guess=thread->last_pkt->taken_ptr;
}
fCHECK_PCALIGN(A);
thread->branched = 1; thread->branch_taken = 1; thread->next_PC = A; \
thread->branch_offset = insn->encoding_offset; thread->branch_opcode = insn->opcode;
}, /* behavior */
(A_COF)
)
DEF_MACRO(
fBRANCH,
fWRITE_NPC(LOC); fCOF_CALLBACK(LOC,TYPE),
()
)
DEF_MACRO(
fJUMPR, /* A jumpr has executed */
{fBRANCH(TARGET,COF_TYPE_JUMPR);},
(A_INDIRECT)
)
DEF_MACRO(
fHINTJR, /* A hintjr instruction has executed */
{ },
)
DEF_MACRO(
fCALL, /* Do a call */
if (!thread->branch_taken) {fBP_RAS_CALL(A); fWRITE_LR(fREAD_NPC()); fBRANCH(A,COF_TYPE_CALL);},
(A_COF,A_IMPLICIT_WRITES_LR,A_CALL)
)
DEF_MACRO(
fCALLR, /* Do a call Register */
if (!thread->branch_taken) {fBP_RAS_CALL(A); fWRITE_LR(fREAD_NPC()); fBRANCH(A,COF_TYPE_CALLR);},
(A_COF,A_IMPLICIT_WRITES_LR,A_CALL)
)
DEF_MACRO(
fWRITE_LOOP_REGS0, /* write ln,sa,ea,lc */
{WRITE_RREG(REG_LC0,COUNT);
WRITE_RREG(REG_SA0,START);},
(A_IMPLICIT_WRITES_LC0,A_IMPLICIT_WRITES_SA0)
)
DEF_MACRO(
fWRITE_LOOP_REGS1, /* write ln,sa,ea,lc */
{WRITE_RREG(REG_LC1,COUNT);
WRITE_RREG(REG_SA1,START);},
(A_IMPLICIT_WRITES_LC1,A_IMPLICIT_WRITES_SA1)
)
DEF_MACRO(
fWRITE_LC0,
WRITE_RREG(REG_LC0,VAL),
(A_IMPLICIT_WRITES_LC0)
)
DEF_MACRO(
fWRITE_LC1,
WRITE_RREG(REG_LC1,VAL),
(A_IMPLICIT_WRITES_LC1)
)
DEF_MACRO(
fCARRY_FROM_ADD,
carry_from_add64(A,B,C),
/* NOTHING */
)
DEF_MACRO(
fSET_OVERFLOW,
SET_USR_FIELD(USR_OVF,1),
()
)
DEF_MACRO(
fSET_LPCFG,
SET_USR_FIELD(USR_LPCFG,(VAL)),
()
)
DEF_MACRO(
fGET_LPCFG,
(GET_USR_FIELD(USR_LPCFG)),
()
)
DEF_MACRO(
fWRITE_P0, /* write Predicate 0 */
WRITE_PREG(0,VAL), /* behavior */
(A_IMPLICIT_WRITES_P0)
)
DEF_MACRO(
fWRITE_P1, /* write Predicate 0 */
WRITE_PREG(1,VAL), /* behavior */
(A_IMPLICIT_WRITES_P1)
)
DEF_MACRO(
fWRITE_P2, /* write Predicate 0 */
WRITE_PREG(2,VAL), /* behavior */
(A_IMPLICIT_WRITES_P2)
)
DEF_MACRO(
fWRITE_P3, /* write Predicate 0 */
WRITE_PREG(3,VAL), /* behavior */
(A_IMPLICIT_WRITES_P3)
)
DEF_MACRO(
fPART1, /* write Predicate 0 */
if (insn->part1) { WORK; return; }, /* behavior */
/* optional attributes */
)
/*************************************/
/* Casting, Sign-Zero extension, etc */
/*************************************/
DEF_MACRO(
fCAST4u, /* macro name */
((size4u_t)(A)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fCAST4s, /* macro name */
((size4s_t)(A)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fCAST8u, /* macro name */
((size8u_t)(A)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fCAST8s, /* macro name */
((size8s_t)(A)), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fCAST4_4s, /* macro name */
((size4s_t)(A)),
/* optional attributes */
)
DEF_MACRO(
fCAST4_4u, /* macro name */
((size4u_t)(A)),
/* optional attributes */
)
DEF_MACRO(
fCAST4_8s, /* macro name */
((size8s_t)((size4s_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fCAST4_8u, /* macro name */
((size8u_t)((size4u_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fCAST8_8s, /* macro name */
((size8s_t)(A)),
/* optional attributes */
)
DEF_MACRO(
fCAST8_8u, /* macro name */
((size8u_t)(A)),
/* optional attributes */
)
DEF_MACRO(
fCAST2_8s, /* macro name */
((size8s_t)((size2s_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fCAST2_8u, /* macro name */
((size8u_t)((size2u_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fZE8_16, /* zero-extend 8 to 16 */
((size2s_t)((size1u_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fSE8_16, /* sign-extend 8 to 16 */
((size2s_t)((size1s_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fSE16_32, /* sign-extend 16 to 32 */
((size4s_t)((size2s_t)(A))), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fZE16_32, /* zero-extend 16 to 32 */
((size4u_t)((size2u_t)(A))), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fSE32_64,
( (size8s_t)((size4s_t)(A)) ), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fZE32_64,
( (size8u_t)((size4u_t)(A)) ), /* behavior */
/* optional attributes */
)
DEF_MACRO(
fSE8_32, /* sign-extend 8 to 32 */
((size4s_t)((size1s_t)(A))),
/* optional attributes */
)
DEF_MACRO(
fZE8_32, /* zero-extend 8 to 32 */
((size4s_t)((size1u_t)(A))),
/* optional attributes */
)
/*************************************/
/* DSP arithmetic support */
/************************************/
DEF_MACRO(
fMPY8UU, /* multiply half integer */
(int)(fZE8_16(A)*fZE8_16(B)), /* behavior */
()
)
DEF_MACRO(
fMPY8US, /* multiply half integer */
(int)(fZE8_16(A)*fSE8_16(B)), /* behavior */
()
)
DEF_MACRO(
fMPY8SU, /* multiply half integer */
(int)(fSE8_16(A)*fZE8_16(B)), /* behavior */
()
)
DEF_MACRO(
fMPY8SS, /* multiply half integer */
(int)((short)(A)*(short)(B)), /* behavior */
()
)
DEF_MACRO(
fMPY16SS, /* multiply half integer */
fSE32_64(fSE16_32(A)*fSE16_32(B)), /* behavior */
()
)
DEF_MACRO(
fMPY16UU, /* multiply unsigned half integer */
fZE32_64(fZE16_32(A)*fZE16_32(B)), /* behavior */
()
)
DEF_MACRO(
fMPY16SU, /* multiply half integer */
fSE32_64(fSE16_32(A)*fZE16_32(B)), /* behavior */
()
)
DEF_MACRO(
fMPY16US, /* multiply half integer */
fMPY16SU(B,A),
()
)
DEF_MACRO(
fMPY32SS, /* multiply half integer */
(fSE32_64(A)*fSE32_64(B)), /* behavior */
()
)
DEF_MACRO(
fMPY32UU, /* multiply half integer */
(fZE32_64(A)*fZE32_64(B)), /* behavior */
()
)
DEF_MACRO(
fMPY32SU, /* multiply half integer */
(fSE32_64(A)*fZE32_64(B)), /* behavior */
()
)
DEF_MACRO(
fMPY3216SS, /* multiply mixed precision */
(fSE32_64(A)*fSXTN(16,64,B)), /* behavior */
()
)
DEF_MACRO(
fMPY3216SU, /* multiply mixed precision */
(fSE32_64(A)*fZXTN(16,64,B)), /* behavior */
()
)
DEF_MACRO(
fROUND, /* optional rounding */
(A+0x8000),
/* optional attributes */
)
DEF_MACRO(
fCLIP, /* optional rounding */
{ size4s_t maxv = (1<<U)-1;
size4s_t minv = -(1<<U);
DST = fMIN(maxv,fMAX(SRC,minv));
},
/* optional attributes */
)
DEF_MACRO(
fCRND, /* optional rounding */
((((A)&0x3)==0x3)?((A)+1):((A))),
/* optional attributes */
)
DEF_MACRO(
fRNDN, /* Rounding to a boundary */
((((N)==0)?(A):(((fSE32_64(A))+(1<<((N)-1)))))),
/* optional attributes */
)
DEF_MACRO(
fCRNDN, /* Rounding to a boundary */
(conv_round(A,N)),
/* optional attributes */
)
DEF_MACRO(
fADD128, /* Rounding to a boundary */
(add128(A, B)),
/* optional attributes */
)
DEF_MACRO(
fSUB128, /* Rounding to a boundary */
(sub128(A, B)),
/* optional attributes */
)
DEF_MACRO(
fSHIFTR128, /* Rounding to a boundary */
(shiftr128(A, B)),
/* optional attributes */
)
DEF_MACRO(
fSHIFTL128, /* Rounding to a boundary */
(shiftl128(A, B)),
/* optional attributes */
)
DEF_MACRO(
fAND128, /* Rounding to a boundary */
(and128(A, B)),
/* optional attributes */
)
DEF_MACRO(
fCAST8S_16S, /* Rounding to a boundary */
(cast8s_to_16s(A)),
/* optional attributes */
)
DEF_MACRO(
fCAST16S_8S, /* Rounding to a boundary */
(cast16s_to_8s(A)),
/* optional attributes */
)
DEF_MACRO(
fEA_RI, /* Calculate EA with Register + Immediate Offset */
do { EA=REG+IMM; fDOCHKPAGECROSS(REG,EA); } while (0),
()
)
DEF_MACRO(
fEA_RRs, /* Calculate EA with Register + Registers scaled Offset */
do { EA=REG+(REG2<<SCALE); fDOCHKPAGECROSS(REG,EA); } while (0),
()
)
DEF_MACRO(
fEA_IRs, /* Calculate EA with Immediate + Registers scaled Offset */
do { EA=IMM+(REG<<SCALE); fDOCHKPAGECROSS(IMM,EA); } while (0),
()
)
DEF_MACRO(
fEA_IMM, /* Calculate EA with Immediate */
EA=IMM,
()
)
DEF_MACRO(
fEA_REG, /* Calculate EA with REGISTER */
EA=REG,
()
)
DEF_MACRO(
fEA_GPI, /* Calculate EA with Global Poitner + Immediate */
do { EA=fREAD_GP()+IMM; fGP_DOCHKPAGECROSS(fREAD_GP(),EA); } while (0),
()
)
DEF_MACRO(
fPM_I, /* Post Modify Register by Immediate*/
do { REG = REG + IMM; } while (0),
()
)
DEF_MACRO(
fPM_M, /* Post Modify Register by M register */
do { REG = REG + MVAL; } while (0),
()
)
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
DEF_MACRO(
fPM_CIRI, /* Post Modify Register using Circular arithmetic by Immediate */
do { fcirc_add(REG,siV,MuV); } while (0),
()
)
DEF_MACRO(
fPM_CIRR, /* Post Modify Register using Circular arithmetic by register */
do { fcirc_add(REG,VAL,MuV); } while (0),
()
)
DEF_MACRO(
fSCALE, /* scale by N */
(((size8s_t)(A))<<N),
/* optional attributes */
)
DEF_MACRO(
fSATW, /* saturating to 32-bits*/
fSATN(32,((long long)A)),
()
)
DEF_MACRO(
fSAT, /* saturating to 32-bits*/
fSATN(32,(A)),
()
)
DEF_MACRO(
fSAT_ORIG_SHL, /* Saturating to 32-bits, with original value, for shift left */
((((size4s_t)((fSAT(A)) ^ ((size4s_t)(ORIG_REG)))) < 0) ?
fSATVALN(32,((size4s_t)(ORIG_REG))) :
((((ORIG_REG) > 0) && ((A) == 0)) ?
fSATVALN(32,(ORIG_REG)) :
fSAT(A))),
()
)
DEF_MACRO(
fPASS,
A,
)
DEF_MACRO(
fRND, /* saturating to 32-bits*/
(((A)+1)>>1),
)
DEF_MACRO(
fBIDIR_SHIFTL,
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT))-1)) >>1) : (fCAST##REGSTYPE(SRC) << (SHAMT))),
()
)
DEF_MACRO(
fBIDIR_ASHIFTL,
fBIDIR_SHIFTL(SRC,SHAMT,REGSTYPE##s),
()
)
DEF_MACRO(
fBIDIR_LSHIFTL,
fBIDIR_SHIFTL(SRC,SHAMT,REGSTYPE##u),
()
)
DEF_MACRO(
fBIDIR_ASHIFTL_SAT,
(((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT))-1)) >>1) : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT),(SRC))),
()
)
DEF_MACRO(
fBIDIR_SHIFTR,
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT))-1)) << 1) : (fCAST##REGSTYPE(SRC) >> (SHAMT))),
()
)
DEF_MACRO(
fBIDIR_ASHIFTR,
fBIDIR_SHIFTR(SRC,SHAMT,REGSTYPE##s),
()
)
DEF_MACRO(
fBIDIR_LSHIFTR,
fBIDIR_SHIFTR(SRC,SHAMT,REGSTYPE##u),
()
)
DEF_MACRO(
fBIDIR_ASHIFTR_SAT,
(((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) << ((-(SHAMT))-1)) << 1,(SRC)) : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))),
()
)
DEF_MACRO(
fASHIFTR,
(fCAST##REGSTYPE##s(SRC) >> (SHAMT)),
/* */
)
DEF_MACRO(
fLSHIFTR,
(((SHAMT) >= 64)?0:(fCAST##REGSTYPE##u(SRC) >> (SHAMT))),
/* */
)
DEF_MACRO(
fROTL,
(((SHAMT)==0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) >> ((sizeof(SRC)*8)-(SHAMT)))))),
/* */
)
DEF_MACRO(
fROTR,
(((SHAMT)==0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) << ((sizeof(SRC)*8)-(SHAMT)))))),
/* */
)
DEF_MACRO(
fASHIFTL,
(((SHAMT) >= 64)?0:(fCAST##REGSTYPE##s(SRC) << (SHAMT))),
/* */
)
/*************************************/
/* Floating-Point Support */
/************************************/
DEF_MACRO(
fFLOAT, /* name */
({ union { float f; size4u_t i; } _fipun; _fipun.i = (A); _fipun.f; }), /* behavior */
(A_FPOP)
)
DEF_MACRO(
fUNFLOAT, /* multiply half integer */
({ union { float f; size4u_t i; } _fipun; _fipun.f = (A); isnan(_fipun.f) ? 0xFFFFFFFFU : _fipun.i; }), /* behavior */
(A_FPOP)
)
DEF_MACRO(
fSFNANVAL,
0xffffffff,
()
)
DEF_MACRO(
fSFINFVAL,
(((A) & 0x80000000) | 0x7f800000),
()
)
DEF_MACRO(
fSFONEVAL,
(((A) & 0x80000000) | fUNFLOAT(1.0)),
()
)
DEF_MACRO(
fCHECKSFNAN,
do {
if (isnan(fFLOAT(A))) {
if ((fGETBIT(22,A)) == 0) fRAISEFLAGS(FE_INVALID);
DST = fSFNANVAL();
}
} while (0),
()
)
DEF_MACRO(
fCHECKSFNAN3,
do {
fCHECKSFNAN(DST,A);
fCHECKSFNAN(DST,B);
fCHECKSFNAN(DST,C);
} while (0),
()
)
DEF_MACRO(
fSF_BIAS,
127,
()
)
DEF_MACRO(
fSF_MANTBITS,
23,
()
)
DEF_MACRO(
fSF_MUL_POW2,
(fUNFLOAT(fFLOAT(A) * fFLOAT((fSF_BIAS() + (B)) << fSF_MANTBITS()))),
()
)
DEF_MACRO(
fSF_GETEXP,
(((A) >> fSF_MANTBITS()) & 0xff),
()
)
DEF_MACRO(
fSF_MAXEXP,
(254),
()
)
DEF_MACRO(
fSF_RECIP_COMMON,
arch_sf_recip_common(&N,&D,&O,&A),
(A_FPOP)
)
DEF_MACRO(
fSF_INVSQRT_COMMON,
arch_sf_invsqrt_common(&N,&O,&A),
(A_FPOP)
)
DEF_MACRO(
fFMAFX,
internal_fmafx(A,B,C,fSXTN(8,64,ADJ)),
()
)
DEF_MACRO(
fFMAF,
internal_fmafx(A,B,C,0),
()
)
DEF_MACRO(
fSFMPY,
internal_mpyf(A,B),
()
)
DEF_MACRO(
fMAKESF,
((((SIGN) & 1) << 31) | (((EXP) & 0xff) << fSF_MANTBITS()) |
((MANT) & ((1<<fSF_MANTBITS())-1))),
()
)
DEF_MACRO(
fDOUBLE, /* multiply half integer */
({ union { double f; size8u_t i; } _fipun; _fipun.i = (A); _fipun.f; }), /* behavior */
(A_FPOP)
)
DEF_MACRO(
fUNDOUBLE, /* multiply half integer */
({ union { double f; size8u_t i; } _fipun; _fipun.f = (A); isnan(_fipun.f) ? 0xFFFFFFFFFFFFFFFFULL : _fipun.i; }), /* behavior */
(A_FPOP)
)
DEF_MACRO(
fDFNANVAL,
0xffffffffffffffffULL,
()
)
DEF_MACRO(
fDF_ISNORMAL,
(fpclassify(fDOUBLE(X)) == FP_NORMAL),
()
)
DEF_MACRO(
fDF_ISDENORM,
(fpclassify(fDOUBLE(X)) == FP_SUBNORMAL),
()
)
DEF_MACRO(
fDF_ISBIG,
(fDF_GETEXP(X) >= 512),
()
)
DEF_MACRO(
fDF_MANTBITS,
52,
()
)
DEF_MACRO(
fDF_GETEXP,
(((A) >> fDF_MANTBITS()) & 0x7ff),
()
)
DEF_MACRO(
fFMA,
internal_fma(A,B,C),
/* nothing */
)
DEF_MACRO(
fDF_MPY_HH,
internal_mpyhh(A,B,ACC),
/* nothing */
)
DEF_MACRO(
fFPOP_START,
arch_fpop_start(thread),
/* nothing */
)
DEF_MACRO(
fFPOP_END,
arch_fpop_end(thread),
/* nothing */
)
DEF_MACRO(
fFPSETROUND_NEAREST,
fesetround(FE_TONEAREST),
/* nothing */
)
DEF_MACRO(
fFPSETROUND_CHOP,
fesetround(FE_TOWARDZERO),
/* nothing */
)
DEF_MACRO(
fFPCANCELFLAGS,
feclearexcept(FE_ALL_EXCEPT),
/* nothing */
)
DEF_MACRO(
fISINFPROD,
((isinf(A) && isinf(B)) ||
(isinf(A) && isfinite(B) && ((B) != 0.0)) ||
(isinf(B) && isfinite(A) && ((A) != 0.0))),
/* nothing */
)
DEF_MACRO(
fISZEROPROD,
((((A) == 0.0) && isfinite(B)) || (((B) == 0.0) && isfinite(A))),
/* nothing */
)
DEF_MACRO(
fRAISEFLAGS,
arch_raise_fpflag(A),
/* NOTHING */
)
DEF_MACRO(
fDF_MAX,
(((A)==(B))
? fDOUBLE(fUNDOUBLE(A) & fUNDOUBLE(B))
: fmax(A,B)),
(A_FPOP)
)
DEF_MACRO(
fDF_MIN,
(((A)==(B))
? fDOUBLE(fUNDOUBLE(A) | fUNDOUBLE(B))
: fmin(A,B)),
(A_FPOP)
)
DEF_MACRO(
fSF_MAX,
(((A)==(B))
? fFLOAT(fUNFLOAT(A) & fUNFLOAT(B))
: fmaxf(A,B)),
(A_FPOP)
)
DEF_MACRO(
fSF_MIN,
(((A)==(B))
? fFLOAT(fUNFLOAT(A) | fUNFLOAT(B))
: fminf(A,B)),
(A_FPOP)
)
/*************************************/
/* Load/Store support */
/*************************************/
DEF_MACRO(fLOAD,
{ DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE(thread,EA,insn); },
(A_LOAD,A_MEMLIKE)
)
DEF_MACRO(fMEMOP,
{ memop##SIZE##_##FNTYPE(thread,EA,VALUE); },
(A_LOAD,A_STORE,A_MEMLIKE)
)
DEF_MACRO(fGET_FRAMEKEY,
READ_RREG(REG_FRAMEKEY),
()
)
DEF_MACRO(fFRAME_SCRAMBLE,
((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)),
/* ATTRIBS */
)
DEF_MACRO(fFRAME_UNSCRAMBLE,
fFRAME_SCRAMBLE(VAL),
/* ATTRIBS */
)
DEF_MACRO(fFRAMECHECK,
sys_check_framelimit(thread,ADDR,EA),
()
)
DEF_MACRO(fLOAD_LOCKED,
{ DST = (size##SIZE##SIGN##_t)mem_load_locked(thread,EA,SIZE,insn); },
(A_LOAD,A_MEMLIKE)
)
DEF_MACRO(fSTORE,
{ MEM_STORE##SIZE(thread,EA,SRC,insn); },
(A_STORE,A_MEMLIKE)
)
DEF_MACRO(fSTORE_LOCKED,
{ PRED = (mem_store_conditional(thread,EA,SRC,SIZE,insn) ? 0xff : 0); },
(A_STORE,A_MEMLIKE)
)
/*************************************/
/* Functions to help with bytes */
/*************************************/
DEF_MACRO(fGETBYTE,
((size1s_t)((SRC>>((N)*8))&0xff)),
/* nothing */
)
DEF_MACRO(fGETUBYTE,
((size1u_t)((SRC>>((N)*8))&0xff)),
/* nothing */
)
DEF_MACRO(fSETBYTE,
{
DST = (DST & ~(0x0ffLL<<((N)*8))) | (((size8u_t)((VAL) & 0x0ffLL)) << ((N)*8));
},
/* nothing */
)
DEF_MACRO(fGETHALF,
((size2s_t)((SRC>>((N)*16))&0xffff)),
/* nothing */
)
DEF_MACRO(fGETUHALF,
((size2u_t)((SRC>>((N)*16))&0xffff)),
/* nothing */
)
DEF_MACRO(fSETHALF,
{
DST = (DST & ~(0x0ffffLL<<((N)*16))) | (((size8u_t)((VAL) & 0x0ffff)) << ((N)*16));
},
/* nothing */
)
DEF_MACRO(fGETWORD,
((size8s_t)((size4s_t)((SRC>>((N)*32))&0x0ffffffffLL))),
/* nothing */
)
DEF_MACRO(fGETUWORD,
((size8u_t)((size4u_t)((SRC>>((N)*32))&0x0ffffffffLL))),
/* nothing */
)
DEF_MACRO(fSETWORD,
{
DST = (DST & ~(0x0ffffffffLL<<((N)*32))) | (((VAL) & 0x0ffffffffLL) << ((N)*32));
},
/* nothing */
)
DEF_MACRO(fSETBIT,
{
DST = (DST & ~(1ULL<<(N))) | (((size8u_t)(VAL))<<(N));
},
/* nothing */
)
DEF_MACRO(fGETBIT,
(((SRC)>>N)&1),
/* nothing */
)
DEF_MACRO(fSETBITS,
do {
int j;
for (j=LO;j<=HI;j++) {
fSETBIT(j,DST,VAL);
}
} while (0),
/* nothing */
)
/*************************************/
/* Used for parity, etc........ */
/*************************************/
DEF_MACRO(fCOUNTONES_4,
count_ones_4(VAL),
/* nothing */
)
DEF_MACRO(fCOUNTONES_8,
count_ones_8(VAL),
/* nothing */
)
DEF_MACRO(fBREV_8,
reverse_bits_8(VAL),
/* nothing */
)
DEF_MACRO(fBREV_4,
reverse_bits_4(VAL),
/* nothing */
)
DEF_MACRO(fCL1_8,
count_leading_ones_8(VAL),
/* nothing */
)
DEF_MACRO(fCL1_4,
count_leading_ones_4(VAL),
/* nothing */
)
DEF_MACRO(fINTERLEAVE,
interleave(ODD,EVEN),
/* nothing */
)
DEF_MACRO(fDEINTERLEAVE,
deinterleave(MIXED),
/* nothing */
)
DEF_MACRO(fHIDE,
A,
()
)
DEF_MACRO(fCONSTLL,
A##LL,
)
/* Do the things in the parens, but don't print the parens. */
DEF_MACRO(fECHO,
(A),
/* nothing */
)
/********************************************/
/* OS interface and stop/wait */
/********************************************/
DEF_MACRO(fPAUSE,
{sys_pause(thread, insn->slot, IMM);},
()
)
DEF_MACRO(fTRAP,
warn("Trap NPC=%x ",fREAD_NPC());
warn("Trap exception, PCYCLE=%lld TYPE=%d NPC=%x IMM=0x%x",thread->processor_ptr->pstats[pcycles],TRAPTYPE,fREAD_NPC(),IMM);
register_trap_exception(thread,fREAD_NPC(),TRAPTYPE,IMM);,
()
)
DEF_MACRO(fALIGN_REG_FIELD_VALUE,
((VAL)<<reg_field_info[FIELD].offset),
/* */
)
DEF_MACRO(fGET_REG_FIELD_MASK,
(((1<<reg_field_info[FIELD].width)-1)<<reg_field_info[FIELD].offset),
/* */
)
DEF_MACRO(fREAD_REG_FIELD,
fEXTRACTU_BITS(thread->Regs[REG_##REG],
reg_field_info[FIELD].width,
reg_field_info[FIELD].offset),
/* ATTRIBS */
)
DEF_MACRO(fGET_FIELD,
fEXTRACTU_BITS(VAL,
reg_field_info[FIELD].width,
reg_field_info[FIELD].offset),
/* ATTRIBS */
)
DEF_MACRO(fSET_FIELD,
fINSERT_BITS(VAL,
reg_field_info[FIELD].width,
reg_field_info[FIELD].offset,
(NEWVAL)),
/* ATTRIBS */
)
/********************************************/
/* Cache Management */
/********************************************/
DEF_MACRO(fBARRIER,
{
sys_barrier(thread, insn->slot);
},
()
)
DEF_MACRO(fSYNCH,
{
sys_sync(thread, insn->slot);
},
()
)
DEF_MACRO(fISYNC,
{
sys_isync(thread, insn->slot);
},
()
)
DEF_MACRO(fDCFETCH,
sys_dcfetch(thread, (REG), insn->slot),
(A_MEMLIKE)
)
DEF_MACRO(fICINVA,
{
arch_internal_flush(thread->processor_ptr, 0, 0xffffffff);
sys_icinva(thread, (REG),insn->slot);
},
(A_ICINVA)
)
DEF_MACRO(fL2FETCH,
sys_l2fetch(thread, ADDR,HEIGHT,WIDTH,STRIDE,FLAGS, insn->slot),
(A_MEMLIKE,A_L2FETCH)
)
DEF_MACRO(fDCCLEANA,
sys_dccleana(thread, (REG)),
(A_MEMLIKE)
)
DEF_MACRO(fDCCLEANINVA,
sys_dccleaninva(thread, (REG), insn->slot),
(A_MEMLIKE,A_DCCLEANINVA)
)
DEF_MACRO(fDCZEROA,
sys_dczeroa(thread, (REG)),
(A_MEMLIKE)
)
DEF_MACRO(fCHECKFORPRIV,
{sys_check_privs(thread); if (EXCEPTION_DETECTED) return; },
()
)
DEF_MACRO(fCHECKFORGUEST,
{sys_check_guest(thread); if (EXCEPTION_DETECTED) return; },
()
)
DEF_MACRO(fBRANCH_SPECULATE_STALL,
{
sys_speculate_branch_stall(thread, insn->slot, JUMP_COND(JUMP_PRED_SET),
SPEC_DIR,
DOTNEWVAL,
HINTBITNUM,
STRBITNUM,
0,
thread->last_pkt->pkt_has_dual_jump,
insn->is_2nd_jump,
(thread->fetch_access.vaddr + insn->encoding_offset*4));
},
()
)