qemu/qapi/qmp-dispatch.c

297 lines
8.3 KiB
C
Raw Normal View History

/*
* Core Definitions for QAPI/QMP Dispatch
*
* Copyright IBM, Corp. 2011
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "block/aio.h"
#include "qapi/compat-policy.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "qapi/qmp/dispatch.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qjson.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qobject-output-visitor.h"
#include "qapi/qmp/qbool.h"
#include "qemu/coroutine.h"
#include "qemu/main-loop.h"
Visitor *qobject_input_visitor_new_qmp(QObject *obj)
{
Visitor *v = qobject_input_visitor_new(obj);
visit_set_policy(v, &compat_policy);
return v;
}
Visitor *qobject_output_visitor_new_qmp(QObject **result)
{
Visitor *v = qobject_output_visitor_new(result);
visit_set_policy(v, &compat_policy);
return v;
}
static QDict *qmp_dispatch_check_obj(QDict *dict, bool allow_oob,
Error **errp)
{
const char *exec_key = NULL;
const QDictEntry *ent;
const char *arg_name;
const QObject *arg_obj;
for (ent = qdict_first(dict); ent;
ent = qdict_next(dict, ent)) {
arg_name = qdict_entry_key(ent);
arg_obj = qdict_entry_value(ent);
if (!strcmp(arg_name, "execute")
|| (!strcmp(arg_name, "exec-oob") && allow_oob)) {
if (qobject_type(arg_obj) != QTYPE_QSTRING) {
error_setg(errp, "QMP input member '%s' must be a string",
arg_name);
return NULL;
}
if (exec_key) {
error_setg(errp, "QMP input member '%s' clashes with '%s'",
arg_name, exec_key);
return NULL;
}
exec_key = arg_name;
} else if (!strcmp(arg_name, "arguments")) {
if (qobject_type(arg_obj) != QTYPE_QDICT) {
error_setg(errp,
"QMP input member 'arguments' must be an object");
return NULL;
}
} else if (!strcmp(arg_name, "id")) {
continue;
} else {
error_setg(errp, "QMP input member '%s' is unexpected",
arg_name);
return NULL;
}
}
if (!exec_key) {
error_setg(errp, "QMP input lacks member 'execute'");
return NULL;
}
return dict;
}
QDict *qmp_error_response(Error *err)
{
QDict *rsp;
rsp = qdict_from_jsonf_nofail("{ 'error': { 'class': %s, 'desc': %s } }",
QapiErrorClass_str(error_get_class(err)),
error_get_pretty(err));
error_free(err);
return rsp;
}
/*
* Does @qdict look like a command to be run out-of-band?
*/
bool qmp_is_oob(const QDict *dict)
{
return qdict_haskey(dict, "exec-oob")
&& !qdict_haskey(dict, "execute");
}
typedef struct QmpDispatchBH {
const QmpCommand *cmd;
Monitor *cur_mon;
QDict *args;
QObject **ret;
Error **errp;
Coroutine *co;
} QmpDispatchBH;
static void do_qmp_dispatch_bh(void *opaque)
{
QmpDispatchBH *data = opaque;
assert(monitor_cur() == NULL);
monitor_set_cur(qemu_coroutine_self(), data->cur_mon);
data->cmd->fn(data->args, data->ret, data->errp);
monitor_set_cur(qemu_coroutine_self(), NULL);
aio_co_wake(data->co);
}
/*
* Runs outside of coroutine context for OOB commands, but in coroutine
* context for everything else.
*/
QDict *coroutine_mixed_fn qmp_dispatch(const QmpCommandList *cmds, QObject *request,
bool allow_oob, Monitor *cur_mon)
{
Error *err = NULL;
bool oob;
const char *command;
QDict *args;
const QmpCommand *cmd;
QDict *dict;
QObject *id;
QObject *ret = NULL;
QDict *rsp = NULL;
dict = qobject_to(QDict, request);
if (!dict) {
id = NULL;
error_setg(&err, "QMP input must be a JSON object");
goto out;
}
id = qdict_get(dict, "id");
if (!qmp_dispatch_check_obj(dict, allow_oob, &err)) {
goto out;
}
command = qdict_get_try_str(dict, "execute");
oob = false;
if (!command) {
assert(allow_oob);
command = qdict_get_str(dict, "exec-oob");
oob = true;
}
cmd = qmp_find_command(cmds, command);
if (cmd == NULL) {
error_set(&err, ERROR_CLASS_COMMAND_NOT_FOUND,
"The command %s has not been found", command);
goto out;
}
if (!compat_policy_input_ok(cmd->special_features, &compat_policy,
ERROR_CLASS_COMMAND_NOT_FOUND,
"command", command, &err)) {
goto out;
}
if (!cmd->enabled) {
error_set(&err, ERROR_CLASS_COMMAND_NOT_FOUND,
"Command %s has been disabled%s%s",
command,
cmd->disable_reason ? ": " : "",
cmd->disable_reason ?: "");
goto out;
}
if (oob && !(cmd->options & QCO_ALLOW_OOB)) {
error_setg(&err, "The command %s does not support OOB",
command);
goto out;
}
if (!qmp_command_available(cmd, &err)) {
goto out;
cli: add --preconfig option This option allows pausing QEMU in the new RUN_STATE_PRECONFIG state, allowing the configuration of QEMU from QMP before the machine jumps into board initialization code of machine_run_board_init() The intent is to allow management to query machine state and additionally configure it using previous query results within one QEMU instance (i.e. eliminate the need to start QEMU twice, 1st to query board specific parameters and 2nd for actual VM start using query results for additional parameters). The new option complements -S option and could be used with or without it. The difference is that -S pauses QEMU when the machine is completely initialized with all devices wired up and ready to execute guest code (QEMU needs only to unpause VCPUs to let guest execute its code), while the "preconfig" option pauses QEMU early before board specific init callback (machine_run_board_init) is executed and allows the configuration of machine parameters which will be used by board init code. When early introspection/configuration is done, command 'exit-preconfig' should be used to exit RUN_STATE_PRECONFIG and transition to the next requested state (i.e. if -S is used then QEMU will pause the second time when board/device initialization is completed or start guest execution if -S isn't provided on CLI) PS: Initially 'preconfig' is planned to be used for configuring numa topology depending on board specified possible cpus layout. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-Id: <1526059483-42847-1-git-send-email-imammedo@redhat.com> [ehabkost: Changed "since 2.13" to "since 3.0"] Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-11 20:24:43 +03:00
}
if (!qdict_haskey(dict, "arguments")) {
args = qdict_new();
} else {
args = qdict_get_qdict(dict, "arguments");
qobject_ref(args);
}
assert(!(oob && qemu_in_coroutine()));
assert(monitor_cur() == NULL);
if (!!(cmd->options & QCO_COROUTINE) == qemu_in_coroutine()) {
monitor: only run coroutine commands in qemu_aio_context monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not polled during nested event loops. The coroutine currently reschedules itself in the main loop's qemu_aio_context AioContext, which is polled during nested event loops. One known problem is that QMP device-add calls drain_call_rcu(), which temporarily drops the BQL, leading to all sorts of havoc like other vCPU threads re-entering device emulation code while another vCPU thread is waiting in device emulation code with aio_poll(). Paolo Bonzini suggested running non-coroutine QMP handlers in the iohandler AioContext. This avoids trouble with nested event loops. His original idea was to move coroutine rescheduling to monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch() because we don't know if the QMP handler needs to run in coroutine context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have been nicer since it's associated with the monitor implementation and not as general as qmp_dispatch(), which is also used by qemu-ga. A number of qemu-iotests need updated .out files because the order of QMP events vs QMP responses has changed. Solves Issue #1933. Cc: qemu-stable@nongnu.org Fixes: 7bed89958bfbf40df9ca681cefbdca63abdde39d ("device_core: use drain_call_rcu in in qmp_device_add") Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192 Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985 Buglink: https://issues.redhat.com/browse/RHEL-17369 Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-ID: <20240118144823.1497953-4-stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com> Tested-by: Fiona Ebner <f.ebner@proxmox.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2024-01-18 17:48:23 +03:00
if (qemu_in_coroutine()) {
/*
* Move the coroutine from iohandler_ctx to qemu_aio_context for
* executing the command handler so that it can make progress if it
* involves an AIO_WAIT_WHILE().
*/
aio_co_schedule(qemu_get_aio_context(), qemu_coroutine_self());
qemu_coroutine_yield();
monitor: only run coroutine commands in qemu_aio_context monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not polled during nested event loops. The coroutine currently reschedules itself in the main loop's qemu_aio_context AioContext, which is polled during nested event loops. One known problem is that QMP device-add calls drain_call_rcu(), which temporarily drops the BQL, leading to all sorts of havoc like other vCPU threads re-entering device emulation code while another vCPU thread is waiting in device emulation code with aio_poll(). Paolo Bonzini suggested running non-coroutine QMP handlers in the iohandler AioContext. This avoids trouble with nested event loops. His original idea was to move coroutine rescheduling to monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch() because we don't know if the QMP handler needs to run in coroutine context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have been nicer since it's associated with the monitor implementation and not as general as qmp_dispatch(), which is also used by qemu-ga. A number of qemu-iotests need updated .out files because the order of QMP events vs QMP responses has changed. Solves Issue #1933. Cc: qemu-stable@nongnu.org Fixes: 7bed89958bfbf40df9ca681cefbdca63abdde39d ("device_core: use drain_call_rcu in in qmp_device_add") Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192 Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985 Buglink: https://issues.redhat.com/browse/RHEL-17369 Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-ID: <20240118144823.1497953-4-stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com> Tested-by: Fiona Ebner <f.ebner@proxmox.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2024-01-18 17:48:23 +03:00
}
monitor_set_cur(qemu_coroutine_self(), cur_mon);
cmd->fn(args, &ret, &err);
monitor_set_cur(qemu_coroutine_self(), NULL);
monitor: only run coroutine commands in qemu_aio_context monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not polled during nested event loops. The coroutine currently reschedules itself in the main loop's qemu_aio_context AioContext, which is polled during nested event loops. One known problem is that QMP device-add calls drain_call_rcu(), which temporarily drops the BQL, leading to all sorts of havoc like other vCPU threads re-entering device emulation code while another vCPU thread is waiting in device emulation code with aio_poll(). Paolo Bonzini suggested running non-coroutine QMP handlers in the iohandler AioContext. This avoids trouble with nested event loops. His original idea was to move coroutine rescheduling to monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch() because we don't know if the QMP handler needs to run in coroutine context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have been nicer since it's associated with the monitor implementation and not as general as qmp_dispatch(), which is also used by qemu-ga. A number of qemu-iotests need updated .out files because the order of QMP events vs QMP responses has changed. Solves Issue #1933. Cc: qemu-stable@nongnu.org Fixes: 7bed89958bfbf40df9ca681cefbdca63abdde39d ("device_core: use drain_call_rcu in in qmp_device_add") Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192 Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985 Buglink: https://issues.redhat.com/browse/RHEL-17369 Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-ID: <20240118144823.1497953-4-stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com> Tested-by: Fiona Ebner <f.ebner@proxmox.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2024-01-18 17:48:23 +03:00
if (qemu_in_coroutine()) {
/*
* Yield and reschedule so the main loop stays responsive.
*
* Move back to iohandler_ctx so that nested event loops for
* qemu_aio_context don't start new monitor commands.
*/
aio_co_schedule(iohandler_get_aio_context(),
qemu_coroutine_self());
qemu_coroutine_yield();
monitor: only run coroutine commands in qemu_aio_context monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not polled during nested event loops. The coroutine currently reschedules itself in the main loop's qemu_aio_context AioContext, which is polled during nested event loops. One known problem is that QMP device-add calls drain_call_rcu(), which temporarily drops the BQL, leading to all sorts of havoc like other vCPU threads re-entering device emulation code while another vCPU thread is waiting in device emulation code with aio_poll(). Paolo Bonzini suggested running non-coroutine QMP handlers in the iohandler AioContext. This avoids trouble with nested event loops. His original idea was to move coroutine rescheduling to monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch() because we don't know if the QMP handler needs to run in coroutine context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have been nicer since it's associated with the monitor implementation and not as general as qmp_dispatch(), which is also used by qemu-ga. A number of qemu-iotests need updated .out files because the order of QMP events vs QMP responses has changed. Solves Issue #1933. Cc: qemu-stable@nongnu.org Fixes: 7bed89958bfbf40df9ca681cefbdca63abdde39d ("device_core: use drain_call_rcu in in qmp_device_add") Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192 Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985 Buglink: https://issues.redhat.com/browse/RHEL-17369 Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-ID: <20240118144823.1497953-4-stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com> Tested-by: Fiona Ebner <f.ebner@proxmox.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2024-01-18 17:48:23 +03:00
}
} else {
/*
* Actual context doesn't match the one the command needs.
*
* Case 1: we are in coroutine context, but command does not
* have QCO_COROUTINE. We need to drop out of coroutine
* context for executing it.
*
* Case 2: we are outside coroutine context, but command has
* QCO_COROUTINE. Can't actually happen, because we get here
* outside coroutine context only when executing a command
* out of band, and OOB commands never have QCO_COROUTINE.
*/
assert(!oob && qemu_in_coroutine() && !(cmd->options & QCO_COROUTINE));
QmpDispatchBH data = {
.cur_mon = cur_mon,
.cmd = cmd,
.args = args,
.ret = &ret,
.errp = &err,
.co = qemu_coroutine_self(),
};
monitor: only run coroutine commands in qemu_aio_context monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not polled during nested event loops. The coroutine currently reschedules itself in the main loop's qemu_aio_context AioContext, which is polled during nested event loops. One known problem is that QMP device-add calls drain_call_rcu(), which temporarily drops the BQL, leading to all sorts of havoc like other vCPU threads re-entering device emulation code while another vCPU thread is waiting in device emulation code with aio_poll(). Paolo Bonzini suggested running non-coroutine QMP handlers in the iohandler AioContext. This avoids trouble with nested event loops. His original idea was to move coroutine rescheduling to monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch() because we don't know if the QMP handler needs to run in coroutine context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have been nicer since it's associated with the monitor implementation and not as general as qmp_dispatch(), which is also used by qemu-ga. A number of qemu-iotests need updated .out files because the order of QMP events vs QMP responses has changed. Solves Issue #1933. Cc: qemu-stable@nongnu.org Fixes: 7bed89958bfbf40df9ca681cefbdca63abdde39d ("device_core: use drain_call_rcu in in qmp_device_add") Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192 Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985 Buglink: https://issues.redhat.com/browse/RHEL-17369 Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-ID: <20240118144823.1497953-4-stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com> Tested-by: Fiona Ebner <f.ebner@proxmox.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2024-01-18 17:48:23 +03:00
aio_bh_schedule_oneshot(iohandler_get_aio_context(), do_qmp_dispatch_bh,
&data);
qemu_coroutine_yield();
}
qobject_unref(args);
if (err) {
/* or assert(!ret) after reviewing all handlers: */
qobject_unref(ret);
goto out;
}
if (cmd->options & QCO_NO_SUCCESS_RESP) {
g_assert(!ret);
return NULL;
} else if (!ret) {
/*
* When the command's schema has no 'returns', cmd->fn()
* leaves @ret null. The QMP spec calls for an empty object
* then; supply it.
*/
ret = QOBJECT(qdict_new());
}
rsp = qdict_new();
qdict_put_obj(rsp, "return", ret);
out:
if (err) {
assert(!rsp);
rsp = qmp_error_response(err);
}
assert(rsp);
if (id) {
qdict_put_obj(rsp, "id", qobject_ref(id));
}
return rsp;
}