qemu/hw/intc/s390_flic.c

504 lines
14 KiB
C
Raw Normal View History

/*
* QEMU S390x floating interrupt controller (flic)
*
* Copyright 2014 IBM Corp.
* Author(s): Jens Freimann <jfrei@linux.vnet.ibm.com>
* Cornelia Huck <cornelia.huck@de.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at
* your option) any later version. See the COPYING file in the top-level
* directory.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "hw/s390x/ioinst.h"
#include "hw/s390x/s390_flic.h"
#include "hw/qdev-properties.h"
#include "hw/s390x/css.h"
#include "trace.h"
#include "qapi/error.h"
#include "hw/s390x/s390-virtio-ccw.h"
S390FLICStateClass *s390_get_flic_class(S390FLICState *fs)
{
static S390FLICStateClass *class;
if (!class) {
/* we only have one flic device, so this is fine to cache */
class = S390_FLIC_COMMON_GET_CLASS(fs);
}
return class;
}
QEMUS390FLICState *s390_get_qemu_flic(S390FLICState *fs)
{
static QEMUS390FLICState *flic;
if (!flic) {
/* we only have one flic device, so this is fine to cache */
flic = QEMU_S390_FLIC(fs);
}
return flic;
}
S390FLICState *s390_get_flic(void)
{
static S390FLICState *fs;
if (!fs) {
fs = S390_FLIC_COMMON(object_resolve_path_type("",
TYPE_S390_FLIC_COMMON,
NULL));
}
return fs;
}
void s390_flic_init(void)
{
DeviceState *dev;
if (kvm_enabled()) {
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_KVM_S390_FLIC);
object_property_add_child(qdev_get_machine(), TYPE_KVM_S390_FLIC,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 18:29:22 +03:00
OBJECT(dev));
} else {
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_QEMU_S390_FLIC);
object_property_add_child(qdev_get_machine(), TYPE_QEMU_S390_FLIC,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 18:29:22 +03:00
OBJECT(dev));
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
}
static int qemu_s390_register_io_adapter(S390FLICState *fs, uint32_t id,
uint8_t isc, bool swap,
bool is_maskable, uint8_t flags)
{
/* nothing to do */
return 0;
}
static int qemu_s390_io_adapter_map(S390FLICState *fs, uint32_t id,
uint64_t map_addr, bool do_map)
{
/* nothing to do */
return 0;
}
static int qemu_s390_add_adapter_routes(S390FLICState *fs,
AdapterRoutes *routes)
{
return -ENOSYS;
}
static void qemu_s390_release_adapter_routes(S390FLICState *fs,
AdapterRoutes *routes)
{
}
static int qemu_s390_clear_io_flic(S390FLICState *fs, uint16_t subchannel_id,
uint16_t subchannel_nr)
{
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
QEMUS390FlicIO *cur, *next;
uint8_t isc;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
if (!(flic->pending & FLIC_PENDING_IO)) {
return 0;
}
/* check all iscs */
for (isc = 0; isc < 8; isc++) {
if (QLIST_EMPTY(&flic->io[isc])) {
continue;
}
/* search and delete any matching one */
QLIST_FOREACH_SAFE(cur, &flic->io[isc], next, next) {
if (cur->id == subchannel_id && cur->nr == subchannel_nr) {
QLIST_REMOVE(cur, next);
g_free(cur);
}
}
/* update our indicator bit */
if (QLIST_EMPTY(&flic->io[isc])) {
flic->pending &= ~ISC_TO_PENDING_IO(isc);
}
}
return 0;
}
static int qemu_s390_modify_ais_mode(S390FLICState *fs, uint8_t isc,
uint16_t mode)
{
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
switch (mode) {
case SIC_IRQ_MODE_ALL:
flic->simm &= ~AIS_MODE_MASK(isc);
flic->nimm &= ~AIS_MODE_MASK(isc);
break;
case SIC_IRQ_MODE_SINGLE:
flic->simm |= AIS_MODE_MASK(isc);
flic->nimm &= ~AIS_MODE_MASK(isc);
break;
default:
return -EINVAL;
}
return 0;
}
static int qemu_s390_inject_airq(S390FLICState *fs, uint8_t type,
uint8_t isc, uint8_t flags)
{
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
S390FLICStateClass *fsc = s390_get_flic_class(fs);
bool flag = flags & S390_ADAPTER_SUPPRESSIBLE;
uint32_t io_int_word = (isc << 27) | IO_INT_WORD_AI;
if (flag && (flic->nimm & AIS_MODE_MASK(isc))) {
trace_qemu_s390_airq_suppressed(type, isc);
return 0;
}
fsc->inject_io(fs, 0, 0, 0, io_int_word);
if (flag && (flic->simm & AIS_MODE_MASK(isc))) {
flic->nimm |= AIS_MODE_MASK(isc);
trace_qemu_s390_suppress_airq(isc, "Single-Interruption Mode",
"NO-Interruptions Mode");
}
return 0;
}
static void qemu_s390_flic_notify(uint32_t type)
{
CPUState *cs;
/*
* We have to make all CPUs see CPU_INTERRUPT_HARD, so they might
* consider it. We will kick all running CPUs and only relevant
* sleeping ones.
*/
CPU_FOREACH(cs) {
S390CPU *cpu = S390_CPU(cs);
cs->interrupt_request |= CPU_INTERRUPT_HARD;
/* ignore CPUs that are not sleeping */
if (s390_cpu_get_state(cpu) != S390_CPU_STATE_OPERATING &&
s390_cpu_get_state(cpu) != S390_CPU_STATE_LOAD) {
continue;
}
/* we always kick running CPUs for now, this is tricky */
if (cs->halted) {
/* don't check for subclasses, CPUs double check when waking up */
if (type & FLIC_PENDING_SERVICE) {
if (!(cpu->env.psw.mask & PSW_MASK_EXT)) {
continue;
}
} else if (type & FLIC_PENDING_IO) {
if (!(cpu->env.psw.mask & PSW_MASK_IO)) {
continue;
}
} else if (type & FLIC_PENDING_MCHK_CR) {
if (!(cpu->env.psw.mask & PSW_MASK_MCHECK)) {
continue;
}
}
}
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
uint32_t qemu_s390_flic_dequeue_service(QEMUS390FLICState *flic)
{
uint32_t tmp;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
g_assert(flic->pending & FLIC_PENDING_SERVICE);
tmp = flic->service_param;
flic->service_param = 0;
flic->pending &= ~FLIC_PENDING_SERVICE;
return tmp;
}
/* caller has to free the returned object */
QEMUS390FlicIO *qemu_s390_flic_dequeue_io(QEMUS390FLICState *flic, uint64_t cr6)
{
QEMUS390FlicIO *io;
uint8_t isc;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
if (!(flic->pending & CR6_TO_PENDING_IO(cr6))) {
return NULL;
}
for (isc = 0; isc < 8; isc++) {
if (QLIST_EMPTY(&flic->io[isc]) || !(cr6 & ISC_TO_ISC_BITS(isc))) {
continue;
}
io = QLIST_FIRST(&flic->io[isc]);
QLIST_REMOVE(io, next);
/* update our indicator bit */
if (QLIST_EMPTY(&flic->io[isc])) {
flic->pending &= ~ISC_TO_PENDING_IO(isc);
}
return io;
}
return NULL;
}
void qemu_s390_flic_dequeue_crw_mchk(QEMUS390FLICState *flic)
{
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
g_assert(flic->pending & FLIC_PENDING_MCHK_CR);
flic->pending &= ~FLIC_PENDING_MCHK_CR;
}
static void qemu_s390_inject_service(S390FLICState *fs, uint32_t parm)
{
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
/* multiplexing is good enough for sclp - kvm does it internally as well */
flic->service_param |= parm;
flic->pending |= FLIC_PENDING_SERVICE;
qemu_s390_flic_notify(FLIC_PENDING_SERVICE);
}
static void qemu_s390_inject_io(S390FLICState *fs, uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word)
{
const uint8_t isc = IO_INT_WORD_ISC(io_int_word);
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
QEMUS390FlicIO *io;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
io = g_new0(QEMUS390FlicIO, 1);
io->id = subchannel_id;
io->nr = subchannel_nr;
io->parm = io_int_parm;
io->word = io_int_word;
QLIST_INSERT_HEAD(&flic->io[isc], io, next);
flic->pending |= ISC_TO_PENDING_IO(isc);
qemu_s390_flic_notify(ISC_TO_PENDING_IO(isc));
}
static void qemu_s390_inject_crw_mchk(S390FLICState *fs)
{
QEMUS390FLICState *flic = s390_get_qemu_flic(fs);
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
flic->pending |= FLIC_PENDING_MCHK_CR;
qemu_s390_flic_notify(FLIC_PENDING_MCHK_CR);
}
bool qemu_s390_flic_has_service(QEMUS390FLICState *flic)
{
/* called without lock via cc->has_work, will be validated under lock */
return !!(flic->pending & FLIC_PENDING_SERVICE);
}
bool qemu_s390_flic_has_io(QEMUS390FLICState *flic, uint64_t cr6)
{
/* called without lock via cc->has_work, will be validated under lock */
return !!(flic->pending & CR6_TO_PENDING_IO(cr6));
}
bool qemu_s390_flic_has_crw_mchk(QEMUS390FLICState *flic)
{
/* called without lock via cc->has_work, will be validated under lock */
return !!(flic->pending & FLIC_PENDING_MCHK_CR);
}
bool qemu_s390_flic_has_any(QEMUS390FLICState *flic)
{
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
return !!flic->pending;
}
static void qemu_s390_flic_reset(DeviceState *dev)
{
QEMUS390FLICState *flic = QEMU_S390_FLIC(dev);
QEMUS390FlicIO *cur, *next;
int isc;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
g_assert(bql_locked());
flic->simm = 0;
flic->nimm = 0;
flic->pending = 0;
/* remove all pending io interrupts */
for (isc = 0; isc < 8; isc++) {
QLIST_FOREACH_SAFE(cur, &flic->io[isc], next, next) {
QLIST_REMOVE(cur, next);
g_free(cur);
}
}
}
bool ais_needed(void *opaque)
{
S390FLICState *s = opaque;
return s->ais_supported;
}
static const VMStateDescription qemu_s390_flic_vmstate = {
.name = "qemu-s390-flic",
.version_id = 1,
.minimum_version_id = 1,
.needed = ais_needed,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(simm, QEMUS390FLICState),
VMSTATE_UINT8(nimm, QEMUS390FLICState),
VMSTATE_END_OF_LIST()
}
};
static void qemu_s390_flic_instance_init(Object *obj)
{
QEMUS390FLICState *flic = QEMU_S390_FLIC(obj);
int isc;
for (isc = 0; isc < 8; isc++) {
QLIST_INIT(&flic->io[isc]);
}
}
static void qemu_s390_flic_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
S390FLICStateClass *fsc = S390_FLIC_COMMON_CLASS(oc);
dc->reset = qemu_s390_flic_reset;
dc->vmsd = &qemu_s390_flic_vmstate;
fsc->register_io_adapter = qemu_s390_register_io_adapter;
fsc->io_adapter_map = qemu_s390_io_adapter_map;
fsc->add_adapter_routes = qemu_s390_add_adapter_routes;
fsc->release_adapter_routes = qemu_s390_release_adapter_routes;
fsc->clear_io_irq = qemu_s390_clear_io_flic;
fsc->modify_ais_mode = qemu_s390_modify_ais_mode;
fsc->inject_airq = qemu_s390_inject_airq;
fsc->inject_service = qemu_s390_inject_service;
fsc->inject_io = qemu_s390_inject_io;
fsc->inject_crw_mchk = qemu_s390_inject_crw_mchk;
}
static Property s390_flic_common_properties[] = {
DEFINE_PROP_UINT32("adapter_routes_max_batch", S390FLICState,
adapter_routes_max_batch, ADAPTER_ROUTES_MAX_GSI),
DEFINE_PROP_END_OF_LIST(),
};
static void s390_flic_common_realize(DeviceState *dev, Error **errp)
{
S390FLICState *fs = S390_FLIC_COMMON(dev);
uint32_t max_batch = fs->adapter_routes_max_batch;
if (max_batch > ADAPTER_ROUTES_MAX_GSI) {
error_setg(errp, "flic property adapter_routes_max_batch too big"
" (%d > %d)", max_batch, ADAPTER_ROUTES_MAX_GSI);
return;
}
fs->ais_supported = s390_has_feat(S390_FEAT_ADAPTER_INT_SUPPRESSION);
}
static void s390_flic_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_props(dc, s390_flic_common_properties);
dc->realize = s390_flic_common_realize;
}
static const TypeInfo qemu_s390_flic_info = {
.name = TYPE_QEMU_S390_FLIC,
.parent = TYPE_S390_FLIC_COMMON,
.instance_size = sizeof(QEMUS390FLICState),
.instance_init = qemu_s390_flic_instance_init,
.class_init = qemu_s390_flic_class_init,
};
static const TypeInfo s390_flic_common_info = {
.name = TYPE_S390_FLIC_COMMON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(S390FLICState),
.class_init = s390_flic_class_init,
.class_size = sizeof(S390FLICStateClass),
};
static void qemu_s390_flic_register_types(void)
{
type_register_static(&s390_flic_common_info);
type_register_static(&qemu_s390_flic_info);
}
type_init(qemu_s390_flic_register_types)
static bool adapter_info_so_needed(void *opaque)
{
return css_migration_enabled();
}
const VMStateDescription vmstate_adapter_info_so = {
.name = "s390_adapter_info/summary_offset",
.version_id = 1,
.minimum_version_id = 1,
.needed = adapter_info_so_needed,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(summary_offset, AdapterInfo),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_adapter_info = {
.name = "s390_adapter_info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(ind_offset, AdapterInfo),
/*
* We do not have to migrate neither the id nor the addresses.
* The id is set by css_register_io_adapter and the addresses
* are set based on the IndAddr objects after those get mapped.
*/
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * const []) {
&vmstate_adapter_info_so,
NULL
}
};
const VMStateDescription vmstate_adapter_routes = {
.name = "s390_adapter_routes",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(adapter, AdapterRoutes, 1, vmstate_adapter_info,
AdapterInfo),
VMSTATE_END_OF_LIST()
}
};