qemu/hw/nvram/xlnx-versal-efuse-ctrl.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

794 lines
25 KiB
C
Raw Normal View History

/*
* QEMU model of the Versal eFuse controller
*
* Copyright (c) 2020 Xilinx Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/nvram/xlnx-versal-efuse.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#ifndef XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG
#define XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG 0
#endif
REG32(WR_LOCK, 0x0)
FIELD(WR_LOCK, LOCK, 0, 16)
REG32(CFG, 0x4)
FIELD(CFG, SLVERR_ENABLE, 5, 1)
FIELD(CFG, MARGIN_RD, 2, 1)
FIELD(CFG, PGM_EN, 1, 1)
REG32(STATUS, 0x8)
FIELD(STATUS, AES_USER_KEY_1_CRC_PASS, 11, 1)
FIELD(STATUS, AES_USER_KEY_1_CRC_DONE, 10, 1)
FIELD(STATUS, AES_USER_KEY_0_CRC_PASS, 9, 1)
FIELD(STATUS, AES_USER_KEY_0_CRC_DONE, 8, 1)
FIELD(STATUS, AES_CRC_PASS, 7, 1)
FIELD(STATUS, AES_CRC_DONE, 6, 1)
FIELD(STATUS, CACHE_DONE, 5, 1)
FIELD(STATUS, CACHE_LOAD, 4, 1)
FIELD(STATUS, EFUSE_2_TBIT, 2, 1)
FIELD(STATUS, EFUSE_1_TBIT, 1, 1)
FIELD(STATUS, EFUSE_0_TBIT, 0, 1)
REG32(EFUSE_PGM_ADDR, 0xc)
FIELD(EFUSE_PGM_ADDR, PAGE, 13, 4)
FIELD(EFUSE_PGM_ADDR, ROW, 5, 8)
FIELD(EFUSE_PGM_ADDR, COLUMN, 0, 5)
REG32(EFUSE_RD_ADDR, 0x10)
FIELD(EFUSE_RD_ADDR, PAGE, 13, 4)
FIELD(EFUSE_RD_ADDR, ROW, 5, 8)
REG32(EFUSE_RD_DATA, 0x14)
REG32(TPGM, 0x18)
FIELD(TPGM, VALUE, 0, 16)
REG32(TRD, 0x1c)
FIELD(TRD, VALUE, 0, 8)
REG32(TSU_H_PS, 0x20)
FIELD(TSU_H_PS, VALUE, 0, 8)
REG32(TSU_H_PS_CS, 0x24)
FIELD(TSU_H_PS_CS, VALUE, 0, 8)
REG32(TRDM, 0x28)
FIELD(TRDM, VALUE, 0, 8)
REG32(TSU_H_CS, 0x2c)
FIELD(TSU_H_CS, VALUE, 0, 8)
REG32(EFUSE_ISR, 0x30)
FIELD(EFUSE_ISR, APB_SLVERR, 31, 1)
FIELD(EFUSE_ISR, CACHE_PARITY_E2, 14, 1)
FIELD(EFUSE_ISR, CACHE_PARITY_E1, 13, 1)
FIELD(EFUSE_ISR, CACHE_PARITY_E0S, 12, 1)
FIELD(EFUSE_ISR, CACHE_PARITY_E0R, 11, 1)
FIELD(EFUSE_ISR, CACHE_APB_SLVERR, 10, 1)
FIELD(EFUSE_ISR, CACHE_REQ_ERROR, 9, 1)
FIELD(EFUSE_ISR, MAIN_REQ_ERROR, 8, 1)
FIELD(EFUSE_ISR, READ_ON_CACHE_LD, 7, 1)
FIELD(EFUSE_ISR, CACHE_FSM_ERROR, 6, 1)
FIELD(EFUSE_ISR, MAIN_FSM_ERROR, 5, 1)
FIELD(EFUSE_ISR, CACHE_ERROR, 4, 1)
FIELD(EFUSE_ISR, RD_ERROR, 3, 1)
FIELD(EFUSE_ISR, RD_DONE, 2, 1)
FIELD(EFUSE_ISR, PGM_ERROR, 1, 1)
FIELD(EFUSE_ISR, PGM_DONE, 0, 1)
REG32(EFUSE_IMR, 0x34)
FIELD(EFUSE_IMR, APB_SLVERR, 31, 1)
FIELD(EFUSE_IMR, CACHE_PARITY_E2, 14, 1)
FIELD(EFUSE_IMR, CACHE_PARITY_E1, 13, 1)
FIELD(EFUSE_IMR, CACHE_PARITY_E0S, 12, 1)
FIELD(EFUSE_IMR, CACHE_PARITY_E0R, 11, 1)
FIELD(EFUSE_IMR, CACHE_APB_SLVERR, 10, 1)
FIELD(EFUSE_IMR, CACHE_REQ_ERROR, 9, 1)
FIELD(EFUSE_IMR, MAIN_REQ_ERROR, 8, 1)
FIELD(EFUSE_IMR, READ_ON_CACHE_LD, 7, 1)
FIELD(EFUSE_IMR, CACHE_FSM_ERROR, 6, 1)
FIELD(EFUSE_IMR, MAIN_FSM_ERROR, 5, 1)
FIELD(EFUSE_IMR, CACHE_ERROR, 4, 1)
FIELD(EFUSE_IMR, RD_ERROR, 3, 1)
FIELD(EFUSE_IMR, RD_DONE, 2, 1)
FIELD(EFUSE_IMR, PGM_ERROR, 1, 1)
FIELD(EFUSE_IMR, PGM_DONE, 0, 1)
REG32(EFUSE_IER, 0x38)
FIELD(EFUSE_IER, APB_SLVERR, 31, 1)
FIELD(EFUSE_IER, CACHE_PARITY_E2, 14, 1)
FIELD(EFUSE_IER, CACHE_PARITY_E1, 13, 1)
FIELD(EFUSE_IER, CACHE_PARITY_E0S, 12, 1)
FIELD(EFUSE_IER, CACHE_PARITY_E0R, 11, 1)
FIELD(EFUSE_IER, CACHE_APB_SLVERR, 10, 1)
FIELD(EFUSE_IER, CACHE_REQ_ERROR, 9, 1)
FIELD(EFUSE_IER, MAIN_REQ_ERROR, 8, 1)
FIELD(EFUSE_IER, READ_ON_CACHE_LD, 7, 1)
FIELD(EFUSE_IER, CACHE_FSM_ERROR, 6, 1)
FIELD(EFUSE_IER, MAIN_FSM_ERROR, 5, 1)
FIELD(EFUSE_IER, CACHE_ERROR, 4, 1)
FIELD(EFUSE_IER, RD_ERROR, 3, 1)
FIELD(EFUSE_IER, RD_DONE, 2, 1)
FIELD(EFUSE_IER, PGM_ERROR, 1, 1)
FIELD(EFUSE_IER, PGM_DONE, 0, 1)
REG32(EFUSE_IDR, 0x3c)
FIELD(EFUSE_IDR, APB_SLVERR, 31, 1)
FIELD(EFUSE_IDR, CACHE_PARITY_E2, 14, 1)
FIELD(EFUSE_IDR, CACHE_PARITY_E1, 13, 1)
FIELD(EFUSE_IDR, CACHE_PARITY_E0S, 12, 1)
FIELD(EFUSE_IDR, CACHE_PARITY_E0R, 11, 1)
FIELD(EFUSE_IDR, CACHE_APB_SLVERR, 10, 1)
FIELD(EFUSE_IDR, CACHE_REQ_ERROR, 9, 1)
FIELD(EFUSE_IDR, MAIN_REQ_ERROR, 8, 1)
FIELD(EFUSE_IDR, READ_ON_CACHE_LD, 7, 1)
FIELD(EFUSE_IDR, CACHE_FSM_ERROR, 6, 1)
FIELD(EFUSE_IDR, MAIN_FSM_ERROR, 5, 1)
FIELD(EFUSE_IDR, CACHE_ERROR, 4, 1)
FIELD(EFUSE_IDR, RD_ERROR, 3, 1)
FIELD(EFUSE_IDR, RD_DONE, 2, 1)
FIELD(EFUSE_IDR, PGM_ERROR, 1, 1)
FIELD(EFUSE_IDR, PGM_DONE, 0, 1)
REG32(EFUSE_CACHE_LOAD, 0x40)
FIELD(EFUSE_CACHE_LOAD, LOAD, 0, 1)
REG32(EFUSE_PGM_LOCK, 0x44)
FIELD(EFUSE_PGM_LOCK, SPK_ID_LOCK, 0, 1)
REG32(EFUSE_AES_CRC, 0x48)
REG32(EFUSE_AES_USR_KEY0_CRC, 0x4c)
REG32(EFUSE_AES_USR_KEY1_CRC, 0x50)
REG32(EFUSE_PD, 0x54)
REG32(EFUSE_ANLG_OSC_SW_1LP, 0x60)
REG32(EFUSE_TEST_CTRL, 0x100)
#define R_MAX (R_EFUSE_TEST_CTRL + 1)
#define R_WR_LOCK_UNLOCK_PASSCODE (0xDF0D)
/*
* eFuse layout references:
* https://github.com/Xilinx/embeddedsw/blob/release-2019.2/lib/sw_services/xilnvm/src/xnvm_efuse_hw.h
*/
#define BIT_POS_OF(A_) \
((uint32_t)((A_) & (R_EFUSE_PGM_ADDR_ROW_MASK | \
R_EFUSE_PGM_ADDR_COLUMN_MASK)))
#define BIT_POS(R_, C_) \
((uint32_t)((R_EFUSE_PGM_ADDR_ROW_MASK \
& ((R_) << R_EFUSE_PGM_ADDR_ROW_SHIFT)) \
| \
(R_EFUSE_PGM_ADDR_COLUMN_MASK \
& ((C_) << R_EFUSE_PGM_ADDR_COLUMN_SHIFT))))
#define EFUSE_TBIT_POS(A_) (BIT_POS_OF(A_) >= BIT_POS(0, 28))
#define EFUSE_ANCHOR_ROW (0)
#define EFUSE_ANCHOR_3_COL (27)
#define EFUSE_ANCHOR_1_COL (1)
#define EFUSE_AES_KEY_START BIT_POS(12, 0)
#define EFUSE_AES_KEY_END BIT_POS(19, 31)
#define EFUSE_USER_KEY_0_START BIT_POS(20, 0)
#define EFUSE_USER_KEY_0_END BIT_POS(27, 31)
#define EFUSE_USER_KEY_1_START BIT_POS(28, 0)
#define EFUSE_USER_KEY_1_END BIT_POS(35, 31)
#define EFUSE_RD_BLOCKED_START EFUSE_AES_KEY_START
#define EFUSE_RD_BLOCKED_END EFUSE_USER_KEY_1_END
#define EFUSE_GLITCH_DET_WR_LK BIT_POS(4, 31)
#define EFUSE_PPK0_WR_LK BIT_POS(43, 6)
#define EFUSE_PPK1_WR_LK BIT_POS(43, 7)
#define EFUSE_PPK2_WR_LK BIT_POS(43, 8)
#define EFUSE_AES_WR_LK BIT_POS(43, 11)
#define EFUSE_USER_KEY_0_WR_LK BIT_POS(43, 13)
#define EFUSE_USER_KEY_1_WR_LK BIT_POS(43, 15)
#define EFUSE_PUF_SYN_LK BIT_POS(43, 16)
#define EFUSE_DNA_WR_LK BIT_POS(43, 27)
#define EFUSE_BOOT_ENV_WR_LK BIT_POS(43, 28)
#define EFUSE_PGM_LOCKED_START BIT_POS(44, 0)
#define EFUSE_PGM_LOCKED_END BIT_POS(51, 31)
#define EFUSE_PUF_PAGE (2)
#define EFUSE_PUF_SYN_START BIT_POS(129, 0)
#define EFUSE_PUF_SYN_END BIT_POS(255, 27)
#define EFUSE_KEY_CRC_LK_ROW (43)
#define EFUSE_AES_KEY_CRC_LK_MASK ((1U << 9) | (1U << 10))
#define EFUSE_USER_KEY_0_CRC_LK_MASK (1U << 12)
#define EFUSE_USER_KEY_1_CRC_LK_MASK (1U << 14)
/*
* A handy macro to return value of an array element,
* or a specific default if given index is out of bound.
*/
#define ARRAY_GET(A_, I_, D_) \
((unsigned int)(I_) < ARRAY_SIZE(A_) ? (A_)[I_] : (D_))
QEMU_BUILD_BUG_ON(R_MAX != ARRAY_SIZE(((XlnxVersalEFuseCtrl *)0)->regs));
typedef struct XlnxEFuseLkSpec {
uint16_t row;
uint16_t lk_bit;
} XlnxEFuseLkSpec;
static void efuse_imr_update_irq(XlnxVersalEFuseCtrl *s)
{
bool pending = s->regs[R_EFUSE_ISR] & ~s->regs[R_EFUSE_IMR];
qemu_set_irq(s->irq_efuse_imr, pending);
}
static void efuse_isr_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
efuse_imr_update_irq(s);
}
static uint64_t efuse_ier_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
uint32_t val = val64;
s->regs[R_EFUSE_IMR] &= ~val;
efuse_imr_update_irq(s);
return 0;
}
static uint64_t efuse_idr_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
uint32_t val = val64;
s->regs[R_EFUSE_IMR] |= val;
efuse_imr_update_irq(s);
return 0;
}
static void efuse_status_tbits_sync(XlnxVersalEFuseCtrl *s)
{
uint32_t check = xlnx_efuse_tbits_check(s->efuse);
uint32_t val = s->regs[R_STATUS];
val = FIELD_DP32(val, STATUS, EFUSE_0_TBIT, !!(check & (1 << 0)));
val = FIELD_DP32(val, STATUS, EFUSE_1_TBIT, !!(check & (1 << 1)));
val = FIELD_DP32(val, STATUS, EFUSE_2_TBIT, !!(check & (1 << 2)));
s->regs[R_STATUS] = val;
}
static void efuse_anchor_bits_check(XlnxVersalEFuseCtrl *s)
{
unsigned page;
if (!s->efuse || !s->efuse->init_tbits) {
return;
}
for (page = 0; page < s->efuse->efuse_nr; page++) {
uint32_t row = 0, bit;
row = FIELD_DP32(row, EFUSE_PGM_ADDR, PAGE, page);
row = FIELD_DP32(row, EFUSE_PGM_ADDR, ROW, EFUSE_ANCHOR_ROW);
bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_3_COL);
if (!xlnx_efuse_get_bit(s->efuse, bit)) {
xlnx_efuse_set_bit(s->efuse, bit);
}
bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_1_COL);
if (!xlnx_efuse_get_bit(s->efuse, bit)) {
xlnx_efuse_set_bit(s->efuse, bit);
}
}
}
static void efuse_key_crc_check(RegisterInfo *reg, uint32_t crc,
uint32_t pass_mask, uint32_t done_mask,
unsigned first, uint32_t lk_mask)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
uint32_t r, lk_bits;
/*
* To start, assume both DONE and PASS, and clear PASS by xor
* if CRC-check fails or CRC-check disabled by lock fuse.
*/
r = s->regs[R_STATUS] | done_mask | pass_mask;
lk_bits = xlnx_efuse_get_row(s->efuse, EFUSE_KEY_CRC_LK_ROW) & lk_mask;
if (lk_bits == 0 && xlnx_efuse_k256_check(s->efuse, crc, first)) {
pass_mask = 0;
}
s->regs[R_STATUS] = r ^ pass_mask;
}
static void efuse_data_sync(XlnxVersalEFuseCtrl *s)
{
efuse_status_tbits_sync(s);
}
static int efuse_lk_spec_cmp(const void *a, const void *b)
{
uint16_t r1 = ((const XlnxEFuseLkSpec *)a)->row;
uint16_t r2 = ((const XlnxEFuseLkSpec *)b)->row;
return (r1 > r2) - (r1 < r2);
}
static void efuse_lk_spec_sort(XlnxVersalEFuseCtrl *s)
{
XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec;
const uint32_t n8 = s->extra_pg0_lock_n16 * 2;
const uint32_t sz = sizeof(ary[0]);
const uint32_t cnt = n8 / sz;
if (ary && cnt) {
qsort(ary, cnt, sz, efuse_lk_spec_cmp);
}
}
static uint32_t efuse_lk_spec_find(XlnxVersalEFuseCtrl *s, uint32_t row)
{
const XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec;
const uint32_t n8 = s->extra_pg0_lock_n16 * 2;
const uint32_t sz = sizeof(ary[0]);
const uint32_t cnt = n8 / sz;
const XlnxEFuseLkSpec *item = NULL;
if (ary && cnt) {
XlnxEFuseLkSpec k = { .row = row, };
item = bsearch(&k, ary, cnt, sz, efuse_lk_spec_cmp);
}
return item ? item->lk_bit : 0;
}
static uint32_t efuse_bit_locked(XlnxVersalEFuseCtrl *s, uint32_t bit)
{
/* Hard-coded locks */
static const uint16_t pg0_hard_lock[] = {
[4] = EFUSE_GLITCH_DET_WR_LK,
[37] = EFUSE_BOOT_ENV_WR_LK,
[8 ... 11] = EFUSE_DNA_WR_LK,
[12 ... 19] = EFUSE_AES_WR_LK,
[20 ... 27] = EFUSE_USER_KEY_0_WR_LK,
[28 ... 35] = EFUSE_USER_KEY_1_WR_LK,
[64 ... 71] = EFUSE_PPK0_WR_LK,
[72 ... 79] = EFUSE_PPK1_WR_LK,
[80 ... 87] = EFUSE_PPK2_WR_LK,
};
uint32_t row = FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW);
uint32_t lk_bit = ARRAY_GET(pg0_hard_lock, row, 0);
return lk_bit ? lk_bit : efuse_lk_spec_find(s, row);
}
static bool efuse_pgm_locked(XlnxVersalEFuseCtrl *s, unsigned int bit)
{
unsigned int lock = 1;
/* Global lock */
if (!ARRAY_FIELD_EX32(s->regs, CFG, PGM_EN)) {
goto ret_lock;
}
/* Row lock */
switch (FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE)) {
case 0:
if (ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK) &&
bit >= EFUSE_PGM_LOCKED_START && bit <= EFUSE_PGM_LOCKED_END) {
goto ret_lock;
}
lock = efuse_bit_locked(s, bit);
break;
case EFUSE_PUF_PAGE:
if (bit < EFUSE_PUF_SYN_START || bit > EFUSE_PUF_SYN_END) {
lock = 0;
goto ret_lock;
}
lock = EFUSE_PUF_SYN_LK;
break;
default:
lock = 0;
goto ret_lock;
}
/* Row lock by an efuse bit */
if (lock) {
lock = xlnx_efuse_get_bit(s->efuse, lock);
}
ret_lock:
return lock != 0;
}
static void efuse_pgm_addr_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
unsigned bit = val64;
bool ok = false;
/* Always zero out PGM_ADDR because it is write-only */
s->regs[R_EFUSE_PGM_ADDR] = 0;
/*
* Indicate error if bit is write-protected (or read-only
* as guarded by efuse_set_bit()).
*
* Keep it simple by not modeling program timing.
*
* Note: model must NEVER clear the PGM_ERROR bit; it is
* up to guest to do so (or by reset).
*/
if (efuse_pgm_locked(s, bit)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Denied setting of efuse<%u, %u, %u>\n",
path,
FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE),
FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW),
FIELD_EX32(bit, EFUSE_PGM_ADDR, COLUMN));
} else if (xlnx_efuse_set_bit(s->efuse, bit)) {
ok = true;
if (EFUSE_TBIT_POS(bit)) {
efuse_status_tbits_sync(s);
}
}
if (!ok) {
ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_ERROR, 1);
}
ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_DONE, 1);
efuse_imr_update_irq(s);
}
static void efuse_rd_addr_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
unsigned bit = val64;
bool denied;
/* Always zero out RD_ADDR because it is write-only */
s->regs[R_EFUSE_RD_ADDR] = 0;
/*
* Indicate error if row is read-blocked.
*
* Note: model must NEVER clear the RD_ERROR bit; it is
* up to guest to do so (or by reset).
*/
s->regs[R_EFUSE_RD_DATA] = xlnx_versal_efuse_read_row(s->efuse,
bit, &denied);
if (denied) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Denied reading of efuse<%u, %u>\n",
path,
FIELD_EX32(bit, EFUSE_RD_ADDR, PAGE),
FIELD_EX32(bit, EFUSE_RD_ADDR, ROW));
ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_ERROR, 1);
}
ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_DONE, 1);
efuse_imr_update_irq(s);
return;
}
static uint64_t efuse_cache_load_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
if (val64 & R_EFUSE_CACHE_LOAD_LOAD_MASK) {
efuse_data_sync(s);
ARRAY_FIELD_DP32(s->regs, STATUS, CACHE_DONE, 1);
efuse_imr_update_irq(s);
}
return 0;
}
static uint64_t efuse_pgm_lock_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
/* Ignore all other bits */
val64 = FIELD_EX32(val64, EFUSE_PGM_LOCK, SPK_ID_LOCK);
/* Once the bit is written 1, only reset will clear it to 0 */
val64 |= ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK);
return val64;
}
static void efuse_aes_crc_postw(RegisterInfo *reg, uint64_t val64)
{
efuse_key_crc_check(reg, val64,
R_STATUS_AES_CRC_PASS_MASK,
R_STATUS_AES_CRC_DONE_MASK,
EFUSE_AES_KEY_START,
EFUSE_AES_KEY_CRC_LK_MASK);
}
static void efuse_aes_u0_crc_postw(RegisterInfo *reg, uint64_t val64)
{
efuse_key_crc_check(reg, val64,
R_STATUS_AES_USER_KEY_0_CRC_PASS_MASK,
R_STATUS_AES_USER_KEY_0_CRC_DONE_MASK,
EFUSE_USER_KEY_0_START,
EFUSE_USER_KEY_0_CRC_LK_MASK);
}
static void efuse_aes_u1_crc_postw(RegisterInfo *reg, uint64_t val64)
{
efuse_key_crc_check(reg, val64,
R_STATUS_AES_USER_KEY_1_CRC_PASS_MASK,
R_STATUS_AES_USER_KEY_1_CRC_DONE_MASK,
EFUSE_USER_KEY_1_START,
EFUSE_USER_KEY_1_CRC_LK_MASK);
}
static uint64_t efuse_wr_lock_prew(RegisterInfo *reg, uint64_t val)
{
return val != R_WR_LOCK_UNLOCK_PASSCODE;
}
static const RegisterAccessInfo efuse_ctrl_regs_info[] = {
{ .name = "WR_LOCK", .addr = A_WR_LOCK,
.reset = 0x1,
.pre_write = efuse_wr_lock_prew,
},{ .name = "CFG", .addr = A_CFG,
.rsvd = 0x9,
},{ .name = "STATUS", .addr = A_STATUS,
.rsvd = 0x8,
.ro = 0xfff,
},{ .name = "EFUSE_PGM_ADDR", .addr = A_EFUSE_PGM_ADDR,
.post_write = efuse_pgm_addr_postw,
},{ .name = "EFUSE_RD_ADDR", .addr = A_EFUSE_RD_ADDR,
.rsvd = 0x1f,
.post_write = efuse_rd_addr_postw,
},{ .name = "EFUSE_RD_DATA", .addr = A_EFUSE_RD_DATA,
.ro = 0xffffffff,
},{ .name = "TPGM", .addr = A_TPGM,
},{ .name = "TRD", .addr = A_TRD,
.reset = 0x19,
},{ .name = "TSU_H_PS", .addr = A_TSU_H_PS,
.reset = 0xff,
},{ .name = "TSU_H_PS_CS", .addr = A_TSU_H_PS_CS,
.reset = 0x11,
},{ .name = "TRDM", .addr = A_TRDM,
.reset = 0x3a,
},{ .name = "TSU_H_CS", .addr = A_TSU_H_CS,
.reset = 0x16,
},{ .name = "EFUSE_ISR", .addr = A_EFUSE_ISR,
.rsvd = 0x7fff8000,
.w1c = 0x80007fff,
.post_write = efuse_isr_postw,
},{ .name = "EFUSE_IMR", .addr = A_EFUSE_IMR,
.reset = 0x80007fff,
.rsvd = 0x7fff8000,
.ro = 0xffffffff,
},{ .name = "EFUSE_IER", .addr = A_EFUSE_IER,
.rsvd = 0x7fff8000,
.pre_write = efuse_ier_prew,
},{ .name = "EFUSE_IDR", .addr = A_EFUSE_IDR,
.rsvd = 0x7fff8000,
.pre_write = efuse_idr_prew,
},{ .name = "EFUSE_CACHE_LOAD", .addr = A_EFUSE_CACHE_LOAD,
.pre_write = efuse_cache_load_prew,
},{ .name = "EFUSE_PGM_LOCK", .addr = A_EFUSE_PGM_LOCK,
.pre_write = efuse_pgm_lock_prew,
},{ .name = "EFUSE_AES_CRC", .addr = A_EFUSE_AES_CRC,
.post_write = efuse_aes_crc_postw,
},{ .name = "EFUSE_AES_USR_KEY0_CRC", .addr = A_EFUSE_AES_USR_KEY0_CRC,
.post_write = efuse_aes_u0_crc_postw,
},{ .name = "EFUSE_AES_USR_KEY1_CRC", .addr = A_EFUSE_AES_USR_KEY1_CRC,
.post_write = efuse_aes_u1_crc_postw,
},{ .name = "EFUSE_PD", .addr = A_EFUSE_PD,
.ro = 0xfffffffe,
},{ .name = "EFUSE_ANLG_OSC_SW_1LP", .addr = A_EFUSE_ANLG_OSC_SW_1LP,
},{ .name = "EFUSE_TEST_CTRL", .addr = A_EFUSE_TEST_CTRL,
.reset = 0x8,
}
};
static void efuse_ctrl_reg_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
RegisterInfoArray *reg_array = opaque;
XlnxVersalEFuseCtrl *s;
Object *dev;
assert(reg_array != NULL);
dev = reg_array->mem.owner;
assert(dev);
s = XLNX_VERSAL_EFUSE_CTRL(dev);
if (addr != A_WR_LOCK && s->regs[R_WR_LOCK]) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR,
"%s[reg_0x%02lx]: Attempt to write locked register.\n",
path, (long)addr);
} else {
register_write_memory(opaque, addr, data, size);
}
}
static void efuse_ctrl_register_reset(RegisterInfo *reg)
{
if (!reg->data || !reg->access) {
return;
}
/* Reset must not trigger some registers' writers */
switch (reg->access->addr) {
case A_EFUSE_AES_CRC:
case A_EFUSE_AES_USR_KEY0_CRC:
case A_EFUSE_AES_USR_KEY1_CRC:
*(uint32_t *)reg->data = reg->access->reset;
return;
}
register_reset(reg);
}
static void efuse_ctrl_reset(DeviceState *dev)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
efuse_ctrl_register_reset(&s->regs_info[i]);
}
efuse_anchor_bits_check(s);
efuse_data_sync(s);
efuse_imr_update_irq(s);
}
static const MemoryRegionOps efuse_ctrl_ops = {
.read = register_read_memory,
.write = efuse_ctrl_reg_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void efuse_ctrl_realize(DeviceState *dev, Error **errp)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(dev);
const uint32_t lks_sz = sizeof(XlnxEFuseLkSpec) / 2;
if (!s->efuse) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
error_setg(errp, "%s.efuse: link property not connected to XLNX-EFUSE",
path);
return;
}
/* Sort property-defined pgm-locks for bsearch lookup */
if ((s->extra_pg0_lock_n16 % lks_sz) != 0) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
error_setg(errp,
"%s.pg0-lock: array property item-count not multiple of %u",
path, lks_sz);
return;
}
efuse_lk_spec_sort(s);
}
static void efuse_ctrl_init(Object *obj)
{
XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
RegisterInfoArray *reg_array;
reg_array =
register_init_block32(DEVICE(obj), efuse_ctrl_regs_info,
ARRAY_SIZE(efuse_ctrl_regs_info),
s->regs_info, s->regs,
&efuse_ctrl_ops,
XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG,
R_MAX * 4);
sysbus_init_mmio(sbd, &reg_array->mem);
sysbus_init_irq(sbd, &s->irq_efuse_imr);
}
static const VMStateDescription vmstate_efuse_ctrl = {
.name = TYPE_XLNX_VERSAL_EFUSE_CTRL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, XlnxVersalEFuseCtrl, R_MAX),
VMSTATE_END_OF_LIST(),
}
};
static Property efuse_ctrl_props[] = {
DEFINE_PROP_LINK("efuse",
XlnxVersalEFuseCtrl, efuse,
TYPE_XLNX_EFUSE, XlnxEFuse *),
DEFINE_PROP_ARRAY("pg0-lock",
XlnxVersalEFuseCtrl, extra_pg0_lock_n16,
extra_pg0_lock_spec, qdev_prop_uint16, uint16_t),
DEFINE_PROP_END_OF_LIST(),
};
static void efuse_ctrl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = efuse_ctrl_reset;
dc->realize = efuse_ctrl_realize;
dc->vmsd = &vmstate_efuse_ctrl;
device_class_set_props(dc, efuse_ctrl_props);
}
static const TypeInfo efuse_ctrl_info = {
.name = TYPE_XLNX_VERSAL_EFUSE_CTRL,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxVersalEFuseCtrl),
.class_init = efuse_ctrl_class_init,
.instance_init = efuse_ctrl_init,
};
static void efuse_ctrl_register_types(void)
{
type_register_static(&efuse_ctrl_info);
}
type_init(efuse_ctrl_register_types)
/*
* Retrieve a row, with unreadable bits returned as 0.
*/
uint32_t xlnx_versal_efuse_read_row(XlnxEFuse *efuse,
uint32_t bit, bool *denied)
{
bool dummy;
if (!denied) {
denied = &dummy;
}
if (bit >= EFUSE_RD_BLOCKED_START && bit <= EFUSE_RD_BLOCKED_END) {
*denied = true;
return 0;
}
*denied = false;
return xlnx_efuse_get_row(efuse, bit);
}