qemu/include/hw/virtio/virtio-mem.h

96 lines
2.5 KiB
C
Raw Normal View History

virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
/*
* Virtio MEM device
*
* Copyright (C) 2020 Red Hat, Inc.
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2.
* See the COPYING file in the top-level directory.
*/
#ifndef HW_VIRTIO_MEM_H
#define HW_VIRTIO_MEM_H
#include "standard-headers/linux/virtio_mem.h"
#include "hw/virtio/virtio.h"
#include "qapi/qapi-types-misc.h"
#include "sysemu/hostmem.h"
#include "qom/object.h"
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
#define TYPE_VIRTIO_MEM "virtio-mem"
OBJECT_DECLARE_TYPE(VirtIOMEM, VirtIOMEMClass,
VIRTIO_MEM)
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
#define VIRTIO_MEM_MEMDEV_PROP "memdev"
#define VIRTIO_MEM_NODE_PROP "node"
#define VIRTIO_MEM_SIZE_PROP "size"
#define VIRTIO_MEM_REQUESTED_SIZE_PROP "requested-size"
#define VIRTIO_MEM_BLOCK_SIZE_PROP "block-size"
#define VIRTIO_MEM_ADDR_PROP "memaddr"
virtio-mem: Support VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE With VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE, we signal the VM that reading unplugged memory is not supported. We have to fail feature negotiation in case the guest does not support VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. First, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE is required to properly handle memory backends (or architectures) without support for the shared zeropage in the hypervisor cleanly. Without the shared zeropage, even reading an unpopulated virtual memory location can populate real memory and consequently consume memory in the hypervisor. We have a guaranteed shared zeropage only on MAP_PRIVATE anonymous memory. Second, we want VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE to be the default long-term as even populating the shared zeropage can be problematic: for example, without THP support (possible) or without support for the shared huge zeropage with THP (unlikely), the PTE page tables to hold the shared zeropage entries can consume quite some memory that cannot be reclaimed easily. Third, there are other optimizations+features (e.g., protection of unplugged memory, reducing the total memory slot size and bitmap sizes) that will require VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. We really only support x86 targets with virtio-mem for now (and Linux similarly only support x86), but that might change soon, so prepare for different targets already. Add a new "unplugged-inaccessible" tristate property for x86 targets: - "off" will keep VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE unset and legacy guests working. - "on" will set VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE and stop legacy guests from using the device. - "auto" selects the default based on support for the shared zeropage. Warn in case the property is set to "off" and we don't have support for the shared zeropage. For existing compat machines, the property will default to "off", to not change the behavior but eventually warn about a problematic setup. Short-term, we'll set the property default to "auto" for new QEMU machines. Mid-term, we'll set the property default to "on" for new QEMU machines. Long-term, we'll deprecate the parameter and disallow legacy guests completely. The property has to match on the migration source and destination. "auto" will result in the same VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE setting as long as the qemu command line (esp. memdev) match -- so "auto" is good enough for migration purposes and the parameter doesn't have to be migrated explicitly. Reviewed-by: Michal Privoznik <mprivozn@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20211217134039.29670-3-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-12-17 16:40:38 +03:00
#define VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "unplugged-inaccessible"
virtio-mem: Support "prealloc=on" option For scarce memory resources, such as hugetlb, we want to be able to prealloc such memory resources in order to not crash later on access. On simple user errors we could otherwise easily run out of memory resources an crash the VM -- pretty much undesired. For ordinary memory devices, such as DIMMs, we preallocate memory via the memory backend for such use cases; however, with virtio-mem we're dealing with sparse memory backends; preallocating the whole memory backend destroys the whole purpose of virtio-mem. Instead, we want to preallocate memory when actually exposing memory to the VM dynamically, and fail plugging memory gracefully + warn the user in case preallocation fails. A common use case for hugetlb will be using "reserve=off,prealloc=off" for the memory backend and "prealloc=on" for the virtio-mem device. This way, no huge pages will be reserved for the process, but we can recover if there are no actual huge pages when plugging memory. Libvirt is already prepared for this. Note that preallocation cannot protect from the OOM killer -- which holds true for any kind of preallocation in QEMU. It's primarily useful only for scarce memory resources such as hugetlb, or shared file-backed memory. It's of little use for ordinary anonymous memory that can be swapped, KSM merged, ... but we won't forbid it. Reviewed-by: Michal Privoznik <mprivozn@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20211217134611.31172-9-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-12-17 16:46:11 +03:00
#define VIRTIO_MEM_PREALLOC_PROP "prealloc"
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
struct VirtIOMEM {
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
VirtIODevice parent_obj;
/* guest -> host request queue */
VirtQueue *vq;
/* bitmap used to track unplugged memory */
int32_t bitmap_size;
unsigned long *bitmap;
/* assigned memory backend and memory region */
HostMemoryBackend *memdev;
/* NUMA node */
uint32_t node;
/* assigned address of the region in guest physical memory */
uint64_t addr;
/* usable region size (<= region_size) */
uint64_t usable_region_size;
/* actual size (how much the guest plugged) */
uint64_t size;
/* requested size */
uint64_t requested_size;
/* block size and alignment */
uint64_t block_size;
virtio-mem: Support VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE With VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE, we signal the VM that reading unplugged memory is not supported. We have to fail feature negotiation in case the guest does not support VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. First, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE is required to properly handle memory backends (or architectures) without support for the shared zeropage in the hypervisor cleanly. Without the shared zeropage, even reading an unpopulated virtual memory location can populate real memory and consequently consume memory in the hypervisor. We have a guaranteed shared zeropage only on MAP_PRIVATE anonymous memory. Second, we want VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE to be the default long-term as even populating the shared zeropage can be problematic: for example, without THP support (possible) or without support for the shared huge zeropage with THP (unlikely), the PTE page tables to hold the shared zeropage entries can consume quite some memory that cannot be reclaimed easily. Third, there are other optimizations+features (e.g., protection of unplugged memory, reducing the total memory slot size and bitmap sizes) that will require VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. We really only support x86 targets with virtio-mem for now (and Linux similarly only support x86), but that might change soon, so prepare for different targets already. Add a new "unplugged-inaccessible" tristate property for x86 targets: - "off" will keep VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE unset and legacy guests working. - "on" will set VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE and stop legacy guests from using the device. - "auto" selects the default based on support for the shared zeropage. Warn in case the property is set to "off" and we don't have support for the shared zeropage. For existing compat machines, the property will default to "off", to not change the behavior but eventually warn about a problematic setup. Short-term, we'll set the property default to "auto" for new QEMU machines. Mid-term, we'll set the property default to "on" for new QEMU machines. Long-term, we'll deprecate the parameter and disallow legacy guests completely. The property has to match on the migration source and destination. "auto" will result in the same VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE setting as long as the qemu command line (esp. memdev) match -- so "auto" is good enough for migration purposes and the parameter doesn't have to be migrated explicitly. Reviewed-by: Michal Privoznik <mprivozn@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20211217134039.29670-3-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-12-17 16:40:38 +03:00
/*
* Whether we indicate VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE to the guest.
* For !x86 targets this will always be "on" and consequently indicate
* VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE.
*/
OnOffAuto unplugged_inaccessible;
virtio-mem: Support "prealloc=on" option For scarce memory resources, such as hugetlb, we want to be able to prealloc such memory resources in order to not crash later on access. On simple user errors we could otherwise easily run out of memory resources an crash the VM -- pretty much undesired. For ordinary memory devices, such as DIMMs, we preallocate memory via the memory backend for such use cases; however, with virtio-mem we're dealing with sparse memory backends; preallocating the whole memory backend destroys the whole purpose of virtio-mem. Instead, we want to preallocate memory when actually exposing memory to the VM dynamically, and fail plugging memory gracefully + warn the user in case preallocation fails. A common use case for hugetlb will be using "reserve=off,prealloc=off" for the memory backend and "prealloc=on" for the virtio-mem device. This way, no huge pages will be reserved for the process, but we can recover if there are no actual huge pages when plugging memory. Libvirt is already prepared for this. Note that preallocation cannot protect from the OOM killer -- which holds true for any kind of preallocation in QEMU. It's primarily useful only for scarce memory resources such as hugetlb, or shared file-backed memory. It's of little use for ordinary anonymous memory that can be swapped, KSM merged, ... but we won't forbid it. Reviewed-by: Michal Privoznik <mprivozn@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20211217134611.31172-9-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-12-17 16:46:11 +03:00
/* whether to prealloc memory when plugging new blocks */
bool prealloc;
/* notifiers to notify when "size" changes */
NotifierList size_change_notifiers;
/* listeners to notify on plug/unplug activity. */
QLIST_HEAD(, RamDiscardListener) rdl_list;
};
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
struct VirtIOMEMClass {
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
/* private */
VirtIODevice parent;
/* public */
void (*fill_device_info)(const VirtIOMEM *vmen, VirtioMEMDeviceInfo *vi);
MemoryRegion *(*get_memory_region)(VirtIOMEM *vmem, Error **errp);
void (*add_size_change_notifier)(VirtIOMEM *vmem, Notifier *notifier);
void (*remove_size_change_notifier)(VirtIOMEM *vmem, Notifier *notifier);
};
virtio-mem: Paravirtualized memory hot(un)plug This is the very basic/initial version of virtio-mem. An introduction to virtio-mem can be found in the Linux kernel driver [1]. While it can be used in the current state for hotplug of a smaller amount of memory, it will heavily benefit from resizeable memory regions in the future. Each virtio-mem device manages a memory region (provided via a memory backend). After requested by the hypervisor ("requested-size"), the guest can try to plug/unplug blocks of memory within that region, in order to reach the requested size. Initially, and after a reboot, all memory is unplugged (except in special cases - reboot during postcopy). The guest may only try to plug/unplug blocks of memory within the usable region size. The usable region size is a little bigger than the requested size, to give the device driver some flexibility. The usable region size will only grow, except on reboots or when all memory is requested to get unplugged. The guest can never plug more memory than requested. Unplugged memory will get zapped/discarded, similar to in a balloon device. The block size is variable, however, it is always chosen in a way such that THP splits are avoided (e.g., 2MB). The state of each block (plugged/unplugged) is tracked in a bitmap. As virtio-mem devices (e.g., virtio-mem-pci) will be memory devices, we now expose "VirtioMEMDeviceInfo" via "query-memory-devices". -------------------------------------------------------------------------- There are two important follow-up items that are in the works: 1. Resizeable memory regions: Use resizeable allocations/RAM blocks to grow/shrink along with the usable region size. This avoids creating initially very big VMAs, RAM blocks, and KVM slots. 2. Protection of unplugged memory: Make sure the gust cannot actually make use of unplugged memory. Other follow-up items that are in the works: 1. Exclude unplugged memory during migration (via precopy notifier). 2. Handle remapping of memory. 3. Support for other architectures. -------------------------------------------------------------------------- Example usage (virtio-mem-pci is introduced in follow-up patches): Start QEMU with two virtio-mem devices (one per NUMA node): $ qemu-system-x86_64 -m 4G,maxmem=20G \ -smp sockets=2,cores=2 \ -numa node,nodeid=0,cpus=0-1 -numa node,nodeid=1,cpus=2-3 \ [...] -object memory-backend-ram,id=mem0,size=8G \ -device virtio-mem-pci,id=vm0,memdev=mem0,node=0,requested-size=0M \ -object memory-backend-ram,id=mem1,size=8G \ -device virtio-mem-pci,id=vm1,memdev=mem1,node=1,requested-size=1G Query the configuration: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 0 size: 0 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 1073741824 size: 1073741824 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 Add some memory to node 0: (qemu) qom-set vm0 requested-size 500M Remove some memory from node 1: (qemu) qom-set vm1 requested-size 200M Query the configuration again: (qemu) info memory-devices Memory device [virtio-mem]: "vm0" memaddr: 0x140000000 node: 0 requested-size: 524288000 size: 524288000 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem0 Memory device [virtio-mem]: "vm1" memaddr: 0x340000000 node: 1 requested-size: 209715200 size: 209715200 max-size: 8589934592 block-size: 2097152 memdev: /objects/mem1 [1] https://lkml.kernel.org/r/20200311171422.10484-1-david@redhat.com Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Eric Blake <eblake@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20200626072248.78761-11-david@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-26 10:22:37 +03:00
#endif