qemu/hw/misc/npcm7xx_mft.c

541 lines
17 KiB
C
Raw Normal View History

/*
* Nuvoton NPCM7xx MFT Module
*
* Copyright 2021 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/misc/npcm7xx_mft.h"
#include "hw/misc/npcm7xx_pwm.h"
#include "hw/registerfields.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include "qemu/units.h"
#include "trace.h"
/*
* Some of the registers can only accessed via 16-bit ops and some can only
* be accessed via 8-bit ops. However we mark all of them using REG16 to
* simplify implementation. npcm7xx_mft_check_mem_op checks the access length
* of memory operations.
*/
REG16(NPCM7XX_MFT_CNT1, 0x00);
REG16(NPCM7XX_MFT_CRA, 0x02);
REG16(NPCM7XX_MFT_CRB, 0x04);
REG16(NPCM7XX_MFT_CNT2, 0x06);
REG16(NPCM7XX_MFT_PRSC, 0x08);
REG16(NPCM7XX_MFT_CKC, 0x0a);
REG16(NPCM7XX_MFT_MCTRL, 0x0c);
REG16(NPCM7XX_MFT_ICTRL, 0x0e);
REG16(NPCM7XX_MFT_ICLR, 0x10);
REG16(NPCM7XX_MFT_IEN, 0x12);
REG16(NPCM7XX_MFT_CPA, 0x14);
REG16(NPCM7XX_MFT_CPB, 0x16);
REG16(NPCM7XX_MFT_CPCFG, 0x18);
REG16(NPCM7XX_MFT_INASEL, 0x1a);
REG16(NPCM7XX_MFT_INBSEL, 0x1c);
/* Register Fields */
#define NPCM7XX_MFT_CKC_C2CSEL BIT(3)
#define NPCM7XX_MFT_CKC_C1CSEL BIT(0)
#define NPCM7XX_MFT_MCTRL_TBEN BIT(6)
#define NPCM7XX_MFT_MCTRL_TAEN BIT(5)
#define NPCM7XX_MFT_MCTRL_TBEDG BIT(4)
#define NPCM7XX_MFT_MCTRL_TAEDG BIT(3)
#define NPCM7XX_MFT_MCTRL_MODE5 BIT(2)
#define NPCM7XX_MFT_ICTRL_TFPND BIT(5)
#define NPCM7XX_MFT_ICTRL_TEPND BIT(4)
#define NPCM7XX_MFT_ICTRL_TDPND BIT(3)
#define NPCM7XX_MFT_ICTRL_TCPND BIT(2)
#define NPCM7XX_MFT_ICTRL_TBPND BIT(1)
#define NPCM7XX_MFT_ICTRL_TAPND BIT(0)
#define NPCM7XX_MFT_ICLR_TFCLR BIT(5)
#define NPCM7XX_MFT_ICLR_TECLR BIT(4)
#define NPCM7XX_MFT_ICLR_TDCLR BIT(3)
#define NPCM7XX_MFT_ICLR_TCCLR BIT(2)
#define NPCM7XX_MFT_ICLR_TBCLR BIT(1)
#define NPCM7XX_MFT_ICLR_TACLR BIT(0)
#define NPCM7XX_MFT_IEN_TFIEN BIT(5)
#define NPCM7XX_MFT_IEN_TEIEN BIT(4)
#define NPCM7XX_MFT_IEN_TDIEN BIT(3)
#define NPCM7XX_MFT_IEN_TCIEN BIT(2)
#define NPCM7XX_MFT_IEN_TBIEN BIT(1)
#define NPCM7XX_MFT_IEN_TAIEN BIT(0)
#define NPCM7XX_MFT_CPCFG_GET_B(rv) extract8((rv), 4, 4)
#define NPCM7XX_MFT_CPCFG_GET_A(rv) extract8((rv), 0, 4)
#define NPCM7XX_MFT_CPCFG_HIEN BIT(3)
#define NPCM7XX_MFT_CPCFG_EQEN BIT(2)
#define NPCM7XX_MFT_CPCFG_LOEN BIT(1)
#define NPCM7XX_MFT_CPCFG_CPSEL BIT(0)
#define NPCM7XX_MFT_INASEL_SELA BIT(0)
#define NPCM7XX_MFT_INBSEL_SELB BIT(0)
/* Max CNT values of the module. The CNT value is a countdown from it. */
#define NPCM7XX_MFT_MAX_CNT 0xFFFF
/* Each fan revolution should generated 2 pulses */
#define NPCM7XX_MFT_PULSE_PER_REVOLUTION 2
typedef enum NPCM7xxMFTCaptureState {
/* capture succeeded with a valid CNT value. */
NPCM7XX_CAPTURE_SUCCEED,
/* capture stopped prematurely due to reaching CPCFG condition. */
NPCM7XX_CAPTURE_COMPARE_HIT,
/* capture fails since it reaches underflow condition for CNT. */
NPCM7XX_CAPTURE_UNDERFLOW,
} NPCM7xxMFTCaptureState;
static void npcm7xx_mft_reset(NPCM7xxMFTState *s)
{
int i;
/* Only registers PRSC ~ INBSEL need to be reset. */
for (i = R_NPCM7XX_MFT_PRSC; i <= R_NPCM7XX_MFT_INBSEL; ++i) {
s->regs[i] = 0;
}
}
static void npcm7xx_mft_clear_interrupt(NPCM7xxMFTState *s, uint8_t iclr)
{
/*
* Clear bits in ICTRL where corresponding bits in iclr is 1.
* Both iclr and ictrl are 8-bit regs. (See npcm7xx_mft_check_mem_op)
*/
s->regs[R_NPCM7XX_MFT_ICTRL] &= ~iclr;
}
/*
* If the CPCFG's condition should be triggered during count down from
* NPCM7XX_MFT_MAX_CNT to src if compared to tgt, return the count when
* the condition is triggered.
* Otherwise return -1.
* Since tgt is uint16_t it must always <= NPCM7XX_MFT_MAX_CNT.
*/
static int npcm7xx_mft_compare(int32_t src, uint16_t tgt, uint8_t cpcfg)
{
if (cpcfg & NPCM7XX_MFT_CPCFG_HIEN) {
return NPCM7XX_MFT_MAX_CNT;
}
if ((cpcfg & NPCM7XX_MFT_CPCFG_EQEN) && (src <= tgt)) {
return tgt;
}
if ((cpcfg & NPCM7XX_MFT_CPCFG_LOEN) && (tgt > 0) && (src < tgt)) {
return tgt - 1;
}
return -1;
}
/* Compute CNT according to corresponding fan's RPM. */
static NPCM7xxMFTCaptureState npcm7xx_mft_compute_cnt(
Clock *clock, uint32_t max_rpm, uint32_t duty, uint16_t tgt,
uint8_t cpcfg, uint16_t *cnt)
{
uint32_t rpm = (uint64_t)max_rpm * (uint64_t)duty / NPCM7XX_PWM_MAX_DUTY;
int32_t count;
int stopped;
NPCM7xxMFTCaptureState state;
if (rpm == 0) {
/*
* If RPM = 0, capture won't happen. CNT will continue count down.
* So it's effective equivalent to have a cnt > NPCM7XX_MFT_MAX_CNT
*/
count = NPCM7XX_MFT_MAX_CNT + 1;
} else {
/*
* RPM = revolution/min. The time for one revlution (in ns) is
* MINUTE_TO_NANOSECOND / RPM.
*/
count = clock_ns_to_ticks(clock, (60 * NANOSECONDS_PER_SECOND) /
(rpm * NPCM7XX_MFT_PULSE_PER_REVOLUTION));
}
if (count > NPCM7XX_MFT_MAX_CNT) {
count = -1;
} else {
/* The CNT is a countdown value from NPCM7XX_MFT_MAX_CNT. */
count = NPCM7XX_MFT_MAX_CNT - count;
}
stopped = npcm7xx_mft_compare(count, tgt, cpcfg);
if (stopped == -1) {
if (count == -1) {
/* Underflow */
state = NPCM7XX_CAPTURE_UNDERFLOW;
} else {
state = NPCM7XX_CAPTURE_SUCCEED;
}
} else {
count = stopped;
state = NPCM7XX_CAPTURE_COMPARE_HIT;
}
if (count != -1) {
*cnt = count;
}
trace_npcm7xx_mft_rpm(clock->canonical_path, clock_get_hz(clock),
state, count, rpm, duty);
return state;
}
/*
* Capture Fan RPM and update CNT and CR registers accordingly.
* Raise IRQ if certain contidions are met in IEN.
*/
static void npcm7xx_mft_capture(NPCM7xxMFTState *s)
{
int irq_level = 0;
NPCM7xxMFTCaptureState state;
int sel;
uint8_t cpcfg;
/*
* If not mode 5, the behavior is undefined. We just do nothing in this
* case.
*/
if (!(s->regs[R_NPCM7XX_MFT_MCTRL] & NPCM7XX_MFT_MCTRL_MODE5)) {
return;
}
/* Capture input A. */
if (s->regs[R_NPCM7XX_MFT_MCTRL] & NPCM7XX_MFT_MCTRL_TAEN &&
s->regs[R_NPCM7XX_MFT_CKC] & NPCM7XX_MFT_CKC_C1CSEL) {
sel = s->regs[R_NPCM7XX_MFT_INASEL] & NPCM7XX_MFT_INASEL_SELA;
cpcfg = NPCM7XX_MFT_CPCFG_GET_A(s->regs[R_NPCM7XX_MFT_CPCFG]);
state = npcm7xx_mft_compute_cnt(s->clock_1,
sel ? s->max_rpm[2] : s->max_rpm[0],
sel ? s->duty[2] : s->duty[0],
s->regs[R_NPCM7XX_MFT_CPA],
cpcfg,
&s->regs[R_NPCM7XX_MFT_CNT1]);
switch (state) {
case NPCM7XX_CAPTURE_SUCCEED:
/* Interrupt on input capture on TAn transition - TAPND */
s->regs[R_NPCM7XX_MFT_CRA] = s->regs[R_NPCM7XX_MFT_CNT1];
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TAPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TAIEN) {
irq_level = 1;
}
break;
case NPCM7XX_CAPTURE_COMPARE_HIT:
/* Compare Hit - TEPND */
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TEPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TEIEN) {
irq_level = 1;
}
break;
case NPCM7XX_CAPTURE_UNDERFLOW:
/* Underflow - TCPND */
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TCPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TCIEN) {
irq_level = 1;
}
break;
default:
g_assert_not_reached();
}
}
/* Capture input B. */
if (s->regs[R_NPCM7XX_MFT_MCTRL] & NPCM7XX_MFT_MCTRL_TBEN &&
s->regs[R_NPCM7XX_MFT_CKC] & NPCM7XX_MFT_CKC_C2CSEL) {
sel = s->regs[R_NPCM7XX_MFT_INBSEL] & NPCM7XX_MFT_INBSEL_SELB;
cpcfg = NPCM7XX_MFT_CPCFG_GET_B(s->regs[R_NPCM7XX_MFT_CPCFG]);
state = npcm7xx_mft_compute_cnt(s->clock_2,
sel ? s->max_rpm[3] : s->max_rpm[1],
sel ? s->duty[3] : s->duty[1],
s->regs[R_NPCM7XX_MFT_CPB],
cpcfg,
&s->regs[R_NPCM7XX_MFT_CNT2]);
switch (state) {
case NPCM7XX_CAPTURE_SUCCEED:
/* Interrupt on input capture on TBn transition - TBPND */
s->regs[R_NPCM7XX_MFT_CRB] = s->regs[R_NPCM7XX_MFT_CNT2];
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TBPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TBIEN) {
irq_level = 1;
}
break;
case NPCM7XX_CAPTURE_COMPARE_HIT:
/* Compare Hit - TFPND */
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TFPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TFIEN) {
irq_level = 1;
}
break;
case NPCM7XX_CAPTURE_UNDERFLOW:
/* Underflow - TDPND */
s->regs[R_NPCM7XX_MFT_ICTRL] |= NPCM7XX_MFT_ICTRL_TDPND;
if (s->regs[R_NPCM7XX_MFT_IEN] & NPCM7XX_MFT_IEN_TDIEN) {
irq_level = 1;
}
break;
default:
g_assert_not_reached();
}
}
trace_npcm7xx_mft_capture(DEVICE(s)->canonical_path, irq_level);
qemu_set_irq(s->irq, irq_level);
}
/* Update clock for counters. */
static void npcm7xx_mft_update_clock(void *opaque, ClockEvent event)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(opaque);
uint64_t prescaled_clock_period;
prescaled_clock_period = clock_get(s->clock_in) *
(s->regs[R_NPCM7XX_MFT_PRSC] + 1ULL);
trace_npcm7xx_mft_update_clock(s->clock_in->canonical_path,
s->regs[R_NPCM7XX_MFT_CKC],
clock_get(s->clock_in),
prescaled_clock_period);
/* Update clock 1 */
if (s->regs[R_NPCM7XX_MFT_CKC] & NPCM7XX_MFT_CKC_C1CSEL) {
/* Clock is prescaled. */
clock_update(s->clock_1, prescaled_clock_period);
} else {
/* Clock stopped. */
clock_update(s->clock_1, 0);
}
/* Update clock 2 */
if (s->regs[R_NPCM7XX_MFT_CKC] & NPCM7XX_MFT_CKC_C2CSEL) {
/* Clock is prescaled. */
clock_update(s->clock_2, prescaled_clock_period);
} else {
/* Clock stopped. */
clock_update(s->clock_2, 0);
}
npcm7xx_mft_capture(s);
}
static uint64_t npcm7xx_mft_read(void *opaque, hwaddr offset, unsigned size)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(opaque);
uint16_t value = 0;
switch (offset) {
case A_NPCM7XX_MFT_ICLR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: register @ 0x%04" HWADDR_PRIx " is write-only\n",
__func__, offset);
break;
default:
value = s->regs[offset / 2];
}
trace_npcm7xx_mft_read(DEVICE(s)->canonical_path, offset, value);
return value;
}
static void npcm7xx_mft_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(opaque);
trace_npcm7xx_mft_write(DEVICE(s)->canonical_path, offset, v);
switch (offset) {
case A_NPCM7XX_MFT_ICLR:
npcm7xx_mft_clear_interrupt(s, v);
break;
case A_NPCM7XX_MFT_CKC:
case A_NPCM7XX_MFT_PRSC:
s->regs[offset / 2] = v;
npcm7xx_mft_update_clock(s, ClockUpdate);
break;
default:
s->regs[offset / 2] = v;
npcm7xx_mft_capture(s);
break;
}
}
static bool npcm7xx_mft_check_mem_op(void *opaque, hwaddr offset,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
switch (offset) {
/* 16-bit registers. Must be accessed with 16-bit read/write.*/
case A_NPCM7XX_MFT_CNT1:
case A_NPCM7XX_MFT_CRA:
case A_NPCM7XX_MFT_CRB:
case A_NPCM7XX_MFT_CNT2:
case A_NPCM7XX_MFT_CPA:
case A_NPCM7XX_MFT_CPB:
return size == 2;
/* 8-bit registers. Must be accessed with 8-bit read/write.*/
case A_NPCM7XX_MFT_PRSC:
case A_NPCM7XX_MFT_CKC:
case A_NPCM7XX_MFT_MCTRL:
case A_NPCM7XX_MFT_ICTRL:
case A_NPCM7XX_MFT_ICLR:
case A_NPCM7XX_MFT_IEN:
case A_NPCM7XX_MFT_CPCFG:
case A_NPCM7XX_MFT_INASEL:
case A_NPCM7XX_MFT_INBSEL:
return size == 1;
default:
/* Invalid registers. */
return false;
}
}
static void npcm7xx_mft_get_max_rpm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void npcm7xx_mft_set_max_rpm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(obj);
uint32_t *max_rpm = opaque;
uint32_t value;
if (!visit_type_uint32(v, name, &value, errp)) {
return;
}
*max_rpm = value;
npcm7xx_mft_capture(s);
}
static void npcm7xx_mft_duty_handler(void *opaque, int n, int value)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(opaque);
trace_npcm7xx_mft_set_duty(DEVICE(s)->canonical_path, n, value);
s->duty[n] = value;
npcm7xx_mft_capture(s);
}
static const struct MemoryRegionOps npcm7xx_mft_ops = {
.read = npcm7xx_mft_read,
.write = npcm7xx_mft_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 2,
.unaligned = false,
.accepts = npcm7xx_mft_check_mem_op,
},
};
static void npcm7xx_mft_enter_reset(Object *obj, ResetType type)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(obj);
npcm7xx_mft_reset(s);
}
static void npcm7xx_mft_hold_reset(Object *obj)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(obj);
qemu_irq_lower(s->irq);
}
static void npcm7xx_mft_init(Object *obj)
{
NPCM7xxMFTState *s = NPCM7XX_MFT(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
DeviceState *dev = DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &npcm7xx_mft_ops, s,
TYPE_NPCM7XX_MFT, 4 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
s->clock_in = qdev_init_clock_in(dev, "clock-in", npcm7xx_mft_update_clock,
s, ClockUpdate);
s->clock_1 = qdev_init_clock_out(dev, "clock1");
s->clock_2 = qdev_init_clock_out(dev, "clock2");
for (int i = 0; i < NPCM7XX_PWM_PER_MODULE; ++i) {
object_property_add(obj, "max_rpm[*]", "uint32",
npcm7xx_mft_get_max_rpm,
npcm7xx_mft_set_max_rpm,
NULL, &s->max_rpm[i]);
}
qdev_init_gpio_in_named(dev, npcm7xx_mft_duty_handler, "duty",
NPCM7XX_MFT_FANIN_COUNT);
}
static const VMStateDescription vmstate_npcm7xx_mft = {
.name = "npcm7xx-mft-module",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(clock_in, NPCM7xxMFTState),
VMSTATE_CLOCK(clock_1, NPCM7xxMFTState),
VMSTATE_CLOCK(clock_2, NPCM7xxMFTState),
VMSTATE_UINT16_ARRAY(regs, NPCM7xxMFTState, NPCM7XX_MFT_NR_REGS),
VMSTATE_UINT32_ARRAY(max_rpm, NPCM7xxMFTState, NPCM7XX_MFT_FANIN_COUNT),
VMSTATE_UINT32_ARRAY(duty, NPCM7xxMFTState, NPCM7XX_MFT_FANIN_COUNT),
VMSTATE_END_OF_LIST(),
},
};
static void npcm7xx_mft_class_init(ObjectClass *klass, void *data)
{
ResettableClass *rc = RESETTABLE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NPCM7xx MFT Controller";
dc->vmsd = &vmstate_npcm7xx_mft;
rc->phases.enter = npcm7xx_mft_enter_reset;
rc->phases.hold = npcm7xx_mft_hold_reset;
}
static const TypeInfo npcm7xx_mft_info = {
.name = TYPE_NPCM7XX_MFT,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCM7xxMFTState),
.class_init = npcm7xx_mft_class_init,
.instance_init = npcm7xx_mft_init,
};
static void npcm7xx_mft_register_type(void)
{
type_register_static(&npcm7xx_mft_info);
}
type_init(npcm7xx_mft_register_type);