qemu/target/riscv/translate.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1362 lines
38 KiB
C
Raw Normal View History

/*
* RISC-V emulation for qemu: main translation routines.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "exec/log.h"
#include "semihosting/semihost.h"
#include "internals.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
target/riscv: Implement dynamic establishment of custom decoder In this patch, we modify the decoder to be a freely composable data structure instead of a hardcoded one. It can be dynamically builded up according to the extensions. This approach has several benefits: 1. Provides support for heterogeneous cpu architectures. As we add decoder in RISCVCPU, each cpu can have their own decoder, and the decoders can be different due to cpu's features. 2. Improve the decoding efficiency. We run the guard_func to see if the decoder can be added to the dynamic_decoder when building up the decoder. Therefore, there is no need to run the guard_func when decoding each instruction. It can improve the decoding efficiency 3. For vendor or dynamic cpus, it allows them to customize their own decoder functions to improve decoding efficiency, especially when vendor-defined instruction sets increase. Because of dynamic building up, it can skip the other decoder guard functions when decoding. 4. Pre patch for allowing adding a vendor decoder before decode_insn32() with minimal overhead for users that don't need this particular vendor decoder. Signed-off-by: Huang Tao <eric.huang@linux.alibaba.com> Suggested-by: Christoph Muellner <christoph.muellner@vrull.eu> Co-authored-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240506023607.29544-1-eric.huang@linux.alibaba.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-05-06 05:36:07 +03:00
#include "tcg/tcg-cpu.h"
/* global register indices */
static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart;
static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */
static TCGv load_res;
static TCGv load_val;
/* globals for PM CSRs */
static TCGv pm_mask;
static TCGv pm_base;
/*
* If an operation is being performed on less than TARGET_LONG_BITS,
* it may require the inputs to be sign- or zero-extended; which will
* depend on the exact operation being performed.
*/
typedef enum {
EXT_NONE,
EXT_SIGN,
EXT_ZERO,
} DisasExtend;
typedef struct DisasContext {
DisasContextBase base;
target_ulong cur_insn_len;
target_ulong pc_save;
target_ulong priv_ver;
RISCVMXL misa_mxl_max;
RISCVMXL xl;
RISCVMXL address_xl;
uint32_t misa_ext;
uint32_t opcode;
RISCVExtStatus mstatus_fs;
RISCVExtStatus mstatus_vs;
uint32_t mem_idx;
uint32_t priv;
/*
* Remember the rounding mode encoded in the previous fp instruction,
* which we have already installed into env->fp_status. Or -1 for
* no previous fp instruction. Note that we exit the TB when writing
* to any system register, which includes CSR_FRM, so we do not have
* to reset this known value.
*/
int frm;
RISCVMXL ol;
bool virt_inst_excp;
bool virt_enabled;
const RISCVCPUConfig *cfg_ptr;
/* vector extension */
bool vill;
/*
* Encode LMUL to lmul as follows:
* LMUL vlmul lmul
* 1 000 0
* 2 001 1
* 4 010 2
* 8 011 3
* - 100 -
* 1/8 101 -3
* 1/4 110 -2
* 1/2 111 -1
*/
int8_t lmul;
uint8_t sew;
uint8_t vta;
uint8_t vma;
bool cfg_vta_all_1s;
bool vstart_eq_zero;
bool vl_eq_vlmax;
CPUState *cs;
TCGv zero;
/* PointerMasking extension */
bool pm_mask_enabled;
bool pm_base_enabled;
/* Ztso */
bool ztso;
/* Use icount trigger for native debug */
bool itrigger;
/* FRM is known to contain a valid value. */
bool frm_valid;
bool insn_start_updated;
target/riscv: Implement dynamic establishment of custom decoder In this patch, we modify the decoder to be a freely composable data structure instead of a hardcoded one. It can be dynamically builded up according to the extensions. This approach has several benefits: 1. Provides support for heterogeneous cpu architectures. As we add decoder in RISCVCPU, each cpu can have their own decoder, and the decoders can be different due to cpu's features. 2. Improve the decoding efficiency. We run the guard_func to see if the decoder can be added to the dynamic_decoder when building up the decoder. Therefore, there is no need to run the guard_func when decoding each instruction. It can improve the decoding efficiency 3. For vendor or dynamic cpus, it allows them to customize their own decoder functions to improve decoding efficiency, especially when vendor-defined instruction sets increase. Because of dynamic building up, it can skip the other decoder guard functions when decoding. 4. Pre patch for allowing adding a vendor decoder before decode_insn32() with minimal overhead for users that don't need this particular vendor decoder. Signed-off-by: Huang Tao <eric.huang@linux.alibaba.com> Suggested-by: Christoph Muellner <christoph.muellner@vrull.eu> Co-authored-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240506023607.29544-1-eric.huang@linux.alibaba.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-05-06 05:36:07 +03:00
const GPtrArray *decoders;
} DisasContext;
static inline bool has_ext(DisasContext *ctx, uint32_t ext)
{
return ctx->misa_ext & ext;
}
#ifdef TARGET_RISCV32
#define get_xl(ctx) MXL_RV32
#elif defined(CONFIG_USER_ONLY)
#define get_xl(ctx) MXL_RV64
#else
#define get_xl(ctx) ((ctx)->xl)
#endif
#ifdef TARGET_RISCV32
#define get_address_xl(ctx) MXL_RV32
#elif defined(CONFIG_USER_ONLY)
#define get_address_xl(ctx) MXL_RV64
#else
#define get_address_xl(ctx) ((ctx)->address_xl)
#endif
/* The word size for this machine mode. */
static inline int __attribute__((unused)) get_xlen(DisasContext *ctx)
{
return 16 << get_xl(ctx);
}
/* The operation length, as opposed to the xlen. */
#ifdef TARGET_RISCV32
#define get_ol(ctx) MXL_RV32
#else
#define get_ol(ctx) ((ctx)->ol)
#endif
static inline int get_olen(DisasContext *ctx)
{
return 16 << get_ol(ctx);
}
/* The maximum register length */
#ifdef TARGET_RISCV32
#define get_xl_max(ctx) MXL_RV32
#else
#define get_xl_max(ctx) ((ctx)->misa_mxl_max)
#endif
/*
* RISC-V requires NaN-boxing of narrower width floating point values.
* This applies when a 32-bit value is assigned to a 64-bit FP register.
* For consistency and simplicity, we nanbox results even when the RVD
* extension is not present.
*/
static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in)
{
tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32));
}
static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in)
{
tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48));
}
/*
* A narrow n-bit operation, where n < FLEN, checks that input operands
* are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1.
* If so, the least-significant bits of the input are used, otherwise the
* input value is treated as an n-bit canonical NaN (v2.2 section 9.2).
*
* Here, the result is always nan-boxed, even the canonical nan.
*/
static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in)
{
TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull);
TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull);
tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
}
static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in)
{
TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull);
TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull);
tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
}
static void decode_save_opc(DisasContext *ctx)
{
assert(!ctx->insn_start_updated);
ctx->insn_start_updated = true;
tcg_set_insn_start_param(ctx->base.insn_start, 1, ctx->opcode);
}
static void gen_pc_plus_diff(TCGv target, DisasContext *ctx,
target_long diff)
{
target_ulong dest = ctx->base.pc_next + diff;
assert(ctx->pc_save != -1);
if (tb_cflags(ctx->base.tb) & CF_PCREL) {
tcg_gen_addi_tl(target, cpu_pc, dest - ctx->pc_save);
if (get_xl(ctx) == MXL_RV32) {
tcg_gen_ext32s_tl(target, target);
}
} else {
if (get_xl(ctx) == MXL_RV32) {
dest = (int32_t)dest;
}
tcg_gen_movi_tl(target, dest);
}
}
static void gen_update_pc(DisasContext *ctx, target_long diff)
{
gen_pc_plus_diff(cpu_pc, ctx, diff);
ctx->pc_save = ctx->base.pc_next + diff;
}
static void generate_exception(DisasContext *ctx, int excp)
{
gen_update_pc(ctx, 0);
gen_helper_raise_exception(tcg_env, tcg_constant_i32(excp));
ctx->base.is_jmp = DISAS_NORETURN;
}
static void gen_exception_illegal(DisasContext *ctx)
{
tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), tcg_env,
offsetof(CPURISCVState, bins));
if (ctx->virt_inst_excp) {
generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT);
} else {
generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST);
}
}
static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target)
{
tcg_gen_st_tl(target, tcg_env, offsetof(CPURISCVState, badaddr));
generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS);
}
static void lookup_and_goto_ptr(DisasContext *ctx)
{
#ifndef CONFIG_USER_ONLY
if (ctx->itrigger) {
gen_helper_itrigger_match(tcg_env);
}
#endif
tcg_gen_lookup_and_goto_ptr();
}
static void exit_tb(DisasContext *ctx)
{
#ifndef CONFIG_USER_ONLY
if (ctx->itrigger) {
gen_helper_itrigger_match(tcg_env);
}
#endif
tcg_gen_exit_tb(NULL, 0);
}
static void gen_goto_tb(DisasContext *ctx, int n, target_long diff)
{
target_ulong dest = ctx->base.pc_next + diff;
/*
* Under itrigger, instruction executes one by one like singlestep,
* direct block chain benefits will be small.
*/
if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) {
/*
* For pcrel, the pc must always be up-to-date on entry to
* the linked TB, so that it can use simple additions for all
* further adjustments. For !pcrel, the linked TB is compiled
* to know its full virtual address, so we can delay the
* update to pc to the unlinked path. A long chain of links
* can thus avoid many updates to the PC.
*/
if (tb_cflags(ctx->base.tb) & CF_PCREL) {
gen_update_pc(ctx, diff);
tcg_gen_goto_tb(n);
} else {
tcg_gen_goto_tb(n);
gen_update_pc(ctx, diff);
}
tcg_gen_exit_tb(ctx->base.tb, n);
} else {
gen_update_pc(ctx, diff);
lookup_and_goto_ptr(ctx);
}
}
/*
* Wrappers for getting reg values.
*
* The $zero register does not have cpu_gpr[0] allocated -- we supply the
* constant zero as a source, and an uninitialized sink as destination.
*
* Further, we may provide an extension for word operations.
*/
static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext)
{
TCGv t;
if (reg_num == 0) {
return ctx->zero;
}
switch (get_ol(ctx)) {
case MXL_RV32:
switch (ext) {
case EXT_NONE:
break;
case EXT_SIGN:
t = tcg_temp_new();
tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]);
return t;
case EXT_ZERO:
t = tcg_temp_new();
tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]);
return t;
default:
g_assert_not_reached();
}
break;
case MXL_RV64:
case MXL_RV128:
break;
default:
g_assert_not_reached();
}
return cpu_gpr[reg_num];
}
static TCGv get_gprh(DisasContext *ctx, int reg_num)
{
assert(get_xl(ctx) == MXL_RV128);
if (reg_num == 0) {
return ctx->zero;
}
return cpu_gprh[reg_num];
}
static TCGv dest_gpr(DisasContext *ctx, int reg_num)
{
if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) {
return tcg_temp_new();
}
return cpu_gpr[reg_num];
}
static TCGv dest_gprh(DisasContext *ctx, int reg_num)
{
if (reg_num == 0) {
return tcg_temp_new();
}
return cpu_gprh[reg_num];
}
static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t)
{
if (reg_num != 0) {
switch (get_ol(ctx)) {
case MXL_RV32:
tcg_gen_ext32s_tl(cpu_gpr[reg_num], t);
break;
case MXL_RV64:
case MXL_RV128:
tcg_gen_mov_tl(cpu_gpr[reg_num], t);
break;
default:
g_assert_not_reached();
}
if (get_xl_max(ctx) == MXL_RV128) {
tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63);
}
}
}
static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm)
{
if (reg_num != 0) {
switch (get_ol(ctx)) {
case MXL_RV32:
tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm);
break;
case MXL_RV64:
case MXL_RV128:
tcg_gen_movi_tl(cpu_gpr[reg_num], imm);
break;
default:
g_assert_not_reached();
}
if (get_xl_max(ctx) == MXL_RV128) {
tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0));
}
}
}
static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh)
{
assert(get_ol(ctx) == MXL_RV128);
if (reg_num != 0) {
tcg_gen_mov_tl(cpu_gpr[reg_num], rl);
tcg_gen_mov_tl(cpu_gprh[reg_num], rh);
}
}
static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_constant_i64(0);
}
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]);
return t;
}
#else
/* fall through */
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_constant_i64(0);
}
switch (get_xl(ctx)) {
case MXL_RV32:
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]);
return t;
}
#ifdef TARGET_RISCV64
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_temp_new_i64();
}
switch (get_xl(ctx)) {
case MXL_RV32:
return tcg_temp_new_i64();
#ifdef TARGET_RISCV64
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
/* assume it is nanboxing (for normal) or sign-extended (for zfinx) */
static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t)
{
if (!ctx->cfg_ptr->ext_zfinx) {
tcg_gen_mov_i64(cpu_fpr[reg_num], t);
return;
}
if (reg_num != 0) {
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t);
break;
#else
/* fall through */
case MXL_RV64:
tcg_gen_mov_i64(cpu_gpr[reg_num], t);
break;
#endif
default:
g_assert_not_reached();
}
}
}
static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t)
{
if (!ctx->cfg_ptr->ext_zfinx) {
tcg_gen_mov_i64(cpu_fpr[reg_num], t);
return;
}
if (reg_num != 0) {
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t);
break;
#else
tcg_gen_ext32s_i64(cpu_gpr[reg_num], t);
tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32);
break;
case MXL_RV64:
tcg_gen_mov_i64(cpu_gpr[reg_num], t);
break;
#endif
default:
g_assert_not_reached();
}
}
}
static void gen_jal(DisasContext *ctx, int rd, target_ulong imm)
{
TCGv succ_pc = dest_gpr(ctx, rd);
/* check misaligned: */
if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) {
if ((imm & 0x3) != 0) {
TCGv target_pc = tcg_temp_new();
gen_pc_plus_diff(target_pc, ctx, imm);
gen_exception_inst_addr_mis(ctx, target_pc);
return;
}
}
gen_pc_plus_diff(succ_pc, ctx, ctx->cur_insn_len);
gen_set_gpr(ctx, rd, succ_pc);
gen_goto_tb(ctx, 0, imm); /* must use this for safety */
ctx->base.is_jmp = DISAS_NORETURN;
}
/* Compute a canonical address from a register plus offset. */
static TCGv get_address(DisasContext *ctx, int rs1, int imm)
{
TCGv addr = tcg_temp_new();
TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
tcg_gen_addi_tl(addr, src1, imm);
if (ctx->pm_mask_enabled) {
tcg_gen_andc_tl(addr, addr, pm_mask);
} else if (get_address_xl(ctx) == MXL_RV32) {
tcg_gen_ext32u_tl(addr, addr);
}
if (ctx->pm_base_enabled) {
tcg_gen_or_tl(addr, addr, pm_base);
}
return addr;
}
/* Compute a canonical address from a register plus reg offset. */
static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs)
{
TCGv addr = tcg_temp_new();
TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
tcg_gen_add_tl(addr, src1, offs);
if (ctx->pm_mask_enabled) {
tcg_gen_andc_tl(addr, addr, pm_mask);
} else if (get_xl(ctx) == MXL_RV32) {
tcg_gen_ext32u_tl(addr, addr);
}
if (ctx->pm_base_enabled) {
tcg_gen_or_tl(addr, addr, pm_base);
}
return addr;
}
#ifndef CONFIG_USER_ONLY
/*
* We will have already diagnosed disabled state,
* and need to turn initial/clean into dirty.
*/
static void mark_fs_dirty(DisasContext *ctx)
{
TCGv tmp;
if (!has_ext(ctx, RVF)) {
return;
}
if (ctx->mstatus_fs != EXT_STATUS_DIRTY) {
/* Remember the state change for the rest of the TB. */
ctx->mstatus_fs = EXT_STATUS_DIRTY;
tmp = tcg_temp_new();
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
if (ctx->virt_enabled) {
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
}
}
}
#else
static inline void mark_fs_dirty(DisasContext *ctx) { }
#endif
#ifndef CONFIG_USER_ONLY
/*
* We will have already diagnosed disabled state,
* and need to turn initial/clean into dirty.
*/
static void mark_vs_dirty(DisasContext *ctx)
{
TCGv tmp;
if (ctx->mstatus_vs != EXT_STATUS_DIRTY) {
/* Remember the state change for the rest of the TB. */
ctx->mstatus_vs = EXT_STATUS_DIRTY;
tmp = tcg_temp_new();
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
if (ctx->virt_enabled) {
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
}
}
}
#else
static inline void mark_vs_dirty(DisasContext *ctx) { }
#endif
static void finalize_rvv_inst(DisasContext *ctx)
{
mark_vs_dirty(ctx);
ctx->vstart_eq_zero = true;
}
static void gen_set_rm(DisasContext *ctx, int rm)
{
if (ctx->frm == rm) {
return;
}
ctx->frm = rm;
if (rm == RISCV_FRM_DYN) {
/* The helper will return only if frm valid. */
ctx->frm_valid = true;
}
/* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
decode_save_opc(ctx);
gen_helper_set_rounding_mode(tcg_env, tcg_constant_i32(rm));
}
static void gen_set_rm_chkfrm(DisasContext *ctx, int rm)
{
if (ctx->frm == rm && ctx->frm_valid) {
return;
}
ctx->frm = rm;
ctx->frm_valid = true;
/* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
decode_save_opc(ctx);
gen_helper_set_rounding_mode_chkfrm(tcg_env, tcg_constant_i32(rm));
}
static int ex_plus_1(DisasContext *ctx, int nf)
{
return nf + 1;
}
#define EX_SH(amount) \
static int ex_shift_##amount(DisasContext *ctx, int imm) \
{ \
return imm << amount; \
}
EX_SH(1)
EX_SH(2)
EX_SH(3)
EX_SH(4)
EX_SH(12)
#define REQUIRE_EXT(ctx, ext) do { \
if (!has_ext(ctx, ext)) { \
return false; \
} \
} while (0)
#define REQUIRE_32BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV32) { \
return false; \
} \
} while (0)
#define REQUIRE_64BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV64) { \
return false; \
} \
} while (0)
#define REQUIRE_128BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV128) { \
return false; \
} \
} while (0)
#define REQUIRE_64_OR_128BIT(ctx) do { \
if (get_xl(ctx) == MXL_RV32) { \
return false; \
} \
} while (0)
#define REQUIRE_EITHER_EXT(ctx, A, B) do { \
if (!ctx->cfg_ptr->ext_##A && \
!ctx->cfg_ptr->ext_##B) { \
return false; \
} \
} while (0)
static int ex_rvc_register(DisasContext *ctx, int reg)
{
return 8 + reg;
}
static int ex_sreg_register(DisasContext *ctx, int reg)
{
return reg < 2 ? reg + 8 : reg + 16;
}
static int ex_rvc_shiftli(DisasContext *ctx, int imm)
{
/* For RV128 a shamt of 0 means a shift by 64. */
if (get_ol(ctx) == MXL_RV128) {
imm = imm ? imm : 64;
}
return imm;
}
static int ex_rvc_shiftri(DisasContext *ctx, int imm)
{
/*
* For RV128 a shamt of 0 means a shift by 64, furthermore, for right
* shifts, the shamt is sign-extended.
*/
if (get_ol(ctx) == MXL_RV128) {
imm = imm | (imm & 32) << 1;
imm = imm ? imm : 64;
}
return imm;
}
/* Include the auto-generated decoder for 32 bit insn */
#include "decode-insn32.c.inc"
static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a,
void (*func)(TCGv, TCGv, target_long))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
func(dest, src1, a->imm);
if (get_xl(ctx) == MXL_RV128) {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
func(desth, src1h, -(a->imm < 0));
gen_set_gpr128(ctx, a->rd, dest, desth);
} else {
gen_set_gpr(ctx, a->rd, dest);
}
return true;
}
static bool gen_logic(DisasContext *ctx, arg_r *a,
void (*func)(TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
func(dest, src1, src2);
if (get_xl(ctx) == MXL_RV128) {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = get_gprh(ctx, a->rs2);
TCGv desth = dest_gprh(ctx, a->rd);
func(desth, src1h, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
} else {
gen_set_gpr(ctx, a->rd, dest);
}
return true;
}
static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext,
void (*func)(TCGv, TCGv, target_long),
void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, a->imm);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, a->imm);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
TCGv src2 = tcg_constant_tl(a->imm);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = tcg_constant_tl(-(a->imm < 0));
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, src2, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
TCGv src2 = get_gpr(ctx, a->rs2, ext);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = get_gprh(ctx, a->rs2);
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, src2, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv, TCGv),
void (*f_32)(TCGv, TCGv, TCGv),
void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_arith(ctx, a, ext, f_tl, f_128);
}
static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext,
void (*func)(TCGv, TCGv, target_long),
void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
{
TCGv dest, src1;
int max_len = get_olen(ctx);
if (a->shamt >= max_len) {
return false;
}
dest = dest_gpr(ctx, a->rd);
src1 = get_gpr(ctx, a->rs1, ext);
if (max_len < 128) {
func(dest, src1, a->shamt);
gen_set_gpr(ctx, a->rd, dest);
} else {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
if (f128 == NULL) {
return false;
}
f128(dest, desth, src1, src1h, a->shamt);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a,
DisasExtend ext,
void (*f_tl)(TCGv, TCGv, target_long),
void (*f_32)(TCGv, TCGv, target_long),
void (*f_128)(TCGv, TCGv, TCGv, TCGv,
target_long))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128);
}
static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv))
{
TCGv dest, src1, src2;
int max_len = get_olen(ctx);
if (a->shamt >= max_len) {
return false;
}
dest = dest_gpr(ctx, a->rd);
src1 = get_gpr(ctx, a->rs1, ext);
src2 = tcg_constant_tl(a->shamt);
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
TCGv ext2 = tcg_temp_new();
int max_len = get_olen(ctx);
tcg_gen_andi_tl(ext2, src2, max_len - 1);
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
if (max_len < 128) {
func(dest, src1, ext2);
gen_set_gpr(ctx, a->rd, dest);
} else {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
if (f128 == NULL) {
return false;
}
f128(dest, desth, src1, src1h, ext2);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv, TCGv),
void (*f_32)(TCGv, TCGv, TCGv),
void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_shift(ctx, a, ext, f_tl, f_128);
}
static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
void (*func)(TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
func(dest, src1);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv),
void (*f_32)(TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else {
g_assert_not_reached();
}
}
return gen_unary(ctx, a, ext, f_tl);
}
static bool gen_amo(DisasContext *ctx, arg_atomic *a,
void(*func)(TCGv, TCGv, TCGv, TCGArg, MemOp),
MemOp mop)
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1, src2 = get_gpr(ctx, a->rs2, EXT_NONE);
MemOp size = mop & MO_SIZE;
if (ctx->cfg_ptr->ext_zama16b && size >= MO_32) {
mop |= MO_ATOM_WITHIN16;
} else {
mop |= MO_ALIGN;
}
decode_save_opc(ctx);
src1 = get_address(ctx, a->rs1, 0);
func(dest, src1, src2, ctx->mem_idx, mop);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool gen_cmpxchg(DisasContext *ctx, arg_atomic *a, MemOp mop)
{
TCGv dest = get_gpr(ctx, a->rd, EXT_NONE);
TCGv src1 = get_address(ctx, a->rs1, 0);
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
decode_save_opc(ctx);
tcg_gen_atomic_cmpxchg_tl(dest, src1, dest, src2, ctx->mem_idx, mop);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPUState *cpu = ctx->cs;
CPURISCVState *env = cpu_env(cpu);
return translator_ldl(env, &ctx->base, pc);
}
/* Include insn module translation function */
#include "insn_trans/trans_rvi.c.inc"
#include "insn_trans/trans_rvm.c.inc"
#include "insn_trans/trans_rva.c.inc"
#include "insn_trans/trans_rvf.c.inc"
#include "insn_trans/trans_rvd.c.inc"
#include "insn_trans/trans_rvh.c.inc"
#include "insn_trans/trans_rvv.c.inc"
#include "insn_trans/trans_rvb.c.inc"
#include "insn_trans/trans_rvzicond.c.inc"
#include "insn_trans/trans_rvzacas.c.inc"
#include "insn_trans/trans_rvzabha.c.inc"
#include "insn_trans/trans_rvzawrs.c.inc"
#include "insn_trans/trans_rvzicbo.c.inc"
#include "insn_trans/trans_rvzimop.c.inc"
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
#include "insn_trans/trans_rvzfa.c.inc"
#include "insn_trans/trans_rvzfh.c.inc"
#include "insn_trans/trans_rvk.c.inc"
#include "insn_trans/trans_rvvk.c.inc"
#include "insn_trans/trans_privileged.c.inc"
#include "insn_trans/trans_svinval.c.inc"
#include "insn_trans/trans_rvbf16.c.inc"
#include "decode-xthead.c.inc"
#include "insn_trans/trans_xthead.c.inc"
#include "insn_trans/trans_xventanacondops.c.inc"
/* Include the auto-generated decoder for 16 bit insn */
#include "decode-insn16.c.inc"
#include "insn_trans/trans_rvzce.c.inc"
#include "insn_trans/trans_rvzcmop.c.inc"
/* Include decoders for factored-out extensions */
#include "decode-XVentanaCondOps.c.inc"
/* The specification allows for longer insns, but not supported by qemu. */
#define MAX_INSN_LEN 4
static inline int insn_len(uint16_t first_word)
{
return (first_word & 3) == 3 ? 4 : 2;
}
target/riscv: Implement dynamic establishment of custom decoder In this patch, we modify the decoder to be a freely composable data structure instead of a hardcoded one. It can be dynamically builded up according to the extensions. This approach has several benefits: 1. Provides support for heterogeneous cpu architectures. As we add decoder in RISCVCPU, each cpu can have their own decoder, and the decoders can be different due to cpu's features. 2. Improve the decoding efficiency. We run the guard_func to see if the decoder can be added to the dynamic_decoder when building up the decoder. Therefore, there is no need to run the guard_func when decoding each instruction. It can improve the decoding efficiency 3. For vendor or dynamic cpus, it allows them to customize their own decoder functions to improve decoding efficiency, especially when vendor-defined instruction sets increase. Because of dynamic building up, it can skip the other decoder guard functions when decoding. 4. Pre patch for allowing adding a vendor decoder before decode_insn32() with minimal overhead for users that don't need this particular vendor decoder. Signed-off-by: Huang Tao <eric.huang@linux.alibaba.com> Suggested-by: Christoph Muellner <christoph.muellner@vrull.eu> Co-authored-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240506023607.29544-1-eric.huang@linux.alibaba.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-05-06 05:36:07 +03:00
const RISCVDecoder decoder_table[] = {
{ always_true_p, decode_insn32 },
{ has_xthead_p, decode_xthead},
{ has_XVentanaCondOps_p, decode_XVentanaCodeOps},
};
const size_t decoder_table_size = ARRAY_SIZE(decoder_table);
static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
{
ctx->virt_inst_excp = false;
ctx->cur_insn_len = insn_len(opcode);
/* Check for compressed insn */
if (ctx->cur_insn_len == 2) {
ctx->opcode = opcode;
/*
* The Zca extension is added as way to refer to instructions in the C
* extension that do not include the floating-point loads and stores
*/
if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) &&
decode_insn16(ctx, opcode)) {
return;
}
} else {
uint32_t opcode32 = opcode;
opcode32 = deposit32(opcode32, 16, 16,
translator_lduw(env, &ctx->base,
ctx->base.pc_next + 2));
ctx->opcode = opcode32;
target/riscv: Implement dynamic establishment of custom decoder In this patch, we modify the decoder to be a freely composable data structure instead of a hardcoded one. It can be dynamically builded up according to the extensions. This approach has several benefits: 1. Provides support for heterogeneous cpu architectures. As we add decoder in RISCVCPU, each cpu can have their own decoder, and the decoders can be different due to cpu's features. 2. Improve the decoding efficiency. We run the guard_func to see if the decoder can be added to the dynamic_decoder when building up the decoder. Therefore, there is no need to run the guard_func when decoding each instruction. It can improve the decoding efficiency 3. For vendor or dynamic cpus, it allows them to customize their own decoder functions to improve decoding efficiency, especially when vendor-defined instruction sets increase. Because of dynamic building up, it can skip the other decoder guard functions when decoding. 4. Pre patch for allowing adding a vendor decoder before decode_insn32() with minimal overhead for users that don't need this particular vendor decoder. Signed-off-by: Huang Tao <eric.huang@linux.alibaba.com> Suggested-by: Christoph Muellner <christoph.muellner@vrull.eu> Co-authored-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240506023607.29544-1-eric.huang@linux.alibaba.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-05-06 05:36:07 +03:00
for (guint i = 0; i < ctx->decoders->len; ++i) {
riscv_cpu_decode_fn func = g_ptr_array_index(ctx->decoders, i);
if (func(ctx, opcode32)) {
return;
}
}
}
gen_exception_illegal(ctx);
}
static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPURISCVState *env = cpu_env(cs);
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
uint32_t tb_flags = ctx->base.tb->flags;
ctx->pc_save = ctx->base.pc_first;
ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV);
ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX);
ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS);
ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS);
ctx->priv_ver = env->priv_ver;
ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED);
ctx->misa_ext = env->misa_ext;
ctx->frm = -1; /* unknown rounding mode */
ctx->cfg_ptr = &(cpu->cfg);
ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL);
ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW);
ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3);
ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s;
ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s;
ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s;
ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO);
ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX);
ctx->misa_mxl_max = mcc->misa_mxl_max;
ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL);
ctx->address_xl = FIELD_EX32(tb_flags, TB_FLAGS, AXL);
ctx->cs = cs;
ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED);
ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED);
ctx->ztso = cpu->cfg.ext_ztso;
ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER);
ctx->zero = tcg_constant_tl(0);
ctx->virt_inst_excp = false;
target/riscv: Implement dynamic establishment of custom decoder In this patch, we modify the decoder to be a freely composable data structure instead of a hardcoded one. It can be dynamically builded up according to the extensions. This approach has several benefits: 1. Provides support for heterogeneous cpu architectures. As we add decoder in RISCVCPU, each cpu can have their own decoder, and the decoders can be different due to cpu's features. 2. Improve the decoding efficiency. We run the guard_func to see if the decoder can be added to the dynamic_decoder when building up the decoder. Therefore, there is no need to run the guard_func when decoding each instruction. It can improve the decoding efficiency 3. For vendor or dynamic cpus, it allows them to customize their own decoder functions to improve decoding efficiency, especially when vendor-defined instruction sets increase. Because of dynamic building up, it can skip the other decoder guard functions when decoding. 4. Pre patch for allowing adding a vendor decoder before decode_insn32() with minimal overhead for users that don't need this particular vendor decoder. Signed-off-by: Huang Tao <eric.huang@linux.alibaba.com> Suggested-by: Christoph Muellner <christoph.muellner@vrull.eu> Co-authored-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240506023607.29544-1-eric.huang@linux.alibaba.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-05-06 05:36:07 +03:00
ctx->decoders = cpu->decoders;
}
static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}
static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
target_ulong pc_next = ctx->base.pc_next;
if (tb_cflags(dcbase->tb) & CF_PCREL) {
pc_next &= ~TARGET_PAGE_MASK;
}
tcg_gen_insn_start(pc_next, 0);
ctx->insn_start_updated = false;
}
static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPURISCVState *env = cpu_env(cpu);
uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next);
ctx->ol = ctx->xl;
decode_opc(env, ctx, opcode16);
ctx->base.pc_next += ctx->cur_insn_len;
/* Only the first insn within a TB is allowed to cross a page boundary. */
if (ctx->base.is_jmp == DISAS_NEXT) {
if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
} else {
unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK;
if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) {
uint16_t next_insn =
translator_lduw(env, &ctx->base, ctx->base.pc_next);
int len = insn_len(next_insn);
if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
}
}
}
}
static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
switch (ctx->base.is_jmp) {
case DISAS_TOO_MANY:
gen_goto_tb(ctx, 0, 0);
break;
case DISAS_NORETURN:
break;
default:
g_assert_not_reached();
}
}
static const TranslatorOps riscv_tr_ops = {
.init_disas_context = riscv_tr_init_disas_context,
.tb_start = riscv_tr_tb_start,
.insn_start = riscv_tr_insn_start,
.translate_insn = riscv_tr_translate_insn,
.tb_stop = riscv_tr_tb_stop,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc)
{
DisasContext ctx;
translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base);
}
void riscv_translate_init(void)
{
int i;
/*
* cpu_gpr[0] is a placeholder for the zero register. Do not use it.
* Use the gen_set_gpr and get_gpr helper functions when accessing regs,
* unless you specifically block reads/writes to reg 0.
*/
cpu_gpr[0] = NULL;
cpu_gprh[0] = NULL;
for (i = 1; i < 32; i++) {
cpu_gpr[i] = tcg_global_mem_new(tcg_env,
offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]);
cpu_gprh[i] = tcg_global_mem_new(tcg_env,
offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]);
}
for (i = 0; i < 32; i++) {
cpu_fpr[i] = tcg_global_mem_new_i64(tcg_env,
offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]);
}
cpu_pc = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, pc), "pc");
cpu_vl = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vl), "vl");
cpu_vstart = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vstart),
"vstart");
load_res = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_res),
"load_res");
load_val = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_val),
"load_val");
/* Assign PM CSRs to tcg globals */
pm_mask = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmmask),
"pmmask");
pm_base = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmbase),
"pmbase");
}