2016-02-08 21:08:51 +03:00
|
|
|
#include "qemu/osdep.h"
|
2012-12-17 21:20:00 +04:00
|
|
|
#include "qemu/iov.h"
|
|
|
|
#include "qemu/sockets.h"
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
|
|
|
|
/* create a randomly-sized iovec with random vectors */
|
|
|
|
static void iov_random(struct iovec **iovp, unsigned *iov_cntp)
|
|
|
|
{
|
|
|
|
unsigned niov = g_test_rand_int_range(3,8);
|
|
|
|
struct iovec *iov = g_malloc(niov * sizeof(*iov));
|
|
|
|
unsigned i;
|
|
|
|
for (i = 0; i < niov; ++i) {
|
|
|
|
iov[i].iov_len = g_test_rand_int_range(5,20);
|
|
|
|
iov[i].iov_base = g_malloc(iov[i].iov_len);
|
|
|
|
}
|
|
|
|
*iovp = iov;
|
|
|
|
*iov_cntp = niov;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void iov_free(struct iovec *iov, unsigned niov)
|
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
for (i = 0; i < niov; ++i) {
|
|
|
|
g_free(iov[i].iov_base);
|
|
|
|
}
|
|
|
|
g_free(iov);
|
|
|
|
}
|
|
|
|
|
2020-09-17 12:44:53 +03:00
|
|
|
static bool iov_equals(const struct iovec *a, const struct iovec *b,
|
|
|
|
unsigned niov)
|
|
|
|
{
|
|
|
|
return memcmp(a, b, sizeof(a[0]) * niov) == 0;
|
|
|
|
}
|
|
|
|
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
static void test_iov_bytes(struct iovec *iov, unsigned niov,
|
|
|
|
size_t offset, size_t bytes)
|
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
size_t j, o;
|
|
|
|
unsigned char *b;
|
|
|
|
o = 0;
|
|
|
|
|
|
|
|
/* we walk over all elements, */
|
|
|
|
for (i = 0; i < niov; ++i) {
|
|
|
|
b = iov[i].iov_base;
|
|
|
|
/* over each char of each element, */
|
|
|
|
for (j = 0; j < iov[i].iov_len; ++j) {
|
|
|
|
/* counting each of them and
|
|
|
|
* verifying that the ones within [offset,offset+bytes)
|
|
|
|
* range are equal to the position number (o) */
|
|
|
|
if (o >= offset && o < offset + bytes) {
|
|
|
|
g_assert(b[j] == (o & 255));
|
|
|
|
} else {
|
|
|
|
g_assert(b[j] == 0xff);
|
|
|
|
}
|
|
|
|
++o;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_to_from_buf_1(void)
|
|
|
|
{
|
|
|
|
unsigned niov;
|
|
|
|
struct iovec *iov;
|
|
|
|
size_t sz;
|
|
|
|
unsigned char *ibuf, *obuf;
|
|
|
|
unsigned i, j, n;
|
|
|
|
|
|
|
|
iov_random(&iov, &niov);
|
|
|
|
|
|
|
|
sz = iov_size(iov, niov);
|
|
|
|
|
|
|
|
ibuf = g_malloc(sz + 8) + 4;
|
|
|
|
memcpy(ibuf-4, "aaaa", 4); memcpy(ibuf + sz, "bbbb", 4);
|
|
|
|
obuf = g_malloc(sz + 8) + 4;
|
|
|
|
memcpy(obuf-4, "xxxx", 4); memcpy(obuf + sz, "yyyy", 4);
|
|
|
|
|
|
|
|
/* fill in ibuf with 0123456... */
|
|
|
|
for (i = 0; i < sz; ++i) {
|
|
|
|
ibuf[i] = i & 255;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i <= sz; ++i) {
|
|
|
|
|
|
|
|
/* Test from/to buf for offset(i) in [0..sz] up to the end of buffer.
|
|
|
|
* For last iteration with offset == sz, the procedure should
|
|
|
|
* skip whole vector and process exactly 0 bytes */
|
|
|
|
|
|
|
|
/* first set bytes [i..sz) to some "random" value */
|
2017-08-23 11:25:26 +03:00
|
|
|
n = iov_memset(iov, niov, 0, 0xff, sz);
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
g_assert(n == sz);
|
|
|
|
|
|
|
|
/* next copy bytes [i..sz) from ibuf to iovec */
|
2017-08-23 11:25:26 +03:00
|
|
|
n = iov_from_buf(iov, niov, i, ibuf + i, sz - i);
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
g_assert(n == sz - i);
|
|
|
|
|
|
|
|
/* clear part of obuf */
|
|
|
|
memset(obuf + i, 0, sz - i);
|
|
|
|
/* and set this part of obuf to values from iovec */
|
2017-08-23 11:25:26 +03:00
|
|
|
n = iov_to_buf(iov, niov, i, obuf + i, sz - i);
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
g_assert(n == sz - i);
|
|
|
|
|
|
|
|
/* now compare resulting buffers */
|
|
|
|
g_assert(memcmp(ibuf, obuf, sz) == 0);
|
|
|
|
|
|
|
|
/* test just one char */
|
|
|
|
n = iov_to_buf(iov, niov, i, obuf + i, 1);
|
|
|
|
g_assert(n == (i < sz));
|
|
|
|
if (n) {
|
|
|
|
g_assert(obuf[i] == (i & 255));
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = i; j <= sz; ++j) {
|
|
|
|
/* now test num of bytes cap up to byte no. j,
|
|
|
|
* with j in [i..sz]. */
|
|
|
|
|
|
|
|
/* clear iovec */
|
2017-08-23 11:25:26 +03:00
|
|
|
n = iov_memset(iov, niov, 0, 0xff, sz);
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
g_assert(n == sz);
|
|
|
|
|
|
|
|
/* copy bytes [i..j) from ibuf to iovec */
|
|
|
|
n = iov_from_buf(iov, niov, i, ibuf + i, j - i);
|
|
|
|
g_assert(n == j - i);
|
|
|
|
|
|
|
|
/* clear part of obuf */
|
|
|
|
memset(obuf + i, 0, j - i);
|
|
|
|
|
|
|
|
/* copy bytes [i..j) from iovec to obuf */
|
|
|
|
n = iov_to_buf(iov, niov, i, obuf + i, j - i);
|
|
|
|
g_assert(n == j - i);
|
|
|
|
|
|
|
|
/* verify result */
|
|
|
|
g_assert(memcmp(ibuf, obuf, sz) == 0);
|
|
|
|
|
|
|
|
/* now actually check if the iovec contains the right data */
|
|
|
|
test_iov_bytes(iov, niov, i, j - i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
g_assert(!memcmp(ibuf-4, "aaaa", 4) && !memcmp(ibuf+sz, "bbbb", 4));
|
|
|
|
g_free(ibuf-4);
|
|
|
|
g_assert(!memcmp(obuf-4, "xxxx", 4) && !memcmp(obuf+sz, "yyyy", 4));
|
|
|
|
g_free(obuf-4);
|
|
|
|
iov_free(iov, niov);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_to_from_buf(void)
|
|
|
|
{
|
|
|
|
int x;
|
|
|
|
for (x = 0; x < 4; ++x) {
|
|
|
|
test_to_from_buf_1();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-14 11:18:54 +04:00
|
|
|
static void test_io(void)
|
|
|
|
{
|
|
|
|
#ifndef _WIN32
|
|
|
|
/* socketpair(PF_UNIX) which does not exist on windows */
|
|
|
|
|
|
|
|
int sv[2];
|
|
|
|
int r;
|
2021-07-12 23:26:21 +03:00
|
|
|
unsigned i, j, k, s;
|
2012-03-14 11:18:54 +04:00
|
|
|
fd_set fds;
|
|
|
|
unsigned niov;
|
|
|
|
struct iovec *iov, *siov;
|
|
|
|
unsigned char *buf;
|
|
|
|
size_t sz;
|
|
|
|
|
|
|
|
iov_random(&iov, &niov);
|
|
|
|
sz = iov_size(iov, niov);
|
|
|
|
buf = g_malloc(sz);
|
|
|
|
for (i = 0; i < sz; ++i) {
|
|
|
|
buf[i] = i & 255;
|
|
|
|
}
|
|
|
|
iov_from_buf(iov, niov, 0, buf, sz);
|
|
|
|
|
2021-09-03 20:45:05 +03:00
|
|
|
siov = g_memdup2(iov, sizeof(*iov) * niov);
|
2012-03-14 11:18:54 +04:00
|
|
|
|
|
|
|
if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) < 0) {
|
|
|
|
perror("socketpair");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
FD_ZERO(&fds);
|
|
|
|
|
|
|
|
if (fork() == 0) {
|
|
|
|
/* writer */
|
|
|
|
|
|
|
|
close(sv[0]);
|
|
|
|
FD_SET(sv[1], &fds);
|
2022-04-25 10:56:42 +03:00
|
|
|
g_unix_set_fd_nonblocking(sv[1], true, NULL);
|
2012-03-14 11:18:54 +04:00
|
|
|
r = g_test_rand_int_range(sz / 2, sz);
|
|
|
|
setsockopt(sv[1], SOL_SOCKET, SO_SNDBUF, &r, sizeof(r));
|
|
|
|
|
|
|
|
for (i = 0; i <= sz; ++i) {
|
|
|
|
for (j = i; j <= sz; ++j) {
|
|
|
|
k = i;
|
|
|
|
do {
|
|
|
|
s = g_test_rand_int_range(0, j - k + 1);
|
|
|
|
r = iov_send(sv[1], iov, niov, k, s);
|
|
|
|
g_assert(memcmp(iov, siov, sizeof(*iov)*niov) == 0);
|
2024-01-22 18:33:47 +03:00
|
|
|
if (r < 0) {
|
|
|
|
if (errno == EAGAIN) {
|
|
|
|
r = 0;
|
|
|
|
} else {
|
|
|
|
perror("send");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
k += r;
|
|
|
|
if (k < j) {
|
|
|
|
select(sv[1] + 1, NULL, &fds, NULL, NULL);
|
2012-03-14 11:18:54 +04:00
|
|
|
}
|
|
|
|
} while(k < j);
|
|
|
|
}
|
|
|
|
}
|
2016-07-07 22:00:05 +03:00
|
|
|
iov_free(iov, niov);
|
|
|
|
g_free(buf);
|
|
|
|
g_free(siov);
|
2012-03-14 11:18:54 +04:00
|
|
|
exit(0);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
/* reader & verifier */
|
|
|
|
|
|
|
|
close(sv[1]);
|
|
|
|
FD_SET(sv[0], &fds);
|
2022-04-25 10:56:42 +03:00
|
|
|
g_unix_set_fd_nonblocking(sv[0], true, NULL);
|
2012-03-14 11:18:54 +04:00
|
|
|
r = g_test_rand_int_range(sz / 2, sz);
|
|
|
|
setsockopt(sv[0], SOL_SOCKET, SO_RCVBUF, &r, sizeof(r));
|
|
|
|
usleep(500000);
|
|
|
|
|
|
|
|
for (i = 0; i <= sz; ++i) {
|
|
|
|
for (j = i; j <= sz; ++j) {
|
|
|
|
k = i;
|
2017-08-23 11:25:26 +03:00
|
|
|
iov_memset(iov, niov, 0, 0xff, sz);
|
2012-03-14 11:18:54 +04:00
|
|
|
do {
|
|
|
|
s = g_test_rand_int_range(0, j - k + 1);
|
|
|
|
r = iov_recv(sv[0], iov, niov, k, s);
|
|
|
|
g_assert(memcmp(iov, siov, sizeof(*iov)*niov) == 0);
|
|
|
|
if (r > 0) {
|
|
|
|
k += r;
|
|
|
|
} else if (!r) {
|
|
|
|
if (s) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if (errno == EAGAIN) {
|
|
|
|
select(sv[0]+1, &fds, NULL, NULL, NULL);
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
perror("recv");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
} while(k < j);
|
|
|
|
test_iov_bytes(iov, niov, i, j - i);
|
|
|
|
}
|
|
|
|
}
|
2016-07-07 22:00:05 +03:00
|
|
|
|
|
|
|
iov_free(iov, niov);
|
|
|
|
g_free(buf);
|
|
|
|
g_free(siov);
|
2012-03-14 11:18:54 +04:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2012-11-21 22:18:26 +04:00
|
|
|
static void test_discard_front(void)
|
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
struct iovec *iov_tmp;
|
|
|
|
unsigned int iov_cnt;
|
|
|
|
unsigned int iov_cnt_tmp;
|
|
|
|
void *old_base;
|
|
|
|
size_t size;
|
|
|
|
size_t ret;
|
|
|
|
|
|
|
|
/* Discard zero bytes */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, 0);
|
|
|
|
g_assert(ret == 0);
|
|
|
|
g_assert(iov_tmp == iov);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard more bytes than vector size */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, size + 1);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == 0);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire vector */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == 0);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within first element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
old_base = iov->iov_base;
|
|
|
|
size = g_test_rand_int_range(1, iov->iov_len);
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_tmp == iov);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt);
|
|
|
|
g_assert(iov_tmp->iov_base == old_base + size);
|
|
|
|
iov_tmp->iov_base = old_base; /* undo before g_free() */
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire first element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, iov->iov_len);
|
|
|
|
g_assert(ret == iov->iov_len);
|
|
|
|
g_assert(iov_tmp == iov + 1);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt - 1);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within second element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
old_base = iov[1].iov_base;
|
|
|
|
size = iov->iov_len + g_test_rand_int_range(1, iov[1].iov_len);
|
|
|
|
ret = iov_discard_front(&iov_tmp, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_tmp == iov + 1);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt - 1);
|
|
|
|
g_assert(iov_tmp->iov_base == old_base + (size - iov->iov_len));
|
|
|
|
iov_tmp->iov_base = old_base; /* undo before g_free() */
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
}
|
|
|
|
|
2020-09-17 12:44:53 +03:00
|
|
|
static void test_discard_front_undo(void)
|
|
|
|
{
|
|
|
|
IOVDiscardUndo undo;
|
|
|
|
struct iovec *iov;
|
|
|
|
struct iovec *iov_tmp;
|
|
|
|
struct iovec *iov_orig;
|
|
|
|
unsigned int iov_cnt;
|
|
|
|
unsigned int iov_cnt_tmp;
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
/* Discard zero bytes */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, 0, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard more bytes than vector size */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, size + 1, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire vector */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within first element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = g_test_rand_int_range(1, iov->iov_len);
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire first element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, iov->iov_len, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within second element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_tmp = iov;
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov->iov_len + g_test_rand_int_range(1, iov[1].iov_len);
|
|
|
|
iov_discard_front_undoable(&iov_tmp, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
}
|
|
|
|
|
2012-11-21 22:18:26 +04:00
|
|
|
static void test_discard_back(void)
|
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
unsigned int iov_cnt;
|
|
|
|
unsigned int iov_cnt_tmp;
|
|
|
|
void *old_base;
|
|
|
|
size_t size;
|
|
|
|
size_t ret;
|
|
|
|
|
|
|
|
/* Discard zero bytes */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, 0);
|
|
|
|
g_assert(ret == 0);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard more bytes than vector size */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, size + 1);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == 0);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire vector */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == 0);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
old_base = iov[iov_cnt - 1].iov_base;
|
|
|
|
size = g_test_rand_int_range(1, iov[iov_cnt - 1].iov_len);
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt);
|
|
|
|
g_assert(iov[iov_cnt - 1].iov_base == old_base);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
old_base = iov[iov_cnt - 1].iov_base;
|
|
|
|
size = iov[iov_cnt - 1].iov_len;
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt - 1);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within second-to-last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
old_base = iov[iov_cnt - 2].iov_base;
|
|
|
|
size = iov[iov_cnt - 1].iov_len +
|
|
|
|
g_test_rand_int_range(1, iov[iov_cnt - 2].iov_len);
|
|
|
|
ret = iov_discard_back(iov, &iov_cnt_tmp, size);
|
|
|
|
g_assert(ret == size);
|
|
|
|
g_assert(iov_cnt_tmp == iov_cnt - 1);
|
|
|
|
g_assert(iov[iov_cnt - 2].iov_base == old_base);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
}
|
|
|
|
|
2020-09-17 12:44:53 +03:00
|
|
|
static void test_discard_back_undo(void)
|
|
|
|
{
|
|
|
|
IOVDiscardUndo undo;
|
|
|
|
struct iovec *iov;
|
|
|
|
struct iovec *iov_orig;
|
|
|
|
unsigned int iov_cnt;
|
|
|
|
unsigned int iov_cnt_tmp;
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
/* Discard zero bytes */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, 0, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard more bytes than vector size */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, size + 1, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire vector */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov_size(iov, iov_cnt);
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = g_test_rand_int_range(1, iov[iov_cnt - 1].iov_len);
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard entire last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov[iov_cnt - 1].iov_len;
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
|
|
|
|
/* Discard within second-to-last element */
|
|
|
|
iov_random(&iov, &iov_cnt);
|
2021-09-03 20:45:05 +03:00
|
|
|
iov_orig = g_memdup2(iov, sizeof(iov[0]) * iov_cnt);
|
2020-09-17 12:44:53 +03:00
|
|
|
iov_cnt_tmp = iov_cnt;
|
|
|
|
size = iov[iov_cnt - 1].iov_len +
|
|
|
|
g_test_rand_int_range(1, iov[iov_cnt - 2].iov_len);
|
|
|
|
iov_discard_back_undoable(iov, &iov_cnt_tmp, size, &undo);
|
|
|
|
iov_discard_undo(&undo);
|
|
|
|
assert(iov_equals(iov, iov_orig, iov_cnt));
|
|
|
|
g_free(iov_orig);
|
|
|
|
iov_free(iov, iov_cnt);
|
|
|
|
}
|
|
|
|
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
int main(int argc, char **argv)
|
|
|
|
{
|
|
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
g_test_rand_int();
|
|
|
|
g_test_add_func("/basic/iov/from-to-buf", test_to_from_buf);
|
2012-03-14 11:18:54 +04:00
|
|
|
g_test_add_func("/basic/iov/io", test_io);
|
2012-11-21 22:18:26 +04:00
|
|
|
g_test_add_func("/basic/iov/discard-front", test_discard_front);
|
|
|
|
g_test_add_func("/basic/iov/discard-back", test_discard_back);
|
2020-09-17 12:44:53 +03:00
|
|
|
g_test_add_func("/basic/iov/discard-front-undo", test_discard_front_undo);
|
|
|
|
g_test_add_func("/basic/iov/discard-back-undo", test_discard_back_undo);
|
rewrite iov_* functions
This changes implementations of all iov_*
functions, completing the previous step.
All iov_* functions now ensure that this offset
argument is within the iovec (using assertion),
but lets to specify `bytes' value larger than
actual length of the iovec - in this case they
stops at the actual end of iovec. It is also
suggested to use convinient `-1' value as `bytes'
to mean just this -- "up to the end".
There's one very minor semantic change here: new
requiriment is that `offset' points to inside of
iovec. This is checked just at the end of functions
(assert()), it does not actually need to be enforced,
but using any of these functions with offset pointing
past the end of iovec is wrong anyway.
Note: the new code in iov.c uses arithmetic with
void pointers. I thought this is not supported
everywhere and is a GCC extension (indeed, the C
standard does not define void arithmetic). However,
the original code already use void arith in
iov_from_buf() function:
(memcpy(..., buf + buf_off,...)
which apparently works well so far (it is this
way in qemu 1.0). So I left it this way and used
it in other places.
While at it, add a unit-test file test-iov.c,
to check various corner cases with iov_from_buf(),
iov_to_buf() and iov_memset().
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2012-06-07 20:08:19 +04:00
|
|
|
return g_test_run();
|
|
|
|
}
|