qemu/hw/display/tc6393xb.c

600 lines
18 KiB
C
Raw Normal View History

/*
* Toshiba TC6393XB I/O Controller.
* Found in Sharp Zaurus SL-6000 (tosa) or some
* Toshiba e-Series PDAs.
*
* Most features are currently unsupported!!!
*
* This code is licensed under the GNU GPL v2.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "qemu/host-utils.h"
#include "hw/hw.h"
#include "hw/devices.h"
#include "hw/block/flash.h"
#include "ui/console.h"
#include "ui/pixel_ops.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#define IRQ_TC6393_NAND 0
#define IRQ_TC6393_MMC 1
#define IRQ_TC6393_OHCI 2
#define IRQ_TC6393_SERIAL 3
#define IRQ_TC6393_FB 4
#define TC6393XB_NR_IRQS 8
#define TC6393XB_GPIOS 16
#define SCR_REVID 0x08 /* b Revision ID */
#define SCR_ISR 0x50 /* b Interrupt Status */
#define SCR_IMR 0x52 /* b Interrupt Mask */
#define SCR_IRR 0x54 /* b Interrupt Routing */
#define SCR_GPER 0x60 /* w GP Enable */
#define SCR_GPI_SR(i) (0x64 + (i)) /* b3 GPI Status */
#define SCR_GPI_IMR(i) (0x68 + (i)) /* b3 GPI INT Mask */
#define SCR_GPI_EDER(i) (0x6c + (i)) /* b3 GPI Edge Detect Enable */
#define SCR_GPI_LIR(i) (0x70 + (i)) /* b3 GPI Level Invert */
#define SCR_GPO_DSR(i) (0x78 + (i)) /* b3 GPO Data Set */
#define SCR_GPO_DOECR(i) (0x7c + (i)) /* b3 GPO Data OE Control */
#define SCR_GP_IARCR(i) (0x80 + (i)) /* b3 GP Internal Active Register Control */
#define SCR_GP_IARLCR(i) (0x84 + (i)) /* b3 GP INTERNAL Active Register Level Control */
#define SCR_GPI_BCR(i) (0x88 + (i)) /* b3 GPI Buffer Control */
#define SCR_GPA_IARCR 0x8c /* w GPa Internal Active Register Control */
#define SCR_GPA_IARLCR 0x90 /* w GPa Internal Active Register Level Control */
#define SCR_GPA_BCR 0x94 /* w GPa Buffer Control */
#define SCR_CCR 0x98 /* w Clock Control */
#define SCR_PLL2CR 0x9a /* w PLL2 Control */
#define SCR_PLL1CR 0x9c /* l PLL1 Control */
#define SCR_DIARCR 0xa0 /* b Device Internal Active Register Control */
#define SCR_DBOCR 0xa1 /* b Device Buffer Off Control */
#define SCR_FER 0xe0 /* b Function Enable */
#define SCR_MCR 0xe4 /* w Mode Control */
#define SCR_CONFIG 0xfc /* b Configuration Control */
#define SCR_DEBUG 0xff /* b Debug */
#define NAND_CFG_COMMAND 0x04 /* w Command */
#define NAND_CFG_BASE 0x10 /* l Control Base Address */
#define NAND_CFG_INTP 0x3d /* b Interrupt Pin */
#define NAND_CFG_INTE 0x48 /* b Int Enable */
#define NAND_CFG_EC 0x4a /* b Event Control */
#define NAND_CFG_ICC 0x4c /* b Internal Clock Control */
#define NAND_CFG_ECCC 0x5b /* b ECC Control */
#define NAND_CFG_NFTC 0x60 /* b NAND Flash Transaction Control */
#define NAND_CFG_NFM 0x61 /* b NAND Flash Monitor */
#define NAND_CFG_NFPSC 0x62 /* b NAND Flash Power Supply Control */
#define NAND_CFG_NFDC 0x63 /* b NAND Flash Detect Control */
#define NAND_DATA 0x00 /* l Data */
#define NAND_MODE 0x04 /* b Mode */
#define NAND_STATUS 0x05 /* b Status */
#define NAND_ISR 0x06 /* b Interrupt Status */
#define NAND_IMR 0x07 /* b Interrupt Mask */
#define NAND_MODE_WP 0x80
#define NAND_MODE_CE 0x10
#define NAND_MODE_ALE 0x02
#define NAND_MODE_CLE 0x01
#define NAND_MODE_ECC_MASK 0x60
#define NAND_MODE_ECC_EN 0x20
#define NAND_MODE_ECC_READ 0x40
#define NAND_MODE_ECC_RST 0x60
struct TC6393xbState {
MemoryRegion iomem;
qemu_irq irq;
qemu_irq *sub_irqs;
struct {
uint8_t ISR;
uint8_t IMR;
uint8_t IRR;
uint16_t GPER;
uint8_t GPI_SR[3];
uint8_t GPI_IMR[3];
uint8_t GPI_EDER[3];
uint8_t GPI_LIR[3];
uint8_t GP_IARCR[3];
uint8_t GP_IARLCR[3];
uint8_t GPI_BCR[3];
uint16_t GPA_IARCR;
uint16_t GPA_IARLCR;
uint16_t CCR;
uint16_t PLL2CR;
uint32_t PLL1CR;
uint8_t DIARCR;
uint8_t DBOCR;
uint8_t FER;
uint16_t MCR;
uint8_t CONFIG;
uint8_t DEBUG;
} scr;
uint32_t gpio_dir;
uint32_t gpio_level;
uint32_t prev_level;
qemu_irq handler[TC6393XB_GPIOS];
qemu_irq *gpio_in;
struct {
uint8_t mode;
uint8_t isr;
uint8_t imr;
} nand;
int nand_enable;
uint32_t nand_phys;
DeviceState *flash;
ECCState ecc;
QemuConsole *con;
MemoryRegion vram;
uint16_t *vram_ptr;
uint32_t scr_width, scr_height; /* in pixels */
qemu_irq l3v;
unsigned blank : 1,
blanked : 1;
};
qemu_irq *tc6393xb_gpio_in_get(TC6393xbState *s)
{
return s->gpio_in;
}
static void tc6393xb_gpio_set(void *opaque, int line, int level)
{
// TC6393xbState *s = opaque;
if (line > TC6393XB_GPIOS) {
printf("%s: No GPIO pin %i\n", __FUNCTION__, line);
return;
}
// FIXME: how does the chip reflect the GPIO input level change?
}
void tc6393xb_gpio_out_set(TC6393xbState *s, int line,
qemu_irq handler)
{
if (line >= TC6393XB_GPIOS) {
fprintf(stderr, "TC6393xb: no GPIO pin %d\n", line);
return;
}
s->handler[line] = handler;
}
static void tc6393xb_gpio_handler_update(TC6393xbState *s)
{
uint32_t level, diff;
int bit;
level = s->gpio_level & s->gpio_dir;
level &= MAKE_64BIT_MASK(0, TC6393XB_GPIOS);
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ctz32(diff);
qemu_set_irq(s->handler[bit], (level >> bit) & 1);
}
s->prev_level = level;
}
qemu_irq tc6393xb_l3v_get(TC6393xbState *s)
{
return s->l3v;
}
static void tc6393xb_l3v(void *opaque, int line, int level)
{
TC6393xbState *s = opaque;
s->blank = !level;
fprintf(stderr, "L3V: %d\n", level);
}
static void tc6393xb_sub_irq(void *opaque, int line, int level) {
TC6393xbState *s = opaque;
uint8_t isr = s->scr.ISR;
if (level)
isr |= 1 << line;
else
isr &= ~(1 << line);
s->scr.ISR = isr;
qemu_set_irq(s->irq, isr & s->scr.IMR);
}
#define SCR_REG_B(N) \
case SCR_ ##N: return s->scr.N
#define SCR_REG_W(N) \
case SCR_ ##N: return s->scr.N; \
case SCR_ ##N + 1: return s->scr.N >> 8;
#define SCR_REG_L(N) \
case SCR_ ##N: return s->scr.N; \
case SCR_ ##N + 1: return s->scr.N >> 8; \
case SCR_ ##N + 2: return s->scr.N >> 16; \
case SCR_ ##N + 3: return s->scr.N >> 24;
#define SCR_REG_A(N) \
case SCR_ ##N(0): return s->scr.N[0]; \
case SCR_ ##N(1): return s->scr.N[1]; \
case SCR_ ##N(2): return s->scr.N[2]
static uint32_t tc6393xb_scr_readb(TC6393xbState *s, hwaddr addr)
{
switch (addr) {
case SCR_REVID:
return 3;
case SCR_REVID+1:
return 0;
SCR_REG_B(ISR);
SCR_REG_B(IMR);
SCR_REG_B(IRR);
SCR_REG_W(GPER);
SCR_REG_A(GPI_SR);
SCR_REG_A(GPI_IMR);
SCR_REG_A(GPI_EDER);
SCR_REG_A(GPI_LIR);
case SCR_GPO_DSR(0):
case SCR_GPO_DSR(1):
case SCR_GPO_DSR(2):
return (s->gpio_level >> ((addr - SCR_GPO_DSR(0)) * 8)) & 0xff;
case SCR_GPO_DOECR(0):
case SCR_GPO_DOECR(1):
case SCR_GPO_DOECR(2):
return (s->gpio_dir >> ((addr - SCR_GPO_DOECR(0)) * 8)) & 0xff;
SCR_REG_A(GP_IARCR);
SCR_REG_A(GP_IARLCR);
SCR_REG_A(GPI_BCR);
SCR_REG_W(GPA_IARCR);
SCR_REG_W(GPA_IARLCR);
SCR_REG_W(CCR);
SCR_REG_W(PLL2CR);
SCR_REG_L(PLL1CR);
SCR_REG_B(DIARCR);
SCR_REG_B(DBOCR);
SCR_REG_B(FER);
SCR_REG_W(MCR);
SCR_REG_B(CONFIG);
SCR_REG_B(DEBUG);
}
fprintf(stderr, "tc6393xb_scr: unhandled read at %08x\n", (uint32_t) addr);
return 0;
}
#undef SCR_REG_B
#undef SCR_REG_W
#undef SCR_REG_L
#undef SCR_REG_A
#define SCR_REG_B(N) \
case SCR_ ##N: s->scr.N = value; return;
#define SCR_REG_W(N) \
case SCR_ ##N: s->scr.N = (s->scr.N & ~0xff) | (value & 0xff); return; \
case SCR_ ##N + 1: s->scr.N = (s->scr.N & 0xff) | (value << 8); return
#define SCR_REG_L(N) \
case SCR_ ##N: s->scr.N = (s->scr.N & ~0xff) | (value & 0xff); return; \
case SCR_ ##N + 1: s->scr.N = (s->scr.N & ~(0xff << 8)) | (value & (0xff << 8)); return; \
case SCR_ ##N + 2: s->scr.N = (s->scr.N & ~(0xff << 16)) | (value & (0xff << 16)); return; \
case SCR_ ##N + 3: s->scr.N = (s->scr.N & ~(0xff << 24)) | (value & (0xff << 24)); return;
#define SCR_REG_A(N) \
case SCR_ ##N(0): s->scr.N[0] = value; return; \
case SCR_ ##N(1): s->scr.N[1] = value; return; \
case SCR_ ##N(2): s->scr.N[2] = value; return
static void tc6393xb_scr_writeb(TC6393xbState *s, hwaddr addr, uint32_t value)
{
switch (addr) {
SCR_REG_B(ISR);
SCR_REG_B(IMR);
SCR_REG_B(IRR);
SCR_REG_W(GPER);
SCR_REG_A(GPI_SR);
SCR_REG_A(GPI_IMR);
SCR_REG_A(GPI_EDER);
SCR_REG_A(GPI_LIR);
case SCR_GPO_DSR(0):
case SCR_GPO_DSR(1):
case SCR_GPO_DSR(2):
s->gpio_level = (s->gpio_level & ~(0xff << ((addr - SCR_GPO_DSR(0))*8))) | ((value & 0xff) << ((addr - SCR_GPO_DSR(0))*8));
tc6393xb_gpio_handler_update(s);
return;
case SCR_GPO_DOECR(0):
case SCR_GPO_DOECR(1):
case SCR_GPO_DOECR(2):
s->gpio_dir = (s->gpio_dir & ~(0xff << ((addr - SCR_GPO_DOECR(0))*8))) | ((value & 0xff) << ((addr - SCR_GPO_DOECR(0))*8));
tc6393xb_gpio_handler_update(s);
return;
SCR_REG_A(GP_IARCR);
SCR_REG_A(GP_IARLCR);
SCR_REG_A(GPI_BCR);
SCR_REG_W(GPA_IARCR);
SCR_REG_W(GPA_IARLCR);
SCR_REG_W(CCR);
SCR_REG_W(PLL2CR);
SCR_REG_L(PLL1CR);
SCR_REG_B(DIARCR);
SCR_REG_B(DBOCR);
SCR_REG_B(FER);
SCR_REG_W(MCR);
SCR_REG_B(CONFIG);
SCR_REG_B(DEBUG);
}
fprintf(stderr, "tc6393xb_scr: unhandled write at %08x: %02x\n",
(uint32_t) addr, value & 0xff);
}
#undef SCR_REG_B
#undef SCR_REG_W
#undef SCR_REG_L
#undef SCR_REG_A
static void tc6393xb_nand_irq(TC6393xbState *s) {
qemu_set_irq(s->sub_irqs[IRQ_TC6393_NAND],
(s->nand.imr & 0x80) && (s->nand.imr & s->nand.isr));
}
static uint32_t tc6393xb_nand_cfg_readb(TC6393xbState *s, hwaddr addr) {
switch (addr) {
case NAND_CFG_COMMAND:
return s->nand_enable ? 2 : 0;
case NAND_CFG_BASE:
case NAND_CFG_BASE + 1:
case NAND_CFG_BASE + 2:
case NAND_CFG_BASE + 3:
return s->nand_phys >> (addr - NAND_CFG_BASE);
}
fprintf(stderr, "tc6393xb_nand_cfg: unhandled read at %08x\n", (uint32_t) addr);
return 0;
}
static void tc6393xb_nand_cfg_writeb(TC6393xbState *s, hwaddr addr, uint32_t value) {
switch (addr) {
case NAND_CFG_COMMAND:
s->nand_enable = (value & 0x2);
return;
case NAND_CFG_BASE:
case NAND_CFG_BASE + 1:
case NAND_CFG_BASE + 2:
case NAND_CFG_BASE + 3:
s->nand_phys &= ~(0xff << ((addr - NAND_CFG_BASE) * 8));
s->nand_phys |= (value & 0xff) << ((addr - NAND_CFG_BASE) * 8);
return;
}
fprintf(stderr, "tc6393xb_nand_cfg: unhandled write at %08x: %02x\n",
(uint32_t) addr, value & 0xff);
}
static uint32_t tc6393xb_nand_readb(TC6393xbState *s, hwaddr addr) {
switch (addr) {
case NAND_DATA + 0:
case NAND_DATA + 1:
case NAND_DATA + 2:
case NAND_DATA + 3:
return nand_getio(s->flash);
case NAND_MODE:
return s->nand.mode;
case NAND_STATUS:
return 0x14;
case NAND_ISR:
return s->nand.isr;
case NAND_IMR:
return s->nand.imr;
}
fprintf(stderr, "tc6393xb_nand: unhandled read at %08x\n", (uint32_t) addr);
return 0;
}
static void tc6393xb_nand_writeb(TC6393xbState *s, hwaddr addr, uint32_t value) {
// fprintf(stderr, "tc6393xb_nand: write at %08x: %02x\n",
// (uint32_t) addr, value & 0xff);
switch (addr) {
case NAND_DATA + 0:
case NAND_DATA + 1:
case NAND_DATA + 2:
case NAND_DATA + 3:
nand_setio(s->flash, value);
s->nand.isr |= 1;
tc6393xb_nand_irq(s);
return;
case NAND_MODE:
s->nand.mode = value;
nand_setpins(s->flash,
value & NAND_MODE_CLE,
value & NAND_MODE_ALE,
!(value & NAND_MODE_CE),
value & NAND_MODE_WP,
0); // FIXME: gnd
switch (value & NAND_MODE_ECC_MASK) {
case NAND_MODE_ECC_RST:
ecc_reset(&s->ecc);
break;
case NAND_MODE_ECC_READ:
// FIXME
break;
case NAND_MODE_ECC_EN:
ecc_reset(&s->ecc);
}
return;
case NAND_ISR:
s->nand.isr = value;
tc6393xb_nand_irq(s);
return;
case NAND_IMR:
s->nand.imr = value;
tc6393xb_nand_irq(s);
return;
}
fprintf(stderr, "tc6393xb_nand: unhandled write at %08x: %02x\n",
(uint32_t) addr, value & 0xff);
}
#define BITS 8
#include "tc6393xb_template.h"
#define BITS 15
#include "tc6393xb_template.h"
#define BITS 16
#include "tc6393xb_template.h"
#define BITS 24
#include "tc6393xb_template.h"
#define BITS 32
#include "tc6393xb_template.h"
static void tc6393xb_draw_graphic(TC6393xbState *s, int full_update)
{
DisplaySurface *surface = qemu_console_surface(s->con);
switch (surface_bits_per_pixel(surface)) {
case 8:
tc6393xb_draw_graphic8(s);
break;
case 15:
tc6393xb_draw_graphic15(s);
break;
case 16:
tc6393xb_draw_graphic16(s);
break;
case 24:
tc6393xb_draw_graphic24(s);
break;
case 32:
tc6393xb_draw_graphic32(s);
break;
default:
printf("tc6393xb: unknown depth %d\n",
surface_bits_per_pixel(surface));
return;
}
dpy_gfx_update(s->con, 0, 0, s->scr_width, s->scr_height);
}
static void tc6393xb_draw_blank(TC6393xbState *s, int full_update)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int i, w;
uint8_t *d;
if (!full_update)
return;
w = s->scr_width * surface_bytes_per_pixel(surface);
d = surface_data(surface);
for(i = 0; i < s->scr_height; i++) {
memset(d, 0, w);
d += surface_stride(surface);
}
dpy_gfx_update(s->con, 0, 0, s->scr_width, s->scr_height);
}
static void tc6393xb_update_display(void *opaque)
{
TC6393xbState *s = opaque;
DisplaySurface *surface = qemu_console_surface(s->con);
int full_update;
if (s->scr_width == 0 || s->scr_height == 0)
return;
full_update = 0;
if (s->blanked != s->blank) {
s->blanked = s->blank;
full_update = 1;
}
if (s->scr_width != surface_width(surface) ||
s->scr_height != surface_height(surface)) {
qemu_console_resize(s->con, s->scr_width, s->scr_height);
full_update = 1;
}
if (s->blanked)
tc6393xb_draw_blank(s, full_update);
else
tc6393xb_draw_graphic(s, full_update);
}
static uint64_t tc6393xb_readb(void *opaque, hwaddr addr,
unsigned size)
{
TC6393xbState *s = opaque;
switch (addr >> 8) {
case 0:
return tc6393xb_scr_readb(s, addr & 0xff);
case 1:
return tc6393xb_nand_cfg_readb(s, addr & 0xff);
};
if ((addr &~0xff) == s->nand_phys && s->nand_enable) {
// return tc6393xb_nand_readb(s, addr & 0xff);
uint8_t d = tc6393xb_nand_readb(s, addr & 0xff);
// fprintf(stderr, "tc6393xb_nand: read at %08x: %02hhx\n", (uint32_t) addr, d);
return d;
}
// fprintf(stderr, "tc6393xb: unhandled read at %08x\n", (uint32_t) addr);
return 0;
}
static void tc6393xb_writeb(void *opaque, hwaddr addr,
uint64_t value, unsigned size) {
TC6393xbState *s = opaque;
switch (addr >> 8) {
case 0:
tc6393xb_scr_writeb(s, addr & 0xff, value);
return;
case 1:
tc6393xb_nand_cfg_writeb(s, addr & 0xff, value);
return;
};
if ((addr &~0xff) == s->nand_phys && s->nand_enable)
tc6393xb_nand_writeb(s, addr & 0xff, value);
else
fprintf(stderr, "tc6393xb: unhandled write at %08x: %02x\n",
(uint32_t) addr, (int)value & 0xff);
}
static const GraphicHwOps tc6393xb_gfx_ops = {
.gfx_update = tc6393xb_update_display,
};
TC6393xbState *tc6393xb_init(MemoryRegion *sysmem, uint32_t base, qemu_irq irq)
{
TC6393xbState *s;
DriveInfo *nand;
static const MemoryRegionOps tc6393xb_ops = {
.read = tc6393xb_readb,
.write = tc6393xb_writeb,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
s = (TC6393xbState *) g_malloc0(sizeof(TC6393xbState));
s->irq = irq;
s->gpio_in = qemu_allocate_irqs(tc6393xb_gpio_set, s, TC6393XB_GPIOS);
s->l3v = qemu_allocate_irq(tc6393xb_l3v, s, 0);
s->blanked = 1;
s->sub_irqs = qemu_allocate_irqs(tc6393xb_sub_irq, s, TC6393XB_NR_IRQS);
nand = drive_get(IF_MTD, 0, 0);
s->flash = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL,
NAND_MFR_TOSHIBA, 0x76);
memory_region_init_io(&s->iomem, NULL, &tc6393xb_ops, s, "tc6393xb", 0x10000);
memory_region_add_subregion(sysmem, base, &s->iomem);
memory_region_init_ram(&s->vram, NULL, "tc6393xb.vram", 0x100000,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
&error_fatal);
s->vram_ptr = memory_region_get_ram_ptr(&s->vram);
memory_region_add_subregion(sysmem, base + 0x100000, &s->vram);
s->scr_width = 480;
s->scr_height = 640;
s->con = graphic_console_init(NULL, 0, &tc6393xb_gfx_ops, s);
return s;
}