qemu/hw/acpi.c

923 lines
22 KiB
C
Raw Normal View History

/*
* ACPI implementation
*
* Copyright (c) 2006 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#include "hw.h"
#include "pc.h"
#include "pci.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "i2c.h"
#include "smbus.h"
#include "kvm.h"
//#define DEBUG
/* i82731AB (PIIX4) compatible power management function */
#define PM_FREQ 3579545
#define ACPI_DBG_IO_ADDR 0xb044
typedef struct PIIX4PMState {
PCIDevice dev;
uint16_t pmsts;
uint16_t pmen;
uint16_t pmcntrl;
uint8_t apmc;
uint8_t apms;
QEMUTimer *tmr_timer;
int64_t tmr_overflow_time;
i2c_bus *smbus;
uint8_t smb_stat;
uint8_t smb_ctl;
uint8_t smb_cmd;
uint8_t smb_addr;
uint8_t smb_data0;
uint8_t smb_data1;
uint8_t smb_data[32];
uint8_t smb_index;
qemu_irq irq;
} PIIX4PMState;
#define RSM_STS (1 << 15)
#define PWRBTN_STS (1 << 8)
#define RTC_EN (1 << 10)
#define PWRBTN_EN (1 << 8)
#define GBL_EN (1 << 5)
#define TMROF_EN (1 << 0)
#define SCI_EN (1 << 0)
#define SUS_EN (1 << 13)
#define ACPI_ENABLE 0xf1
#define ACPI_DISABLE 0xf0
#define SMBHSTSTS 0x00
#define SMBHSTCNT 0x02
#define SMBHSTCMD 0x03
#define SMBHSTADD 0x04
#define SMBHSTDAT0 0x05
#define SMBHSTDAT1 0x06
#define SMBBLKDAT 0x07
static PIIX4PMState *pm_state;
static uint32_t get_pmtmr(PIIX4PMState *s)
{
uint32_t d;
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
return d & 0xffffff;
}
static int get_pmsts(PIIX4PMState *s)
{
int64_t d;
int pmsts;
pmsts = s->pmsts;
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
if (d >= s->tmr_overflow_time)
s->pmsts |= TMROF_EN;
return s->pmsts;
}
static void pm_update_sci(PIIX4PMState *s)
{
int sci_level, pmsts;
int64_t expire_time;
pmsts = get_pmsts(s);
sci_level = (((pmsts & s->pmen) &
(RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0);
qemu_set_irq(s->irq, sci_level);
/* schedule a timer interruption if needed */
if ((s->pmen & TMROF_EN) && !(pmsts & TMROF_EN)) {
expire_time = muldiv64(s->tmr_overflow_time, ticks_per_sec, PM_FREQ);
qemu_mod_timer(s->tmr_timer, expire_time);
} else {
qemu_del_timer(s->tmr_timer);
}
}
static void pm_tmr_timer(void *opaque)
{
PIIX4PMState *s = opaque;
pm_update_sci(s);
}
static void pm_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
{
PIIX4PMState *s = opaque;
addr &= 0x3f;
switch(addr) {
case 0x00:
{
int64_t d;
int pmsts;
pmsts = get_pmsts(s);
if (pmsts & val & TMROF_EN) {
/* if TMRSTS is reset, then compute the new overflow time */
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
s->tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL;
}
s->pmsts &= ~val;
pm_update_sci(s);
}
break;
case 0x02:
s->pmen = val;
pm_update_sci(s);
break;
case 0x04:
{
int sus_typ;
s->pmcntrl = val & ~(SUS_EN);
if (val & SUS_EN) {
/* change suspend type */
sus_typ = (val >> 10) & 7;
switch(sus_typ) {
case 0: /* soft power off */
qemu_system_shutdown_request();
break;
case 1:
/* RSM_STS should be set on resume. Pretend that resume
was caused by power button */
s->pmsts |= (RSM_STS | PWRBTN_STS);
qemu_system_reset_request();
#if defined(TARGET_I386)
cmos_set_s3_resume();
#endif
default:
break;
}
}
}
break;
default:
break;
}
#ifdef DEBUG
printf("PM writew port=0x%04x val=0x%04x\n", addr, val);
#endif
}
static uint32_t pm_ioport_readw(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 0x3f;
switch(addr) {
case 0x00:
val = get_pmsts(s);
break;
case 0x02:
val = s->pmen;
break;
case 0x04:
val = s->pmcntrl;
break;
default:
val = 0;
break;
}
#ifdef DEBUG
printf("PM readw port=0x%04x val=0x%04x\n", addr, val);
#endif
return val;
}
static void pm_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
// PIIX4PMState *s = opaque;
addr &= 0x3f;
#ifdef DEBUG
printf("PM writel port=0x%04x val=0x%08x\n", addr, val);
#endif
}
static uint32_t pm_ioport_readl(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 0x3f;
switch(addr) {
case 0x08:
val = get_pmtmr(s);
break;
default:
val = 0;
break;
}
#ifdef DEBUG
printf("PM readl port=0x%04x val=0x%08x\n", addr, val);
#endif
return val;
}
static void pm_smi_writeb(void *opaque, uint32_t addr, uint32_t val)
{
PIIX4PMState *s = opaque;
addr &= 1;
#ifdef DEBUG
printf("pm_smi_writeb addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == 0) {
s->apmc = val;
/* ACPI specs 3.0, 4.7.2.5 */
if (val == ACPI_ENABLE) {
s->pmcntrl |= SCI_EN;
} else if (val == ACPI_DISABLE) {
s->pmcntrl &= ~SCI_EN;
}
if (s->dev.config[0x5b] & (1 << 1)) {
cpu_interrupt(first_cpu, CPU_INTERRUPT_SMI);
}
} else {
s->apms = val;
}
}
static uint32_t pm_smi_readb(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 1;
if (addr == 0) {
val = s->apmc;
} else {
val = s->apms;
}
#ifdef DEBUG
printf("pm_smi_readb addr=0x%x val=0x%02x\n", addr, val);
#endif
return val;
}
static void acpi_dbg_writel(void *opaque, uint32_t addr, uint32_t val)
{
#if defined(DEBUG)
printf("ACPI: DBG: 0x%08x\n", val);
#endif
}
static void smb_transaction(PIIX4PMState *s)
{
uint8_t prot = (s->smb_ctl >> 2) & 0x07;
uint8_t read = s->smb_addr & 0x01;
uint8_t cmd = s->smb_cmd;
uint8_t addr = s->smb_addr >> 1;
i2c_bus *bus = s->smbus;
#ifdef DEBUG
printf("SMBus trans addr=0x%02x prot=0x%02x\n", addr, prot);
#endif
switch(prot) {
case 0x0:
smbus_quick_command(bus, addr, read);
break;
case 0x1:
if (read) {
s->smb_data0 = smbus_receive_byte(bus, addr);
} else {
smbus_send_byte(bus, addr, cmd);
}
break;
case 0x2:
if (read) {
s->smb_data0 = smbus_read_byte(bus, addr, cmd);
} else {
smbus_write_byte(bus, addr, cmd, s->smb_data0);
}
break;
case 0x3:
if (read) {
uint16_t val;
val = smbus_read_word(bus, addr, cmd);
s->smb_data0 = val;
s->smb_data1 = val >> 8;
} else {
smbus_write_word(bus, addr, cmd, (s->smb_data1 << 8) | s->smb_data0);
}
break;
case 0x5:
if (read) {
s->smb_data0 = smbus_read_block(bus, addr, cmd, s->smb_data);
} else {
smbus_write_block(bus, addr, cmd, s->smb_data, s->smb_data0);
}
break;
default:
goto error;
}
return;
error:
s->smb_stat |= 0x04;
}
static void smb_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
{
PIIX4PMState *s = opaque;
addr &= 0x3f;
#ifdef DEBUG
printf("SMB writeb port=0x%04x val=0x%02x\n", addr, val);
#endif
switch(addr) {
case SMBHSTSTS:
s->smb_stat = 0;
s->smb_index = 0;
break;
case SMBHSTCNT:
s->smb_ctl = val;
if (val & 0x40)
smb_transaction(s);
break;
case SMBHSTCMD:
s->smb_cmd = val;
break;
case SMBHSTADD:
s->smb_addr = val;
break;
case SMBHSTDAT0:
s->smb_data0 = val;
break;
case SMBHSTDAT1:
s->smb_data1 = val;
break;
case SMBBLKDAT:
s->smb_data[s->smb_index++] = val;
if (s->smb_index > 31)
s->smb_index = 0;
break;
default:
break;
}
}
static uint32_t smb_ioport_readb(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 0x3f;
switch(addr) {
case SMBHSTSTS:
val = s->smb_stat;
break;
case SMBHSTCNT:
s->smb_index = 0;
val = s->smb_ctl & 0x1f;
break;
case SMBHSTCMD:
val = s->smb_cmd;
break;
case SMBHSTADD:
val = s->smb_addr;
break;
case SMBHSTDAT0:
val = s->smb_data0;
break;
case SMBHSTDAT1:
val = s->smb_data1;
break;
case SMBBLKDAT:
val = s->smb_data[s->smb_index++];
if (s->smb_index > 31)
s->smb_index = 0;
break;
default:
val = 0;
break;
}
#ifdef DEBUG
printf("SMB readb port=0x%04x val=0x%02x\n", addr, val);
#endif
return val;
}
static void pm_io_space_update(PIIX4PMState *s)
{
uint32_t pm_io_base;
if (s->dev.config[0x80] & 1) {
pm_io_base = le32_to_cpu(*(uint32_t *)(s->dev.config + 0x40));
pm_io_base &= 0xffc0;
/* XXX: need to improve memory and ioport allocation */
#if defined(DEBUG)
printf("PM: mapping to 0x%x\n", pm_io_base);
#endif
register_ioport_write(pm_io_base, 64, 2, pm_ioport_writew, s);
register_ioport_read(pm_io_base, 64, 2, pm_ioport_readw, s);
register_ioport_write(pm_io_base, 64, 4, pm_ioport_writel, s);
register_ioport_read(pm_io_base, 64, 4, pm_ioport_readl, s);
}
}
static void pm_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
pci_default_write_config(d, address, val, len);
if (address == 0x80)
pm_io_space_update((PIIX4PMState *)d);
}
static void pm_save(QEMUFile* f,void *opaque)
{
PIIX4PMState *s = opaque;
pci_device_save(&s->dev, f);
qemu_put_be16s(f, &s->pmsts);
qemu_put_be16s(f, &s->pmen);
qemu_put_be16s(f, &s->pmcntrl);
qemu_put_8s(f, &s->apmc);
qemu_put_8s(f, &s->apms);
qemu_put_timer(f, s->tmr_timer);
qemu_put_be64(f, s->tmr_overflow_time);
}
static int pm_load(QEMUFile* f,void* opaque,int version_id)
{
PIIX4PMState *s = opaque;
int ret;
if (version_id > 1)
return -EINVAL;
ret = pci_device_load(&s->dev, f);
if (ret < 0)
return ret;
qemu_get_be16s(f, &s->pmsts);
qemu_get_be16s(f, &s->pmen);
qemu_get_be16s(f, &s->pmcntrl);
qemu_get_8s(f, &s->apmc);
qemu_get_8s(f, &s->apms);
qemu_get_timer(f, s->tmr_timer);
s->tmr_overflow_time=qemu_get_be64(f);
pm_io_space_update(s);
return 0;
}
static void piix4_reset(void *opaque)
{
PIIX4PMState *s = opaque;
uint8_t *pci_conf = s->dev.config;
pci_conf[0x58] = 0;
pci_conf[0x59] = 0;
pci_conf[0x5a] = 0;
pci_conf[0x5b] = 0;
if (kvm_enabled()) {
/* Mark SMM as already inited (until KVM supports SMM). */
pci_conf[0x5B] = 0x02;
}
}
i2c_bus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base,
qemu_irq sci_irq)
{
PIIX4PMState *s;
uint8_t *pci_conf;
s = (PIIX4PMState *)pci_register_device(bus,
"PM", sizeof(PIIX4PMState),
devfn, NULL, pm_write_config);
pm_state = s;
pci_conf = s->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_3);
pci_conf[0x06] = 0x80;
pci_conf[0x07] = 0x02;
pci_conf[0x08] = 0x03; // revision number
pci_conf[0x09] = 0x00;
pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_OTHER);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
pci_conf[0x3d] = 0x01; // interrupt pin 1
pci_conf[0x40] = 0x01; /* PM io base read only bit */
register_ioport_write(0xb2, 2, 1, pm_smi_writeb, s);
register_ioport_read(0xb2, 2, 1, pm_smi_readb, s);
register_ioport_write(ACPI_DBG_IO_ADDR, 4, 4, acpi_dbg_writel, s);
if (kvm_enabled()) {
/* Mark SMM as already inited to prevent SMM from running. KVM does not
* support SMM mode. */
pci_conf[0x5B] = 0x02;
}
/* XXX: which specification is used ? The i82731AB has different
mappings */
pci_conf[0x5f] = (parallel_hds[0] != NULL ? 0x80 : 0) | 0x10;
pci_conf[0x63] = 0x60;
pci_conf[0x67] = (serial_hds[0] != NULL ? 0x08 : 0) |
(serial_hds[1] != NULL ? 0x90 : 0);
pci_conf[0x90] = smb_io_base | 1;
pci_conf[0x91] = smb_io_base >> 8;
pci_conf[0xd2] = 0x09;
register_ioport_write(smb_io_base, 64, 1, smb_ioport_writeb, s);
register_ioport_read(smb_io_base, 64, 1, smb_ioport_readb, s);
s->tmr_timer = qemu_new_timer(vm_clock, pm_tmr_timer, s);
register_savevm("piix4_pm", 0, 1, pm_save, pm_load, s);
s->smbus = i2c_init_bus();
s->irq = sci_irq;
qemu_register_reset(piix4_reset, s);
return s->smbus;
}
#if defined(TARGET_I386)
void qemu_system_powerdown(void)
{
if (!pm_state) {
qemu_system_shutdown_request();
} else if (pm_state->pmen & PWRBTN_EN) {
pm_state->pmsts |= PWRBTN_EN;
pm_update_sci(pm_state);
}
}
#endif
#define GPE_BASE 0xafe0
#define PCI_BASE 0xae00
#define PCI_EJ_BASE 0xae08
struct gpe_regs {
uint16_t sts; /* status */
uint16_t en; /* enabled */
};
struct pci_status {
uint32_t up;
uint32_t down;
};
static struct gpe_regs gpe;
static struct pci_status pci0_status;
static uint32_t gpe_read_val(uint16_t val, uint32_t addr)
{
if (addr & 1)
return (val >> 8) & 0xff;
return val & 0xff;
}
static uint32_t gpe_readb(void *opaque, uint32_t addr)
{
uint32_t val = 0;
struct gpe_regs *g = opaque;
switch (addr) {
case GPE_BASE:
case GPE_BASE + 1:
val = gpe_read_val(g->sts, addr);
break;
case GPE_BASE + 2:
case GPE_BASE + 3:
val = gpe_read_val(g->en, addr);
break;
default:
break;
}
#if defined(DEBUG)
printf("gpe read %x == %x\n", addr, val);
#endif
return val;
}
static void gpe_write_val(uint16_t *cur, int addr, uint32_t val)
{
if (addr & 1)
*cur = (*cur & 0xff) | (val << 8);
else
*cur = (*cur & 0xff00) | (val & 0xff);
}
static void gpe_reset_val(uint16_t *cur, int addr, uint32_t val)
{
uint16_t x1, x0 = val & 0xff;
int shift = (addr & 1) ? 8 : 0;
x1 = (*cur >> shift) & 0xff;
x1 = x1 & ~x0;
*cur = (*cur & (0xff << (8 - shift))) | (x1 << shift);
}
static void gpe_writeb(void *opaque, uint32_t addr, uint32_t val)
{
struct gpe_regs *g = opaque;
switch (addr) {
case GPE_BASE:
case GPE_BASE + 1:
gpe_reset_val(&g->sts, addr, val);
break;
case GPE_BASE + 2:
case GPE_BASE + 3:
gpe_write_val(&g->en, addr, val);
break;
default:
break;
}
#if defined(DEBUG)
printf("gpe write %x <== %d\n", addr, val);
#endif
}
static uint32_t pcihotplug_read(void *opaque, uint32_t addr)
{
uint32_t val = 0;
struct pci_status *g = opaque;
switch (addr) {
case PCI_BASE:
val = g->up;
break;
case PCI_BASE + 4:
val = g->down;
break;
default:
break;
}
#if defined(DEBUG)
printf("pcihotplug read %x == %x\n", addr, val);
#endif
return val;
}
static void pcihotplug_write(void *opaque, uint32_t addr, uint32_t val)
{
struct pci_status *g = opaque;
switch (addr) {
case PCI_BASE:
g->up = val;
break;
case PCI_BASE + 4:
g->down = val;
break;
}
#if defined(DEBUG)
printf("pcihotplug write %x <== %d\n", addr, val);
#endif
}
static uint32_t pciej_read(void *opaque, uint32_t addr)
{
#if defined(DEBUG)
printf("pciej read %x\n", addr);
#endif
return 0;
}
static void pciej_write(void *opaque, uint32_t addr, uint32_t val)
{
#if defined (TARGET_I386)
int slot = ffs(val) - 1;
pci_device_hot_remove_success(0, slot);
#endif
#if defined(DEBUG)
printf("pciej write %x <== %d\n", addr, val);
#endif
}
void qemu_system_hot_add_init(void)
{
register_ioport_write(GPE_BASE, 4, 1, gpe_writeb, &gpe);
register_ioport_read(GPE_BASE, 4, 1, gpe_readb, &gpe);
register_ioport_write(PCI_BASE, 8, 4, pcihotplug_write, &pci0_status);
register_ioport_read(PCI_BASE, 8, 4, pcihotplug_read, &pci0_status);
register_ioport_write(PCI_EJ_BASE, 4, 4, pciej_write, NULL);
register_ioport_read(PCI_EJ_BASE, 4, 4, pciej_read, NULL);
}
static void enable_device(struct pci_status *p, struct gpe_regs *g, int slot)
{
g->sts |= 2;
p->up |= (1 << slot);
}
static void disable_device(struct pci_status *p, struct gpe_regs *g, int slot)
{
g->sts |= 2;
p->down |= (1 << slot);
}
void qemu_system_device_hot_add(int bus, int slot, int state)
{
pci0_status.up = 0;
pci0_status.down = 0;
if (state)
enable_device(&pci0_status, &gpe, slot);
else
disable_device(&pci0_status, &gpe, slot);
if (gpe.en & 2) {
qemu_set_irq(pm_state->irq, 1);
qemu_set_irq(pm_state->irq, 0);
}
}
struct acpi_table_header
{
char signature [4]; /* ACPI signature (4 ASCII characters) */
uint32_t length; /* Length of table, in bytes, including header */
uint8_t revision; /* ACPI Specification minor version # */
uint8_t checksum; /* To make sum of entire table == 0 */
char oem_id [6]; /* OEM identification */
char oem_table_id [8]; /* OEM table identification */
uint32_t oem_revision; /* OEM revision number */
char asl_compiler_id [4]; /* ASL compiler vendor ID */
uint32_t asl_compiler_revision; /* ASL compiler revision number */
} __attribute__((packed));
char *acpi_tables;
size_t acpi_tables_len;
static int acpi_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for(i = 0; i < len; i++)
sum += data[i];
return (-sum) & 0xff;
}
int acpi_table_add(const char *t)
{
static const char *dfl_id = "QEMUQEMU";
char buf[1024], *p, *f;
struct acpi_table_header acpi_hdr;
unsigned long val;
size_t off;
memset(&acpi_hdr, 0, sizeof(acpi_hdr));
if (get_param_value(buf, sizeof(buf), "sig", t)) {
strncpy(acpi_hdr.signature, buf, 4);
} else {
strncpy(acpi_hdr.signature, dfl_id, 4);
}
if (get_param_value(buf, sizeof(buf), "rev", t)) {
val = strtoul(buf, &p, 10);
if (val > 255 || *p != '\0')
goto out;
} else {
val = 1;
}
acpi_hdr.revision = (int8_t)val;
if (get_param_value(buf, sizeof(buf), "oem_id", t)) {
strncpy(acpi_hdr.oem_id, buf, 6);
} else {
strncpy(acpi_hdr.oem_id, dfl_id, 6);
}
if (get_param_value(buf, sizeof(buf), "oem_table_id", t)) {
strncpy(acpi_hdr.oem_table_id, buf, 8);
} else {
strncpy(acpi_hdr.oem_table_id, dfl_id, 8);
}
if (get_param_value(buf, sizeof(buf), "oem_rev", t)) {
val = strtol(buf, &p, 10);
if(*p != '\0')
goto out;
} else {
val = 1;
}
acpi_hdr.oem_revision = cpu_to_le32(val);
if (get_param_value(buf, sizeof(buf), "asl_compiler_id", t)) {
strncpy(acpi_hdr.asl_compiler_id, buf, 4);
} else {
strncpy(acpi_hdr.asl_compiler_id, dfl_id, 4);
}
if (get_param_value(buf, sizeof(buf), "asl_compiler_rev", t)) {
val = strtol(buf, &p, 10);
if(*p != '\0')
goto out;
} else {
val = 1;
}
acpi_hdr.asl_compiler_revision = cpu_to_le32(val);
if (!get_param_value(buf, sizeof(buf), "data", t)) {
buf[0] = '\0';
}
acpi_hdr.length = sizeof(acpi_hdr);
f = buf;
while (buf[0]) {
struct stat s;
char *n = strchr(f, ':');
if (n)
*n = '\0';
if(stat(f, &s) < 0) {
fprintf(stderr, "Can't stat file '%s': %s\n", f, strerror(errno));
goto out;
}
acpi_hdr.length += s.st_size;
if (!n)
break;
*n = ':';
f = n + 1;
}
if (!acpi_tables) {
acpi_tables_len = sizeof(uint16_t);
acpi_tables = qemu_mallocz(acpi_tables_len);
}
p = acpi_tables + acpi_tables_len;
acpi_tables_len += sizeof(uint16_t) + acpi_hdr.length;
acpi_tables = qemu_realloc(acpi_tables, acpi_tables_len);
acpi_hdr.length = cpu_to_le32(acpi_hdr.length);
*(uint16_t*)p = acpi_hdr.length;
p += sizeof(uint16_t);
memcpy(p, &acpi_hdr, sizeof(acpi_hdr));
off = sizeof(acpi_hdr);
f = buf;
while (buf[0]) {
struct stat s;
int fd;
char *n = strchr(f, ':');
if (n)
*n = '\0';
fd = open(f, O_RDONLY);
if(fd < 0)
goto out;
if(fstat(fd, &s) < 0) {
close(fd);
goto out;
}
do {
int r;
r = read(fd, p + off, s.st_size);
if (r > 0) {
off += r;
s.st_size -= r;
} else if ((r < 0 && errno != EINTR) || r == 0) {
close(fd);
goto out;
}
} while(s.st_size);
close(fd);
if (!n)
break;
f = n + 1;
}
((struct acpi_table_header*)p)->checksum = acpi_checksum((uint8_t*)p, off);
/* increase number of tables */
(*(uint16_t*)acpi_tables) =
cpu_to_le32(le32_to_cpu(*(uint16_t*)acpi_tables) + 1);
return 0;
out:
if (acpi_tables) {
free(acpi_tables);
acpi_tables = NULL;
}
return -1;
}