qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# -*- Mode: Python -*-
|
2020-07-29 21:50:24 +03:00
|
|
|
# vim: filetype=python
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Copyright (C) 2015 Red Hat, Inc.
|
|
|
|
#
|
|
|
|
# Authors:
|
|
|
|
# Markus Armbruster <armbru@redhat.com>
|
|
|
|
#
|
|
|
|
# This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
# See the COPYING file in the top-level directory.
|
|
|
|
|
2017-08-24 22:13:54 +03:00
|
|
|
##
|
|
|
|
# = QMP introspection
|
|
|
|
##
|
|
|
|
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @query-qmp-schema:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Command query-qmp-schema exposes the QMP wire ABI as an array of
|
|
|
|
# SchemaInfo. This lets QMP clients figure out what commands and
|
|
|
|
# events are available in this QEMU, and their parameters and results.
|
|
|
|
#
|
|
|
|
# However, the SchemaInfo can't reflect all the rules and restrictions
|
|
|
|
# that apply to QMP. It's interface introspection (figuring out
|
|
|
|
# what's there), not interface specification. The specification is in
|
|
|
|
# the QAPI schema.
|
|
|
|
#
|
2015-11-11 20:50:02 +03:00
|
|
|
# Furthermore, while we strive to keep the QMP wire format
|
|
|
|
# backwards-compatible across qemu versions, the introspection output
|
|
|
|
# is not guaranteed to have the same stability. For example, one
|
|
|
|
# version of qemu may list an object member as an optional
|
|
|
|
# non-variant, while another lists the same member only through the
|
|
|
|
# object's variants; or the type of a member may change from a generic
|
|
|
|
# string into a specific enum or from one specific type into an
|
|
|
|
# alternate that includes the original type alongside something else.
|
|
|
|
#
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# Returns: array of @SchemaInfo, where each element describes an
|
2023-04-28 13:54:29 +03:00
|
|
|
# entity in the ABI: command, event, type, ...
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# The order of the various SchemaInfo is unspecified; however, all
|
|
|
|
# names are guaranteed to be unique (no name will be duplicated
|
|
|
|
# with different meta-types).
|
qapi-introspect: Document lack of sorting
qapi-code-gen.txt already claims that types, commands, and
events share a common namespace; set this in stone by further
documenting that our introspection output will never have
collisions with the same name tied to more than one meta-type.
Our largest QMP enum currently has 125 values, our largest
object type has 27 members, and the mean for each is less than
10. These sizes are small enough that the per-element overhead
of O(log n) binary searching probably outweighs the speed
possible with direct O(n) linear searching (a better algorithm
with more overhead will only beat a leaner naive algorithm only
as you scale to larger input sizes).
Arguably, the overall SchemaInfo array could be sorted by name;
there, we currently have 531 entities, large enough for a binary
search to be faster than linear. However, remember that we have
mutually-recursive types, which means there is no topological
ordering that will allow clients to learn all information about
that type in a single linear pass; thus clients will want to do
random access over the data, and they will probably read the
introspection output into a hashtable for O(1) lookup rather
than O(log n) binary searching, at which point, pre-sorting our
introspection output doesn't help the client.
It doesn't help that sorting can be subjective if you introduce
locales into the mix (I'm not experienced enough with Python
to know for sure, but at least it looks like it defaults to
sorting in the C locale even when run under a different locale).
And while our current introspection output is deterministic
(because we visit entities in a sorted order), we may want
to change that order in the future (such as using OrderedDict
to stick to .json declaration order).
For these reasons, we simply document that clients should not
rely on any particular order of items in introspection output.
And since it is now a documented part of the contract, we have
the freedom to later rearrange output if needed, without
worrying about breaking well-written clients.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <1446791754-23823-13-git-send-email-eblake@redhat.com>
[Commit message tweaked]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-11-06 09:35:36 +03:00
|
|
|
#
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# Note: the QAPI schema is also used to help define *internal*
|
2023-04-28 13:54:29 +03:00
|
|
|
# interfaces, by defining QAPI types. These are not part of the
|
|
|
|
# QMP wire ABI, and therefore not returned by this command.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'command': 'query-qmp-schema',
|
|
|
|
'returns': [ 'SchemaInfo' ],
|
2021-03-18 18:55:14 +03:00
|
|
|
'allow-preconfig': true }
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaMetaType:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# This is a @SchemaInfo's meta type, i.e. the kind of entity it
|
|
|
|
# describes.
|
|
|
|
#
|
|
|
|
# @builtin: a predefined type such as 'int' or 'bool'.
|
|
|
|
#
|
|
|
|
# @enum: an enumeration type
|
|
|
|
#
|
|
|
|
# @array: an array type
|
|
|
|
#
|
|
|
|
# @object: an object type (struct or union)
|
|
|
|
#
|
|
|
|
# @alternate: an alternate type
|
|
|
|
#
|
|
|
|
# @command: a QMP command
|
|
|
|
#
|
|
|
|
# @event: a QMP event
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'enum': 'SchemaMetaType',
|
|
|
|
'data': [ 'builtin', 'enum', 'array', 'object', 'alternate',
|
|
|
|
'command', 'event' ] }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfo:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @name: the entity's name, inherited from @base. The SchemaInfo is
|
|
|
|
# always referenced by this name. Commands and events have the
|
|
|
|
# name defined in the QAPI schema. Unlike command and event
|
|
|
|
# names, type names are not part of the wire ABI. Consequently,
|
|
|
|
# type names are meaningless strings here, although they are still
|
|
|
|
# guaranteed unique regardless of @meta-type.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# @meta-type: the entity's meta type, inherited from @base.
|
|
|
|
#
|
2020-03-17 14:54:37 +03:00
|
|
|
# @features: names of features associated with the entity, in no
|
2023-04-28 13:54:29 +03:00
|
|
|
# particular order. (since 4.1 for object types, 4.2 for
|
|
|
|
# commands, 5.0 for the rest)
|
2020-03-17 14:54:37 +03:00
|
|
|
#
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# Additional members depend on the value of @meta-type.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'union': 'SchemaInfo',
|
2020-03-17 14:54:37 +03:00
|
|
|
'base': { 'name': 'str', 'meta-type': 'SchemaMetaType',
|
|
|
|
'*features': [ 'str' ] },
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
'discriminator': 'meta-type',
|
|
|
|
'data': {
|
|
|
|
'builtin': 'SchemaInfoBuiltin',
|
|
|
|
'enum': 'SchemaInfoEnum',
|
|
|
|
'array': 'SchemaInfoArray',
|
|
|
|
'object': 'SchemaInfoObject',
|
|
|
|
'alternate': 'SchemaInfoAlternate',
|
|
|
|
'command': 'SchemaInfoCommand',
|
|
|
|
'event': 'SchemaInfoEvent' } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoBuiltin:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'builtin'.
|
|
|
|
#
|
|
|
|
# @json-type: the JSON type used for this type on the wire.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoBuiltin',
|
|
|
|
'data': { 'json-type': 'JSONType' } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @JSONType:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2018-08-23 19:40:25 +03:00
|
|
|
# The four primitive and two structured types according to RFC 8259
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# section 1, plus 'int' (split off 'number'), plus the obvious top
|
|
|
|
# type 'value'.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'enum': 'JSONType',
|
|
|
|
'data': [ 'string', 'number', 'int', 'boolean', 'null',
|
|
|
|
'object', 'array', 'value' ] }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoEnum:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'enum'.
|
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @members: the enum type's members, in no particular order (since
|
|
|
|
# 6.2).
|
qapi: Enable enum member introspection to show more than name
The next commit will add feature flags to enum members. There's a
problem, though: query-qmp-schema shows an enum type's members as an
array of member names (SchemaInfoEnum member @values). If it showed
an array of objects with a name member, we could simply add more
members to these objects. Since it's just strings, we can't.
I can see three ways to correct this design mistake:
1. Do it the way we should have done it, plus compatibility goo.
We want a ['SchemaInfoEnumMember'] member in SchemaInfoEnum. Since
changing @values would be a compatibility break, add a new member
@members instead.
@values is now redundant. In my testing, output of
qemu-system-x86_64's query-qmp-schema grows by 11% (18.5KiB).
We can deprecate @values now and drop it later. This will break
outmoded clients. Well-behaved clients such as libvirt are
expected to break cleanly.
2. Like 1, but omit "boring" elements of @member, and empty @member.
@values does not become redundant. @members augments it. Somewhat
cumbersome, but output of query-qmp-schema grows only as we make
enum members non-boring.
There is nothing to deprecate here.
3. Versioned query-qmp-schema.
query-qmp-schema provides either @values or @members. The QMP
client can select which version it wants. There is no redundant
output.
We can deprecate old versions and eventually drop them. This will
break outmoded clients. Breaking cleanly is easier than for 1.
While 1 and 2 operate within the common rules for compatible
evolution apply (section "Compatibility considerations" in
docs/devel/qapi-code-gen.rst), 3 bypasses them. Attractive when
operating within the rules is just too awkward. Not the case here.
This commit implements 1. Libvirt developers prefer it.
Deprecate @values in favour of @members. Since query-qmp-schema
compatibility is pretty fundamental for management applications, an
extended grace period is advised.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Peter Krempa <pkrempa@redhat.com>
Acked-by: Peter Krempa <pkrempa@redhat.com>
Message-Id: <20211025042405.3762351-2-armbru@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
2021-10-25 07:24:01 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @values: the enumeration type's member names, in no particular
|
|
|
|
# order. Redundant with @members. Just for backward
|
|
|
|
# compatibility.
|
qapi: Enable enum member introspection to show more than name
The next commit will add feature flags to enum members. There's a
problem, though: query-qmp-schema shows an enum type's members as an
array of member names (SchemaInfoEnum member @values). If it showed
an array of objects with a name member, we could simply add more
members to these objects. Since it's just strings, we can't.
I can see three ways to correct this design mistake:
1. Do it the way we should have done it, plus compatibility goo.
We want a ['SchemaInfoEnumMember'] member in SchemaInfoEnum. Since
changing @values would be a compatibility break, add a new member
@members instead.
@values is now redundant. In my testing, output of
qemu-system-x86_64's query-qmp-schema grows by 11% (18.5KiB).
We can deprecate @values now and drop it later. This will break
outmoded clients. Well-behaved clients such as libvirt are
expected to break cleanly.
2. Like 1, but omit "boring" elements of @member, and empty @member.
@values does not become redundant. @members augments it. Somewhat
cumbersome, but output of query-qmp-schema grows only as we make
enum members non-boring.
There is nothing to deprecate here.
3. Versioned query-qmp-schema.
query-qmp-schema provides either @values or @members. The QMP
client can select which version it wants. There is no redundant
output.
We can deprecate old versions and eventually drop them. This will
break outmoded clients. Breaking cleanly is easier than for 1.
While 1 and 2 operate within the common rules for compatible
evolution apply (section "Compatibility considerations" in
docs/devel/qapi-code-gen.rst), 3 bypasses them. Attractive when
operating within the rules is just too awkward. Not the case here.
This commit implements 1. Libvirt developers prefer it.
Deprecate @values in favour of @members. Since query-qmp-schema
compatibility is pretty fundamental for management applications, an
extended grace period is advised.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Peter Krempa <pkrempa@redhat.com>
Acked-by: Peter Krempa <pkrempa@redhat.com>
Message-Id: <20211025042405.3762351-2-armbru@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
2021-10-25 07:24:01 +03:00
|
|
|
#
|
|
|
|
# Features:
|
2023-04-28 13:54:29 +03:00
|
|
|
#
|
qapi: Enable enum member introspection to show more than name
The next commit will add feature flags to enum members. There's a
problem, though: query-qmp-schema shows an enum type's members as an
array of member names (SchemaInfoEnum member @values). If it showed
an array of objects with a name member, we could simply add more
members to these objects. Since it's just strings, we can't.
I can see three ways to correct this design mistake:
1. Do it the way we should have done it, plus compatibility goo.
We want a ['SchemaInfoEnumMember'] member in SchemaInfoEnum. Since
changing @values would be a compatibility break, add a new member
@members instead.
@values is now redundant. In my testing, output of
qemu-system-x86_64's query-qmp-schema grows by 11% (18.5KiB).
We can deprecate @values now and drop it later. This will break
outmoded clients. Well-behaved clients such as libvirt are
expected to break cleanly.
2. Like 1, but omit "boring" elements of @member, and empty @member.
@values does not become redundant. @members augments it. Somewhat
cumbersome, but output of query-qmp-schema grows only as we make
enum members non-boring.
There is nothing to deprecate here.
3. Versioned query-qmp-schema.
query-qmp-schema provides either @values or @members. The QMP
client can select which version it wants. There is no redundant
output.
We can deprecate old versions and eventually drop them. This will
break outmoded clients. Breaking cleanly is easier than for 1.
While 1 and 2 operate within the common rules for compatible
evolution apply (section "Compatibility considerations" in
docs/devel/qapi-code-gen.rst), 3 bypasses them. Attractive when
operating within the rules is just too awkward. Not the case here.
This commit implements 1. Libvirt developers prefer it.
Deprecate @values in favour of @members. Since query-qmp-schema
compatibility is pretty fundamental for management applications, an
extended grace period is advised.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Peter Krempa <pkrempa@redhat.com>
Acked-by: Peter Krempa <pkrempa@redhat.com>
Message-Id: <20211025042405.3762351-2-armbru@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
2021-10-25 07:24:01 +03:00
|
|
|
# @deprecated: Member @values is deprecated. Use @members instead.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Values of this type are JSON string on the wire.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoEnum',
|
qapi: Enable enum member introspection to show more than name
The next commit will add feature flags to enum members. There's a
problem, though: query-qmp-schema shows an enum type's members as an
array of member names (SchemaInfoEnum member @values). If it showed
an array of objects with a name member, we could simply add more
members to these objects. Since it's just strings, we can't.
I can see three ways to correct this design mistake:
1. Do it the way we should have done it, plus compatibility goo.
We want a ['SchemaInfoEnumMember'] member in SchemaInfoEnum. Since
changing @values would be a compatibility break, add a new member
@members instead.
@values is now redundant. In my testing, output of
qemu-system-x86_64's query-qmp-schema grows by 11% (18.5KiB).
We can deprecate @values now and drop it later. This will break
outmoded clients. Well-behaved clients such as libvirt are
expected to break cleanly.
2. Like 1, but omit "boring" elements of @member, and empty @member.
@values does not become redundant. @members augments it. Somewhat
cumbersome, but output of query-qmp-schema grows only as we make
enum members non-boring.
There is nothing to deprecate here.
3. Versioned query-qmp-schema.
query-qmp-schema provides either @values or @members. The QMP
client can select which version it wants. There is no redundant
output.
We can deprecate old versions and eventually drop them. This will
break outmoded clients. Breaking cleanly is easier than for 1.
While 1 and 2 operate within the common rules for compatible
evolution apply (section "Compatibility considerations" in
docs/devel/qapi-code-gen.rst), 3 bypasses them. Attractive when
operating within the rules is just too awkward. Not the case here.
This commit implements 1. Libvirt developers prefer it.
Deprecate @values in favour of @members. Since query-qmp-schema
compatibility is pretty fundamental for management applications, an
extended grace period is advised.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Peter Krempa <pkrempa@redhat.com>
Acked-by: Peter Krempa <pkrempa@redhat.com>
Message-Id: <20211025042405.3762351-2-armbru@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
2021-10-25 07:24:01 +03:00
|
|
|
'data': { 'members': [ 'SchemaInfoEnumMember' ],
|
|
|
|
'values': { 'type': [ 'str' ],
|
|
|
|
'features': [ 'deprecated' ] } } }
|
|
|
|
|
|
|
|
##
|
|
|
|
# @SchemaInfoEnumMember:
|
|
|
|
#
|
|
|
|
# An object member.
|
|
|
|
#
|
|
|
|
# @name: the member's name, as defined in the QAPI schema.
|
|
|
|
#
|
2021-10-25 07:24:02 +03:00
|
|
|
# @features: names of features associated with the member, in no
|
2023-04-28 13:54:29 +03:00
|
|
|
# particular order.
|
2021-10-25 07:24:02 +03:00
|
|
|
#
|
qapi: Enable enum member introspection to show more than name
The next commit will add feature flags to enum members. There's a
problem, though: query-qmp-schema shows an enum type's members as an
array of member names (SchemaInfoEnum member @values). If it showed
an array of objects with a name member, we could simply add more
members to these objects. Since it's just strings, we can't.
I can see three ways to correct this design mistake:
1. Do it the way we should have done it, plus compatibility goo.
We want a ['SchemaInfoEnumMember'] member in SchemaInfoEnum. Since
changing @values would be a compatibility break, add a new member
@members instead.
@values is now redundant. In my testing, output of
qemu-system-x86_64's query-qmp-schema grows by 11% (18.5KiB).
We can deprecate @values now and drop it later. This will break
outmoded clients. Well-behaved clients such as libvirt are
expected to break cleanly.
2. Like 1, but omit "boring" elements of @member, and empty @member.
@values does not become redundant. @members augments it. Somewhat
cumbersome, but output of query-qmp-schema grows only as we make
enum members non-boring.
There is nothing to deprecate here.
3. Versioned query-qmp-schema.
query-qmp-schema provides either @values or @members. The QMP
client can select which version it wants. There is no redundant
output.
We can deprecate old versions and eventually drop them. This will
break outmoded clients. Breaking cleanly is easier than for 1.
While 1 and 2 operate within the common rules for compatible
evolution apply (section "Compatibility considerations" in
docs/devel/qapi-code-gen.rst), 3 bypasses them. Attractive when
operating within the rules is just too awkward. Not the case here.
This commit implements 1. Libvirt developers prefer it.
Deprecate @values in favour of @members. Since query-qmp-schema
compatibility is pretty fundamental for management applications, an
extended grace period is advised.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Peter Krempa <pkrempa@redhat.com>
Acked-by: Peter Krempa <pkrempa@redhat.com>
Message-Id: <20211025042405.3762351-2-armbru@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
2021-10-25 07:24:01 +03:00
|
|
|
# Since: 6.2
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoEnumMember',
|
2021-10-25 07:24:02 +03:00
|
|
|
'data': { 'name': 'str', '*features': [ 'str' ] } }
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoArray:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'array'.
|
|
|
|
#
|
|
|
|
# @element-type: the array type's element type.
|
|
|
|
#
|
|
|
|
# Values of this type are JSON array on the wire.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoArray',
|
|
|
|
'data': { 'element-type': 'str' } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoObject:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'object'.
|
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @members: the object type's (non-variant) members, in no particular
|
|
|
|
# order.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @tag: the name of the member serving as type tag. An element of
|
|
|
|
# @members with this name must exist.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @variants: variant members, i.e. additional members that depend on
|
|
|
|
# the type tag's value. Present exactly when @tag is present.
|
|
|
|
# The variants are in no particular order, and may even differ
|
|
|
|
# from the order of the values of the enum type of the @tag.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Values of this type are JSON object on the wire.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoObject',
|
|
|
|
'data': { 'members': [ 'SchemaInfoObjectMember' ],
|
|
|
|
'*tag': 'str',
|
2020-03-17 14:54:37 +03:00
|
|
|
'*variants': [ 'SchemaInfoObjectVariant' ] } }
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoObjectMember:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# An object member.
|
|
|
|
#
|
|
|
|
# @name: the member's name, as defined in the QAPI schema.
|
|
|
|
#
|
|
|
|
# @type: the name of the member's type.
|
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @default: default when used as command parameter. If absent, the
|
|
|
|
# parameter is mandatory. If present, the value must be null.
|
|
|
|
# The parameter is optional, and behavior when it's missing is not
|
|
|
|
# specified here. Future extension: if present and non-null, the
|
|
|
|
# parameter is optional, and defaults to this value.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
2020-03-17 14:54:45 +03:00
|
|
|
# @features: names of features associated with the member, in no
|
2023-04-28 13:54:29 +03:00
|
|
|
# particular order. (since 5.0)
|
2020-03-17 14:54:45 +03:00
|
|
|
#
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoObjectMember',
|
2020-03-17 14:54:45 +03:00
|
|
|
'data': { 'name': 'str', 'type': 'str', '*default': 'any',
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
# @default's type must be null or match @type
|
2020-03-17 14:54:45 +03:00
|
|
|
'*features': [ 'str' ] } }
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoObjectVariant:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# The variant members for a value of the type tag.
|
|
|
|
#
|
|
|
|
# @case: a value of the type tag.
|
|
|
|
#
|
|
|
|
# @type: the name of the object type that provides the variant members
|
2023-04-28 13:54:29 +03:00
|
|
|
# when the type tag has value @case.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoObjectVariant',
|
|
|
|
'data': { 'case': 'str', 'type': 'str' } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoAlternate:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'alternate'.
|
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# @members: the alternate type's members, in no particular order. The
|
|
|
|
# members' wire encoding is distinct, see
|
|
|
|
# docs/devel/qapi-code-gen.txt section Alternate types.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# On the wire, this can be any of the members.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoAlternate',
|
|
|
|
'data': { 'members': [ 'SchemaInfoAlternateMember' ] } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoAlternateMember:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# An alternate member.
|
|
|
|
#
|
|
|
|
# @type: the name of the member's type.
|
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoAlternateMember',
|
|
|
|
'data': { 'type': 'str' } }
|
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoCommand:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'command'.
|
|
|
|
#
|
|
|
|
# @arg-type: the name of the object type that provides the command's
|
2023-04-28 13:54:29 +03:00
|
|
|
# parameters.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# @ret-type: the name of the command's result type.
|
|
|
|
#
|
2018-07-18 12:05:57 +03:00
|
|
|
# @allow-oob: whether the command allows out-of-band execution,
|
2023-04-28 13:54:29 +03:00
|
|
|
# defaults to false (Since: 2.12)
|
2018-03-09 12:00:00 +03:00
|
|
|
#
|
2023-04-28 13:54:29 +03:00
|
|
|
# TODO: @success-response (currently irrelevant, because it's QGA, not
|
|
|
|
# QMP)
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoCommand',
|
2018-03-09 12:00:00 +03:00
|
|
|
'data': { 'arg-type': 'str', 'ret-type': 'str',
|
2020-03-17 14:54:37 +03:00
|
|
|
'*allow-oob': 'bool' } }
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
|
|
|
|
##
|
2016-11-17 18:54:55 +03:00
|
|
|
# @SchemaInfoEvent:
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Additional SchemaInfo members for meta-type 'event'.
|
|
|
|
#
|
|
|
|
# @arg-type: the name of the object type that provides the event's
|
2023-04-28 13:54:29 +03:00
|
|
|
# parameters.
|
qapi: New QMP command query-qmp-schema for QMP introspection
qapi/introspect.json defines the introspection schema. It's designed
for QMP introspection, but should do for similar uses, such as QGA.
The introspection schema does not reflect all the rules and
restrictions that apply to QAPI schemata. A valid QAPI schema has an
introspection value conforming to the introspection schema, but the
converse is not true.
Introspection lowers away a number of schema details, and makes
implicit things explicit:
* The built-in types are declared with their JSON type.
All integer types are mapped to 'int', because how many bits we use
internally is an implementation detail. It could be pressed into
external interface service as very approximate range information,
but that's a bad idea. If we need range information, we better do
it properly.
* Implicit type definitions are made explicit, and given
auto-generated names:
- Array types, named by appending "List" to the name of their
element type, like in generated C.
- The enumeration types implicitly defined by simple union types,
named by appending "Kind" to the name of their simple union type,
like in generated C.
- Types that don't occur in generated C. Their names start with ':'
so they don't clash with the user's names.
* All type references are by name.
* The struct and union types are generalized into an object type.
* Base types are flattened.
* Commands take a single argument and return a single result.
Dictionary argument or list result is an implicit type definition.
The empty object type is used when a command takes no arguments or
produces no results.
The argument is always of object type, but the introspection schema
doesn't reflect that.
The 'gen': false directive is omitted as implementation detail.
The 'success-response' directive is omitted as well for now, even
though it's not an implementation detail, because it's not used by
QMP.
* Events carry a single data value.
Implicit type definition and empty object type use, just like for
commands.
The value is of object type, but the introspection schema doesn't
reflect that.
* Types not used by commands or events are omitted.
Indirect use counts as use.
* Optional members have a default, which can only be null right now
Instead of a mandatory "optional" flag, we have an optional default.
No default means mandatory, default null means optional without
default value. Non-null is available for optional with default
(possible future extension).
* Clients should *not* look up types by name, because type names are
not ABI. Look up the command or event you're interested in, then
follow the references.
TODO Should we hide the type names to eliminate the temptation?
New generator scripts/qapi-introspect.py computes an introspection
value for its input, and generates a C variable holding it.
It can generate awfully long lines. Marked TODO.
A new test-qmp-input-visitor test case feeds its result for both
tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a
QmpInputVisitor to verify it actually conforms to the schema.
New QMP command query-qmp-schema takes its return value from that
variable. Its reply is some 85KiBytes for me right now.
If this turns out to be too much, we have a couple of options:
* We can use shorter names in the JSON. Not the QMP style.
* Optionally return the sub-schema for commands and events given as
arguments.
Right now qmp_query_schema() sends the string literal computed by
qmp-introspect.py. To compute sub-schema at run time, we'd have to
duplicate parts of qapi-introspect.py in C. Unattractive.
* Let clients cache the output of query-qmp-schema.
It changes only on QEMU upgrades, i.e. rarely. Provide a command
query-qmp-schema-hash. Clients can have a cache indexed by hash,
and re-query the schema only when they don't have it cached. Even
simpler: put the hash in the QMP greeting.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
|
|
|
#
|
|
|
|
# Since: 2.5
|
|
|
|
##
|
|
|
|
{ 'struct': 'SchemaInfoEvent',
|
|
|
|
'data': { 'arg-type': 'str' } }
|