qemu/hw/intc/gic_internal.h

323 lines
11 KiB
C
Raw Normal View History

/*
* ARM GIC support - internal interfaces
*
* Copyright (c) 2012 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef QEMU_ARM_GIC_INTERNAL_H
#define QEMU_ARM_GIC_INTERNAL_H
#include "hw/registerfields.h"
#include "hw/intc/arm_gic.h"
#define ALL_CPU_MASK ((unsigned)(((1 << GIC_NCPU) - 1)))
#define GIC_DIST_SET_ENABLED(irq, cm) (s->irq_state[irq].enabled |= (cm))
#define GIC_DIST_CLEAR_ENABLED(irq, cm) (s->irq_state[irq].enabled &= ~(cm))
#define GIC_DIST_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
#define GIC_DIST_SET_PENDING(irq, cm) (s->irq_state[irq].pending |= (cm))
#define GIC_DIST_CLEAR_PENDING(irq, cm) (s->irq_state[irq].pending &= ~(cm))
#define GIC_DIST_SET_ACTIVE(irq, cm) (s->irq_state[irq].active |= (cm))
#define GIC_DIST_CLEAR_ACTIVE(irq, cm) (s->irq_state[irq].active &= ~(cm))
#define GIC_DIST_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
#define GIC_DIST_SET_MODEL(irq) (s->irq_state[irq].model = true)
#define GIC_DIST_CLEAR_MODEL(irq) (s->irq_state[irq].model = false)
#define GIC_DIST_TEST_MODEL(irq) (s->irq_state[irq].model)
#define GIC_DIST_SET_LEVEL(irq, cm) (s->irq_state[irq].level |= (cm))
#define GIC_DIST_CLEAR_LEVEL(irq, cm) (s->irq_state[irq].level &= ~(cm))
#define GIC_DIST_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
#define GIC_DIST_SET_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger = true)
#define GIC_DIST_CLEAR_EDGE_TRIGGER(irq) \
(s->irq_state[irq].edge_trigger = false)
#define GIC_DIST_TEST_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger)
#define GIC_DIST_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
s->priority1[irq][cpu] : \
s->priority2[(irq) - GIC_INTERNAL])
#define GIC_DIST_TARGET(irq) (s->irq_target[irq])
#define GIC_DIST_CLEAR_GROUP(irq, cm) (s->irq_state[irq].group &= ~(cm))
#define GIC_DIST_SET_GROUP(irq, cm) (s->irq_state[irq].group |= (cm))
#define GIC_DIST_TEST_GROUP(irq, cm) ((s->irq_state[irq].group & (cm)) != 0)
#define GICD_CTLR_EN_GRP0 (1U << 0)
#define GICD_CTLR_EN_GRP1 (1U << 1)
#define GICC_CTLR_EN_GRP0 (1U << 0)
#define GICC_CTLR_EN_GRP1 (1U << 1)
#define GICC_CTLR_ACK_CTL (1U << 2)
#define GICC_CTLR_FIQ_EN (1U << 3)
#define GICC_CTLR_CBPR (1U << 4) /* GICv1: SBPR */
#define GICC_CTLR_EOIMODE (1U << 9)
#define GICC_CTLR_EOIMODE_NS (1U << 10)
REG32(GICH_HCR, 0x0)
FIELD(GICH_HCR, EN, 0, 1)
FIELD(GICH_HCR, UIE, 1, 1)
FIELD(GICH_HCR, LRENPIE, 2, 1)
FIELD(GICH_HCR, NPIE, 3, 1)
FIELD(GICH_HCR, VGRP0EIE, 4, 1)
FIELD(GICH_HCR, VGRP0DIE, 5, 1)
FIELD(GICH_HCR, VGRP1EIE, 6, 1)
FIELD(GICH_HCR, VGRP1DIE, 7, 1)
FIELD(GICH_HCR, EOICount, 27, 5)
#define GICH_HCR_MASK \
(R_GICH_HCR_EN_MASK | R_GICH_HCR_UIE_MASK | \
R_GICH_HCR_LRENPIE_MASK | R_GICH_HCR_NPIE_MASK | \
R_GICH_HCR_VGRP0EIE_MASK | R_GICH_HCR_VGRP0DIE_MASK | \
R_GICH_HCR_VGRP1EIE_MASK | R_GICH_HCR_VGRP1DIE_MASK | \
R_GICH_HCR_EOICount_MASK)
REG32(GICH_VTR, 0x4)
FIELD(GICH_VTR, ListRegs, 0, 6)
FIELD(GICH_VTR, PREbits, 26, 3)
FIELD(GICH_VTR, PRIbits, 29, 3)
REG32(GICH_VMCR, 0x8)
FIELD(GICH_VMCR, VMCCtlr, 0, 10)
FIELD(GICH_VMCR, VMABP, 18, 3)
FIELD(GICH_VMCR, VMBP, 21, 3)
FIELD(GICH_VMCR, VMPriMask, 27, 5)
REG32(GICH_MISR, 0x10)
FIELD(GICH_MISR, EOI, 0, 1)
FIELD(GICH_MISR, U, 1, 1)
FIELD(GICH_MISR, LRENP, 2, 1)
FIELD(GICH_MISR, NP, 3, 1)
FIELD(GICH_MISR, VGrp0E, 4, 1)
FIELD(GICH_MISR, VGrp0D, 5, 1)
FIELD(GICH_MISR, VGrp1E, 6, 1)
FIELD(GICH_MISR, VGrp1D, 7, 1)
REG32(GICH_EISR0, 0x20)
REG32(GICH_EISR1, 0x24)
REG32(GICH_ELRSR0, 0x30)
REG32(GICH_ELRSR1, 0x34)
REG32(GICH_APR, 0xf0)
REG32(GICH_LR0, 0x100)
FIELD(GICH_LR0, VirtualID, 0, 10)
FIELD(GICH_LR0, PhysicalID, 10, 10)
FIELD(GICH_LR0, CPUID, 10, 3)
FIELD(GICH_LR0, EOI, 19, 1)
FIELD(GICH_LR0, Priority, 23, 5)
FIELD(GICH_LR0, State, 28, 2)
FIELD(GICH_LR0, Grp1, 30, 1)
FIELD(GICH_LR0, HW, 31, 1)
/* Last LR register */
REG32(GICH_LR63, 0x1fc)
#define GICH_LR_MASK \
(R_GICH_LR0_VirtualID_MASK | R_GICH_LR0_PhysicalID_MASK | \
R_GICH_LR0_CPUID_MASK | R_GICH_LR0_EOI_MASK | \
R_GICH_LR0_Priority_MASK | R_GICH_LR0_State_MASK | \
R_GICH_LR0_Grp1_MASK | R_GICH_LR0_HW_MASK)
#define GICH_LR_STATE_INVALID 0
#define GICH_LR_STATE_PENDING 1
#define GICH_LR_STATE_ACTIVE 2
#define GICH_LR_STATE_ACTIVE_PENDING 3
#define GICH_LR_VIRT_ID(entry) (FIELD_EX32(entry, GICH_LR0, VirtualID))
#define GICH_LR_PHYS_ID(entry) (FIELD_EX32(entry, GICH_LR0, PhysicalID))
#define GICH_LR_CPUID(entry) (FIELD_EX32(entry, GICH_LR0, CPUID))
#define GICH_LR_EOI(entry) (FIELD_EX32(entry, GICH_LR0, EOI))
#define GICH_LR_PRIORITY(entry) (FIELD_EX32(entry, GICH_LR0, Priority) << 3)
#define GICH_LR_STATE(entry) (FIELD_EX32(entry, GICH_LR0, State))
#define GICH_LR_GROUP(entry) (FIELD_EX32(entry, GICH_LR0, Grp1))
#define GICH_LR_HW(entry) (FIELD_EX32(entry, GICH_LR0, HW))
#define GICH_LR_CLEAR_PENDING(entry) \
((entry) &= ~(GICH_LR_STATE_PENDING << R_GICH_LR0_State_SHIFT))
#define GICH_LR_SET_ACTIVE(entry) \
((entry) |= (GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
#define GICH_LR_CLEAR_ACTIVE(entry) \
((entry) &= ~(GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
/* Valid bits for GICC_CTLR for GICv1, v1 with security extensions,
* GICv2 and GICv2 with security extensions:
*/
#define GICC_CTLR_V1_MASK 0x1
#define GICC_CTLR_V1_S_MASK 0x1f
#define GICC_CTLR_V2_MASK 0x21f
#define GICC_CTLR_V2_S_MASK 0x61f
/* The special cases for the revision property: */
#define REV_11MPCORE 0
uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs);
void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
MemTxAttrs attrs);
arm_gic: Fix GIC pending behavior The existing implementation of the pending behavior in gic_set_irq, gic_complete_irq, and the distributor pending set/clear registers does not follow the semantics of the GICv2.0 specs, but may implement the 11MPCore support. Therefore, maintain the existing semantics for 11MPCore and v7M NVIC and change the behavior to be in accordance with the GICv2.0 specs for "generic implementations" (s->revision == 1 || s->revision == 2). Generic implementations distinguish between setting a level-triggered interrupt pending through writes to the GICD_ISPENDR and when hardware raises the interrupt line. Writing to the GICD_ICPENDR will not cause the interrupt to become non-pending if the line is still active, and conversely, if the line is deactivated but the interrupt is marked as pending through a write to GICD_ISPENDR, the interrupt remains pending. Handle this situation in the GIC_TEST_PENDING (which now becomes a static inline named gic_test_pending) and let the 'pending' field correspond only to the latched state of the D-flip flop in the GICv2.0 specs Figure 4-10. The following changes are added: gic_test_pending: Make this a static inline and split out the 11MPCore from the generic behavior. For the generic behavior, consider interrupts pending if: ((s->irq_state[irq].pending & (cm) != 0) || (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_LEVEL(irq, cm)) gic_set_irq: Split out the 11MPCore from the generic behavior. For the generic behavior, always GIC_SET_LEVEL() on positive level, but only GIC_SET_PENDING for edge-triggered interrupts and always simply GIC_CLEAR_LEVEL() on negative level. gic_complete_irq: Only resample the line for line-triggered interrupts on an 11MPCore. Generic implementations will sample the line directly in gic_test_pending(). Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2013-11-19 08:32:00 +04:00
static inline bool gic_test_pending(GICState *s, int irq, int cm)
{
if (s->revision == REV_11MPCORE) {
arm_gic: Fix GIC pending behavior The existing implementation of the pending behavior in gic_set_irq, gic_complete_irq, and the distributor pending set/clear registers does not follow the semantics of the GICv2.0 specs, but may implement the 11MPCore support. Therefore, maintain the existing semantics for 11MPCore and v7M NVIC and change the behavior to be in accordance with the GICv2.0 specs for "generic implementations" (s->revision == 1 || s->revision == 2). Generic implementations distinguish between setting a level-triggered interrupt pending through writes to the GICD_ISPENDR and when hardware raises the interrupt line. Writing to the GICD_ICPENDR will not cause the interrupt to become non-pending if the line is still active, and conversely, if the line is deactivated but the interrupt is marked as pending through a write to GICD_ISPENDR, the interrupt remains pending. Handle this situation in the GIC_TEST_PENDING (which now becomes a static inline named gic_test_pending) and let the 'pending' field correspond only to the latched state of the D-flip flop in the GICv2.0 specs Figure 4-10. The following changes are added: gic_test_pending: Make this a static inline and split out the 11MPCore from the generic behavior. For the generic behavior, consider interrupts pending if: ((s->irq_state[irq].pending & (cm) != 0) || (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_LEVEL(irq, cm)) gic_set_irq: Split out the 11MPCore from the generic behavior. For the generic behavior, always GIC_SET_LEVEL() on positive level, but only GIC_SET_PENDING for edge-triggered interrupts and always simply GIC_CLEAR_LEVEL() on negative level. gic_complete_irq: Only resample the line for line-triggered interrupts on an 11MPCore. Generic implementations will sample the line directly in gic_test_pending(). Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2013-11-19 08:32:00 +04:00
return s->irq_state[irq].pending & cm;
} else {
/* Edge-triggered interrupts are marked pending on a rising edge, but
* level-triggered interrupts are either considered pending when the
* level is active or if software has explicitly written to
* GICD_ISPENDR to set the state pending.
*/
return (s->irq_state[irq].pending & cm) ||
(!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_LEVEL(irq, cm));
arm_gic: Fix GIC pending behavior The existing implementation of the pending behavior in gic_set_irq, gic_complete_irq, and the distributor pending set/clear registers does not follow the semantics of the GICv2.0 specs, but may implement the 11MPCore support. Therefore, maintain the existing semantics for 11MPCore and v7M NVIC and change the behavior to be in accordance with the GICv2.0 specs for "generic implementations" (s->revision == 1 || s->revision == 2). Generic implementations distinguish between setting a level-triggered interrupt pending through writes to the GICD_ISPENDR and when hardware raises the interrupt line. Writing to the GICD_ICPENDR will not cause the interrupt to become non-pending if the line is still active, and conversely, if the line is deactivated but the interrupt is marked as pending through a write to GICD_ISPENDR, the interrupt remains pending. Handle this situation in the GIC_TEST_PENDING (which now becomes a static inline named gic_test_pending) and let the 'pending' field correspond only to the latched state of the D-flip flop in the GICv2.0 specs Figure 4-10. The following changes are added: gic_test_pending: Make this a static inline and split out the 11MPCore from the generic behavior. For the generic behavior, consider interrupts pending if: ((s->irq_state[irq].pending & (cm) != 0) || (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_LEVEL(irq, cm)) gic_set_irq: Split out the 11MPCore from the generic behavior. For the generic behavior, always GIC_SET_LEVEL() on positive level, but only GIC_SET_PENDING for edge-triggered interrupts and always simply GIC_CLEAR_LEVEL() on negative level. gic_complete_irq: Only resample the line for line-triggered interrupts on an 11MPCore. Generic implementations will sample the line directly in gic_test_pending(). Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2013-11-19 08:32:00 +04:00
}
}
static inline bool gic_is_vcpu(int cpu)
{
return cpu >= GIC_NCPU;
}
static inline int gic_get_vcpu_real_id(int cpu)
{
return (cpu >= GIC_NCPU) ? (cpu - GIC_NCPU) : cpu;
}
/* Return true if the given vIRQ state exists in a LR and is either active or
* pending and active.
*
* This function is used to check that a guest's `end of interrupt' or
* `interrupts deactivation' request is valid, and matches with a LR of an
* already acknowledged vIRQ (i.e. has the active bit set in its state).
*/
static inline bool gic_virq_is_valid(GICState *s, int irq, int vcpu)
{
int cpu = gic_get_vcpu_real_id(vcpu);
int lr_idx;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
if ((GICH_LR_VIRT_ID(*entry) == irq) &&
(GICH_LR_STATE(*entry) & GICH_LR_STATE_ACTIVE)) {
return true;
}
}
return false;
}
/* Return a pointer on the LR entry matching the given vIRQ.
*
* This function is used to retrieve an LR for which we know for sure that the
* corresponding vIRQ exists in the current context (i.e. its current state is
* not `invalid'):
* - Either the corresponding vIRQ has been validated with gic_virq_is_valid()
* so it is `active' or `active and pending',
* - Or it was pending and has been selected by gic_get_best_virq(). It is now
* `pending', `active' or `active and pending', depending on what the guest
* already did with this vIRQ.
*
* Having multiple LRs with the same VirtualID leads to UNPREDICTABLE
* behaviour in the GIC. We choose to return the first one that matches.
*/
static inline uint32_t *gic_get_lr_entry(GICState *s, int irq, int vcpu)
{
int cpu = gic_get_vcpu_real_id(vcpu);
int lr_idx;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
if ((GICH_LR_VIRT_ID(*entry) == irq) &&
(GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID)) {
return entry;
}
}
g_assert_not_reached();
}
static inline bool gic_test_group(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
return GICH_LR_GROUP(*entry);
} else {
return GIC_DIST_TEST_GROUP(irq, 1 << cpu);
}
}
static inline void gic_clear_pending(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_CLEAR_PENDING(*entry);
} else {
/* Clear pending state for both level and edge triggered
* interrupts. (level triggered interrupts with an active line
* remain pending, see gic_test_pending)
*/
GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
: (1 << cpu));
}
}
static inline void gic_set_active(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_SET_ACTIVE(*entry);
} else {
GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
}
}
static inline void gic_clear_active(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_CLEAR_ACTIVE(*entry);
if (GICH_LR_HW(*entry)) {
/* Hardware interrupt. We must forward the deactivation request to
* the distributor.
*/
int phys_irq = GICH_LR_PHYS_ID(*entry);
int rcpu = gic_get_vcpu_real_id(cpu);
if (phys_irq < GIC_NR_SGIS || phys_irq >= GIC_MAXIRQ) {
/* UNPREDICTABLE behaviour, we choose to ignore the request */
return;
}
/* This is equivalent to a NS write to DIR on the physical CPU
* interface. Hence group0 interrupt deactivation is ignored if
* the GIC is secure.
*/
if (!s->security_extn || GIC_DIST_TEST_GROUP(phys_irq, 1 << rcpu)) {
GIC_DIST_CLEAR_ACTIVE(phys_irq, 1 << rcpu);
}
}
} else {
GIC_DIST_CLEAR_ACTIVE(irq, 1 << cpu);
}
}
static inline int gic_get_priority(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
return GICH_LR_PRIORITY(*entry);
} else {
return GIC_DIST_GET_PRIORITY(irq, cpu);
}
}
#endif /* QEMU_ARM_GIC_INTERNAL_H */