qemu/linux-user/sparc/cpu_loop.c

307 lines
8.8 KiB
C
Raw Normal View History

/*
* qemu user cpu loop
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "cpu_loop-common.h"
#define SPARC64_STACK_BIAS 2047
//#define DEBUG_WIN
/* WARNING: dealing with register windows _is_ complicated. More info
can be found at http://www.sics.se/~psm/sparcstack.html */
static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
{
index = (index + cwp * 16) % (16 * env->nwindows);
/* wrap handling : if cwp is on the last window, then we use the
registers 'after' the end */
if (index < 8 && env->cwp == env->nwindows - 1)
index += 16 * env->nwindows;
return index;
}
/* save the register window 'cwp1' */
static inline void save_window_offset(CPUSPARCState *env, int cwp1)
{
unsigned int i;
abi_ulong sp_ptr;
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if put_user() fails? */
put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
}
static void save_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->wim = new_wim;
#else
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->cansave++;
env->canrestore--;
#endif
}
static void restore_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
#endif
unsigned int i, cwp1;
abi_ulong sp_ptr;
#ifndef TARGET_SPARC64
new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
#endif
/* restore the invalid window */
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if get_user() fails? */
get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
#ifdef TARGET_SPARC64
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
env->cansave--;
#else
env->wim = new_wim;
#endif
}
static void flush_windows(CPUSPARCState *env)
{
int offset, cwp1;
offset = 1;
for(;;) {
/* if restore would invoke restore_window(), then we can stop */
cwp1 = cpu_cwp_inc(env, env->cwp + offset);
#ifndef TARGET_SPARC64
if (env->wim & (1 << cwp1))
break;
#else
if (env->canrestore == 0)
break;
env->cansave++;
env->canrestore--;
#endif
save_window_offset(env, cwp1);
offset++;
}
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
#ifndef TARGET_SPARC64
/* set wim so that restore will reload the registers */
env->wim = 1 << cwp1;
#endif
#if defined(DEBUG_WIN)
printf("flush_windows: nb=%d\n", offset - 1);
#endif
}
void cpu_loop (CPUSPARCState *env)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
int trapnr;
abi_long ret;
target_siginfo_t info;
while (1) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
/* Compute PSR before exposing state. */
if (env->cc_op != CC_OP_FLAGS) {
cpu_get_psr(env);
}
switch (trapnr) {
#ifndef TARGET_SPARC64
case 0x88:
case 0x90:
#else
case 0x110:
case 0x16d:
#endif
ret = do_syscall (env, env->gregs[1],
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5],
0, 0);
if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) {
break;
}
if ((abi_ulong)ret >= (abi_ulong)(-515)) {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc |= PSR_CARRY;
#else
env->psr |= PSR_CARRY;
#endif
ret = -ret;
} else {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc &= ~PSR_CARRY;
#else
env->psr &= ~PSR_CARRY;
#endif
}
env->regwptr[0] = ret;
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
case 0x83: /* flush windows */
#ifdef TARGET_ABI32
case 0x103:
#endif
flush_windows(env);
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
#ifndef TARGET_SPARC64
case TT_WIN_OVF: /* window overflow */
save_window(env);
break;
case TT_WIN_UNF: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
{
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->mmuregs[4];
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
}
break;
#else
case TT_SPILL: /* window overflow */
save_window(env);
break;
case TT_FILL: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
{
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
if (trapnr == TT_DFAULT)
info._sifields._sigfault._addr = env->dmmu.mmuregs[4];
else
info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
}
break;
#ifndef TARGET_ABI32
case 0x16e:
flush_windows(env);
sparc64_get_context(env);
break;
case 0x16f:
flush_windows(env);
sparc64_set_context(env);
break;
#endif
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case TT_ILL_INSN:
{
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPC;
info._sifields._sigfault._addr = env->pc;
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
}
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
}
}
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
default:
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit(EXIT_FAILURE);
}
process_pending_signals (env);
}
}
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
int i;
env->pc = regs->pc;
env->npc = regs->npc;
env->y = regs->y;
for(i = 0; i < 8; i++)
env->gregs[i] = regs->u_regs[i];
for(i = 0; i < 8; i++)
env->regwptr[i] = regs->u_regs[i + 8];
}