qemu/hw/ppc/spapr_pci.c

1834 lines
59 KiB
C
Raw Normal View History

/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "hw/pci/pci.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci_host.h"
#include "hw/ppc/spapr.h"
#include "hw/pci-host/spapr.h"
#include "exec/address-spaces.h"
#include <libfdt.h>
#include "trace.h"
#include "qemu/error-report.h"
#include "qapi/qmp/qerror.h"
#include "hw/pci/pci_bridge.h"
#include "hw/pci/pci_bus.h"
#include "hw/ppc/spapr_drc.h"
#include "sysemu/device_tree.h"
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN 0
#define RTAS_CHANGE_FN 1
#define RTAS_RESET_FN 2
#define RTAS_CHANGE_MSI_FN 3
#define RTAS_CHANGE_MSIX_FN 4
/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI 1
#define RTAS_TYPE_MSIX 2
#define FDT_NAME_MAX 128
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
return ret; \
} \
} while (0)
sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
{
sPAPRPHBState *sphb;
QLIST_FOREACH(sphb, &spapr->phbs, list) {
if (sphb->buid != buid) {
continue;
}
return sphb;
}
return NULL;
}
PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
uint32_t config_addr)
{
sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
int bus_num = (config_addr >> 16) & 0xFF;
int devfn = (config_addr >> 8) & 0xFF;
if (!phb) {
return NULL;
}
return pci_find_device(phb->bus, bus_num, devfn);
}
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
/* This handles the encoding of extended config space addresses */
return ((arg >> 20) & 0xf00) | (arg & 0xff);
}
static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
target_ulong rets)
{
PCIDevice *pci_dev;
uint32_t val;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = pci_host_config_read_common(pci_dev, addr,
pci_config_size(pci_dev), size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, val);
}
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t size, addr;
if ((nargs != 4) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, buid, addr, size, rets);
}
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t size, addr;
if ((nargs != 2) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, 0, addr, size, rets);
}
static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
uint32_t val, target_ulong rets)
{
PCIDevice *pci_dev;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
val, size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t val, size, addr;
if ((nargs != 5) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, buid, addr, size, val, rets);
}
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
if ((nargs != 3) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, 0, addr, size, val, rets);
}
/*
* Set MSI/MSIX message data.
* This is required for msi_notify()/msix_notify() which
* will write at the addresses via spapr_msi_write().
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
*
* If hwaddr == 0, all entries will have .data == first_irq i.e.
* table will be reset.
*/
spapr-pci: rework MSI/MSIX On the sPAPR platform a guest allocates MSI/MSIX vectors via RTAS hypercalls which return global IRQ numbers to a guest so it only operates with those and never touches MSIMessage. Therefore MSIMessage handling is completely hidden in QEMU. Previously every sPAPR PCI host bridge implemented its own MSI window to catch msi_notify()/msix_notify() calls from QEMU devices (virtio-pci or vfio) and route them to the guest via qemu_pulse_irq(). MSIMessage used to be encoded as: .addr - address within the PHB MSI window; .data - the device index on PHB plus vector number. The MSI MR write function translated this MSIMessage to a global IRQ number and called qemu_pulse_irq(). However the total number of IRQs is not really big (at the moment it is 1024 IRQs starting from 4096) and even 16bit data field of MSIMessage seems to be enough to store an IRQ number there. This simplifies MSI handling in sPAPR PHB. Specifically, this does: 1. remove a MSI window from a PHB; 2. add a single memory region for all MSIs to sPAPREnvironment and spapr_pci_msi_init() to initialize it; 3. encode MSIMessage as: * .addr - a fixed address of SPAPR_PCI_MSI_WINDOW==0x40000000000ULL; * .data as an IRQ number. 4. change IRQ allocator to align first IRQ number in a block for MSI. MSI uses lower bits to specify the vector number so the first IRQ has to be aligned. MSIX does not need any special allocator though. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-12 11:38:24 +04:00
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
unsigned first_irq, unsigned req_num)
{
unsigned i;
spapr-pci: rework MSI/MSIX On the sPAPR platform a guest allocates MSI/MSIX vectors via RTAS hypercalls which return global IRQ numbers to a guest so it only operates with those and never touches MSIMessage. Therefore MSIMessage handling is completely hidden in QEMU. Previously every sPAPR PCI host bridge implemented its own MSI window to catch msi_notify()/msix_notify() calls from QEMU devices (virtio-pci or vfio) and route them to the guest via qemu_pulse_irq(). MSIMessage used to be encoded as: .addr - address within the PHB MSI window; .data - the device index on PHB plus vector number. The MSI MR write function translated this MSIMessage to a global IRQ number and called qemu_pulse_irq(). However the total number of IRQs is not really big (at the moment it is 1024 IRQs starting from 4096) and even 16bit data field of MSIMessage seems to be enough to store an IRQ number there. This simplifies MSI handling in sPAPR PHB. Specifically, this does: 1. remove a MSI window from a PHB; 2. add a single memory region for all MSIs to sPAPREnvironment and spapr_pci_msi_init() to initialize it; 3. encode MSIMessage as: * .addr - a fixed address of SPAPR_PCI_MSI_WINDOW==0x40000000000ULL; * .data as an IRQ number. 4. change IRQ allocator to align first IRQ number in a block for MSI. MSI uses lower bits to specify the vector number so the first IRQ has to be aligned. MSIX does not need any special allocator though. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-12 11:38:24 +04:00
MSIMessage msg = { .address = addr, .data = first_irq };
if (!msix) {
msi_set_message(pdev, msg);
trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
return;
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
for (i = 0; i < req_num; ++i) {
msix_set_message(pdev, i, msg);
trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
if (addr) {
++msg.data;
}
}
}
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
unsigned int func = rtas_ld(args, 3);
unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
unsigned int seq_num = rtas_ld(args, 5);
unsigned int ret_intr_type;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
unsigned int irq, max_irqs = 0, num = 0;
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
spapr_pci_msi *msi;
int *config_addr_key;
switch (func) {
case RTAS_CHANGE_MSI_FN:
case RTAS_CHANGE_FN:
ret_intr_type = RTAS_TYPE_MSI;
break;
case RTAS_CHANGE_MSIX_FN:
ret_intr_type = RTAS_TYPE_MSIX;
break;
default:
error_report("rtas_ibm_change_msi(%u) is not implemented", func);
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Fins sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Releasing MSIs */
if (!req_num) {
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
if (!msi) {
trace_spapr_pci_msi("Releasing wrong config", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
xics_free(spapr->icp, msi->first_irq, msi->num);
if (msi_present(pdev)) {
spapr_msi_setmsg(pdev, 0, false, 0, num);
}
if (msix_present(pdev)) {
spapr_msi_setmsg(pdev, 0, true, 0, num);
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
g_hash_table_remove(phb->msi, &config_addr);
trace_spapr_pci_msi("Released MSIs", config_addr);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, 0);
return;
}
/* Enabling MSI */
/* Check if the device supports as many IRQs as requested */
if (ret_intr_type == RTAS_TYPE_MSI) {
max_irqs = msi_nr_vectors_allocated(pdev);
} else if (ret_intr_type == RTAS_TYPE_MSIX) {
max_irqs = pdev->msix_entries_nr;
}
if (!max_irqs) {
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
error_report("Requested interrupt type %d is not enabled for device %x",
ret_intr_type, config_addr);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
/* Correct the number if the guest asked for too many */
if (req_num > max_irqs) {
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
req_num = max_irqs;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
irq = 0; /* to avoid misleading trace */
goto out;
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
/* Allocate MSIs */
irq = xics_alloc_block(spapr->icp, 0, req_num, false,
ret_intr_type == RTAS_TYPE_MSI);
if (!irq) {
error_report("Cannot allocate MSIs for device %x", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
/* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
irq, req_num);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
/* Add MSI device to cache */
msi = g_new(spapr_pci_msi, 1);
msi->first_irq = irq;
msi->num = req_num;
config_addr_key = g_new(int, 1);
*config_addr_key = config_addr;
g_hash_table_insert(phb->msi, config_addr_key, msi);
out:
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, req_num);
rtas_st(rets, 2, ++seq_num);
rtas_st(rets, 3, ret_intr_type);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
}
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token,
uint32_t nargs,
target_ulong args,
uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
sPAPRPHBState *phb = NULL;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
/* Find sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Find device descriptor and start IRQ */
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
trace_spapr_pci_msi("Failed to return vector", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
intr_src_num = msi->first_irq + ioa_intr_num;
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
intr_src_num);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, intr_src_num);
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}
static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
uint32_t addr, option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
addr = rtas_ld(args, 0);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_set_option) {
goto param_error_exit;
}
ret = spc->eeh_set_option(sphb, addr, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
PCIDevice *pdev;
uint32_t addr, option;
uint64_t buid;
if ((nargs != 4) || (nret != 2)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_set_option) {
goto param_error_exit;
}
/*
* We always have PE address of form "00BB0001". "BB"
* represents the bus number of PE's primary bus.
*/
option = rtas_ld(args, 3);
switch (option) {
case RTAS_GET_PE_ADDR:
addr = rtas_ld(args, 0);
pdev = spapr_pci_find_dev(spapr, buid, addr);
if (!pdev) {
goto param_error_exit;
}
rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
break;
case RTAS_GET_PE_MODE:
rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
break;
default:
goto param_error_exit;
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
uint64_t buid;
int state, ret;
if ((nargs != 3) || (nret != 4 && nret != 5)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_get_state) {
goto param_error_exit;
}
ret = spc->eeh_get_state(sphb, &state);
rtas_st(rets, 0, ret);
if (ret != RTAS_OUT_SUCCESS) {
return;
}
rtas_st(rets, 1, state);
rtas_st(rets, 2, RTAS_EEH_SUPPORT);
rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
if (nret >= 5) {
rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
}
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
uint32_t option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_reset) {
goto param_error_exit;
}
ret = spc->eeh_reset(sphb, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
uint64_t buid;
int ret;
if ((nargs != 3) || (nret != 1)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_configure) {
goto param_error_exit;
}
ret = spc->eeh_configure(sphb);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
/* To support it later */
static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
sPAPRPHBClass *spc;
int option;
uint64_t buid;
if ((nargs != 8) || (nret != 1)) {
goto param_error_exit;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
if (!spc->eeh_set_option) {
goto param_error_exit;
}
option = rtas_ld(args, 7);
switch (option) {
case RTAS_SLOT_TEMP_ERR_LOG:
case RTAS_SLOT_PERM_ERR_LOG:
break;
default:
goto param_error_exit;
}
/* We don't have error log yet */
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static int pci_spapr_swizzle(int slot, int pin)
{
return (slot + pin) % PCI_NUM_PINS;
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (4). We
* use standard PCI swizzling, that is (slot number + pin number)
* % 4.
*/
return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
}
static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
PCIINTxRoute route;
route.mode = PCI_INTX_ENABLED;
route.irq = sphb->lsi_table[pin].irq;
return route;
}
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
* For MSI-X, the vector number is encoded as a part of the address,
* data is set to 0.
* For MSI, the vector number is encoded in least bits in data.
*/
static void spapr_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
spapr-pci: rework MSI/MSIX On the sPAPR platform a guest allocates MSI/MSIX vectors via RTAS hypercalls which return global IRQ numbers to a guest so it only operates with those and never touches MSIMessage. Therefore MSIMessage handling is completely hidden in QEMU. Previously every sPAPR PCI host bridge implemented its own MSI window to catch msi_notify()/msix_notify() calls from QEMU devices (virtio-pci or vfio) and route them to the guest via qemu_pulse_irq(). MSIMessage used to be encoded as: .addr - address within the PHB MSI window; .data - the device index on PHB plus vector number. The MSI MR write function translated this MSIMessage to a global IRQ number and called qemu_pulse_irq(). However the total number of IRQs is not really big (at the moment it is 1024 IRQs starting from 4096) and even 16bit data field of MSIMessage seems to be enough to store an IRQ number there. This simplifies MSI handling in sPAPR PHB. Specifically, this does: 1. remove a MSI window from a PHB; 2. add a single memory region for all MSIs to sPAPREnvironment and spapr_pci_msi_init() to initialize it; 3. encode MSIMessage as: * .addr - a fixed address of SPAPR_PCI_MSI_WINDOW==0x40000000000ULL; * .data as an IRQ number. 4. change IRQ allocator to align first IRQ number in a block for MSI. MSI uses lower bits to specify the vector number so the first IRQ has to be aligned. MSIX does not need any special allocator though. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-12 11:38:24 +04:00
uint32_t irq = data;
trace_spapr_pci_msi_write(addr, data, irq);
qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
}
static const MemoryRegionOps spapr_msi_ops = {
/* There is no .read as the read result is undefined by PCI spec */
.read = NULL,
.write = spapr_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
/*
* PHB PCI device
*/
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
sPAPRPHBState *phb = opaque;
return &phb->iommu_as;
}
static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *path = NULL, *buf = NULL, *host = NULL;
/* Get the PCI VFIO host id */
host = object_property_get_str(OBJECT(pdev), "host", NULL);
if (!host) {
goto err_out;
}
/* Construct the path of the file that will give us the DT location */
path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
g_free(host);
if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
g_free(path);
/* Construct and read from host device tree the loc-code */
path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
g_free(buf);
if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
return buf;
err_out:
g_free(path);
return NULL;
}
static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *buf;
const char *devtype = "qemu";
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
if (buf) {
return buf;
}
devtype = "vfio";
}
/*
* For emulated devices and VFIO-failure case, make up
* the loc-code.
*/
buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
devtype, pdev->name, sphb->index, busnr,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
return buf;
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
/* for 'reg'/'assigned-addresses' OF properties */
#define RESOURCE_CELLS_SIZE 2
#define RESOURCE_CELLS_ADDRESS 3
typedef struct ResourceFields {
uint32_t phys_hi;
uint32_t phys_mid;
uint32_t phys_lo;
uint32_t size_hi;
uint32_t size_lo;
} QEMU_PACKED ResourceFields;
typedef struct ResourceProps {
ResourceFields reg[8];
ResourceFields assigned[7];
uint32_t reg_len;
uint32_t assigned_len;
} ResourceProps;
/* fill in the 'reg'/'assigned-resources' OF properties for
* a PCI device. 'reg' describes resource requirements for a
* device's IO/MEM regions, 'assigned-addresses' describes the
* actual resource assignments.
*
* the properties are arrays of ('phys-addr', 'size') pairs describing
* the addressable regions of the PCI device, where 'phys-addr' is a
* RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
* (phys.hi, phys.mid, phys.lo), and 'size' is a
* RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
*
* phys.hi = 0xYYXXXXZZ, where:
* 0xYY = npt000ss
* ||| |
* ||| +-- space code
* ||| |
* ||| + 00 if configuration space
* ||| + 01 if IO region,
* ||| + 10 if 32-bit MEM region
* ||| + 11 if 64-bit MEM region
* |||
* ||+------ for non-relocatable IO: 1 if aliased
* || for relocatable IO: 1 if below 64KB
* || for MEM: 1 if below 1MB
* |+------- 1 if region is prefetchable
* +-------- 1 if region is non-relocatable
* 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
* bits respectively
* 0xZZ = rrrrrrrr, the register number of the BAR corresponding
* to the region
*
* phys.mid and phys.lo correspond respectively to the hi/lo portions
* of the actual address of the region.
*
* how the phys-addr/size values are used differ slightly between
* 'reg' and 'assigned-addresses' properties. namely, 'reg' has
* an additional description for the config space region of the
* device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
* to describe the region as relocatable, with an address-mapping
* that corresponds directly to the PHB's address space for the
* resource. 'assigned-addresses' always has n=1 set with an absolute
* address assigned for the resource. in general, 'assigned-addresses'
* won't be populated, since addresses for PCI devices are generally
* unmapped initially and left to the guest to assign.
*
* note also that addresses defined in these properties are, at least
* for PAPR guests, relative to the PHBs IO/MEM windows, and
* correspond directly to the addresses in the BARs.
*
* in accordance with PCI Bus Binding to Open Firmware,
* IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
* Appendix C.
*/
static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
{
int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
uint32_t dev_id = (b_bbbbbbbb(bus_num) |
b_ddddd(PCI_SLOT(d->devfn)) |
b_fff(PCI_FUNC(d->devfn)));
ResourceFields *reg, *assigned;
int i, reg_idx = 0, assigned_idx = 0;
/* config space region */
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id);
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = 0;
reg->size_lo = 0;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!d->io_regions[i].size) {
continue;
}
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
reg->phys_hi |= cpu_to_be32(b_ss(1));
} else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
reg->phys_hi |= cpu_to_be32(b_ss(3));
} else {
reg->phys_hi |= cpu_to_be32(b_ss(2));
}
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
reg->size_lo = cpu_to_be32(d->io_regions[i].size);
if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
continue;
}
assigned = &rp->assigned[assigned_idx++];
assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
assigned->size_hi = reg->size_hi;
assigned->size_lo = reg->size_lo;
}
rp->reg_len = reg_idx * sizeof(ResourceFields);
rp->assigned_len = assigned_idx * sizeof(ResourceFields);
}
static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
int phb_index, int drc_index,
sPAPRPHBState *sphb)
{
ResourceProps rp;
bool is_bridge = false;
int pci_status, err;
char *buf = NULL;
if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
PCI_HEADER_TYPE_BRIDGE) {
is_bridge = true;
}
/* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
_FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "device-id",
pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "revision-id",
pci_default_read_config(dev, PCI_REVISION_ID, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "class-code",
pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
_FDT(fdt_setprop_cell(fdt, offset, "interrupts",
pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
}
if (!is_bridge) {
_FDT(fdt_setprop_cell(fdt, offset, "min-grant",
pci_default_read_config(dev, PCI_MIN_GNT, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "max-latency",
pci_default_read_config(dev, PCI_MAX_LAT, 1)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
}
_FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
/* the following fdt cells are masked off the pci status register */
pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
_FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
PCI_STATUS_DEVSEL_MASK & pci_status));
if (pci_status & PCI_STATUS_FAST_BACK) {
_FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
}
if (pci_status & PCI_STATUS_66MHZ) {
_FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
}
if (pci_status & PCI_STATUS_UDF) {
_FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
}
/* NOTE: this is normally generated by firmware via path/unit name,
* but in our case we must set it manually since it does not get
* processed by OF beforehand
*/
_FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
buf = spapr_phb_get_loc_code(sphb, dev);
if (!buf) {
error_report("Failed setting the ibm,loc-code");
return -1;
}
err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
g_free(buf);
if (err < 0) {
return err;
}
_FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
_FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
RESOURCE_CELLS_ADDRESS));
_FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
RESOURCE_CELLS_SIZE));
_FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x",
RESOURCE_CELLS_SIZE));
populate_resource_props(dev, &rp);
_FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
_FDT(fdt_setprop(fdt, offset, "assigned-addresses",
(uint8_t *)rp.assigned, rp.assigned_len));
return 0;
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev);
/* create OF node for pci device and required OF DT properties */
static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
int drc_index, const char *drc_name,
void *fdt, int node_offset)
{
int offset, ret;
int slot = PCI_SLOT(dev->devfn);
int func = PCI_FUNC(dev->devfn);
char nodename[FDT_NAME_MAX];
if (func != 0) {
snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
} else {
snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
}
offset = fdt_add_subnode(fdt, node_offset, nodename);
ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb->index, drc_index,
phb);
g_assert(!ret);
if (ret) {
return 0;
}
return offset;
}
static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
sPAPRPHBState *phb,
PCIDevice *pdev,
Error **errp)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
DeviceState *dev = DEVICE(pdev);
int drc_index = drck->get_index(drc);
void *fdt = NULL;
int fdt_start_offset = 0, fdt_size;
if (dev->hotplugged) {
fdt = create_device_tree(&fdt_size);
fdt_start_offset = spapr_create_pci_child_dt(phb, pdev,
drc_index, NULL,
fdt, 0);
if (!fdt_start_offset) {
error_setg(errp, "Failed to create pci child device tree node");
goto out;
}
}
drck->attach(drc, DEVICE(pdev),
fdt, fdt_start_offset, !dev->hotplugged, errp);
out:
if (*errp) {
g_free(fdt);
}
}
static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
{
/* some version guests do not wait for completion of a device
* cleanup (generally done asynchronously by the kernel) before
* signaling to QEMU that the device is safe, but instead sleep
* for some 'safe' period of time. unfortunately on a busy host
* this sleep isn't guaranteed to be long enough, resulting in
* bad things like IRQ lines being left asserted during final
* device removal. to deal with this we call reset just prior
* to finalizing the device, which will put the device back into
* an 'idle' state, as the device cleanup code expects.
*/
pci_device_reset(PCI_DEVICE(dev));
object_unparent(OBJECT(dev));
}
static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
sPAPRPHBState *phb,
PCIDevice *pdev,
Error **errp)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
}
static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
PCIDevice *pdev)
{
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
(phb->index << 16) |
(busnr << 8) |
pdev->devfn);
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev)
{
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
sPAPRDRConnectorClass *drck;
if (!drc) {
return 0;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
return drck->get_index(drc);
}
static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
Error *local_err = NULL;
/* if DR is disabled we don't need to do anything in the case of
* hotplug or coldplug callbacks
*/
if (!phb->dr_enabled) {
/* if this is a hotplug operation initiated by the user
* we need to let them know it's not enabled
*/
if (plugged_dev->hotplugged) {
error_setg(errp, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
}
return;
}
g_assert(drc);
spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (plugged_dev->hotplugged) {
spapr_hotplug_req_add_event(drc);
}
}
static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnectorClass *drck;
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
Error *local_err = NULL;
if (!phb->dr_enabled) {
error_setg(errp, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
return;
}
g_assert(drc);
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
if (!drck->release_pending(drc)) {
spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr_hotplug_req_remove_event(drc);
}
}
static void spapr_phb_realize(DeviceState *dev, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SysBusDevice *s = SYS_BUS_DEVICE(dev);
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
PCIHostState *phb = PCI_HOST_BRIDGE(s);
sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
char *namebuf;
int i;
PCIBus *bus;
uint64_t msi_window_size = 4096;
if (sphb->index != (uint32_t)-1) {
hwaddr windows_base;
if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
|| (sphb->mem_win_addr != (hwaddr)-1)
|| (sphb->io_win_addr != (hwaddr)-1)) {
error_setg(errp, "Either \"index\" or other parameters must"
" be specified for PAPR PHB, not both");
return;
}
if (sphb->index > SPAPR_PCI_MAX_INDEX) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
SPAPR_PCI_MAX_INDEX);
return;
}
sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
windows_base = SPAPR_PCI_WINDOW_BASE
+ sphb->index * SPAPR_PCI_WINDOW_SPACING;
sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
}
if (sphb->buid == (uint64_t)-1) {
error_setg(errp, "BUID not specified for PHB");
return;
}
if (sphb->dma_liobn == (uint32_t)-1) {
error_setg(errp, "LIOBN not specified for PHB");
return;
}
if (sphb->mem_win_addr == (hwaddr)-1) {
error_setg(errp, "Memory window address not specified for PHB");
return;
}
if (sphb->io_win_addr == (hwaddr)-1) {
error_setg(errp, "IO window address not specified for PHB");
return;
}
if (spapr_pci_find_phb(spapr, sphb->buid)) {
error_setg(errp, "PCI host bridges must have unique BUIDs");
return;
}
sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
namebuf = alloca(strlen(sphb->dtbusname) + 32);
/* Initialize memory regions */
sprintf(namebuf, "%s.mmio", sphb->dtbusname);
memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
namebuf, &sphb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
&sphb->memwindow);
/* Initialize IO regions */
sprintf(namebuf, "%s.io", sphb->dtbusname);
memory_region_init(&sphb->iospace, OBJECT(sphb),
namebuf, SPAPR_PCI_IO_WIN_SIZE);
sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
&sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
&sphb->iowindow);
bus = pci_register_bus(dev, NULL,
pci_spapr_set_irq, pci_spapr_map_irq, sphb,
&sphb->memspace, &sphb->iospace,
PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
phb->bus = bus;
qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
/*
* Initialize PHB address space.
* By default there will be at least one subregion for default
* 32bit DMA window.
* Later the guest might want to create another DMA window
* which will become another memory subregion.
*/
sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
memory_region_init(&sphb->iommu_root, OBJECT(sphb),
namebuf, UINT64_MAX);
address_space_init(&sphb->iommu_as, &sphb->iommu_root,
sphb->dtbusname);
/*
* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
* we need to allocate some memory to catch those writes coming
* from msi_notify()/msix_notify().
* As MSIMessage:addr is going to be the same and MSIMessage:data
* is going to be a VIRQ number, 4 bytes of the MSI MR will only
* be used.
*
* For KVM we want to ensure that this memory is a full page so that
* our memory slot is of page size granularity.
*/
#ifdef CONFIG_KVM
if (kvm_enabled()) {
msi_window_size = getpagesize();
}
#endif
memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
"msi", msi_window_size);
memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
&sphb->msiwindow);
pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
/* Initialize the LSI table */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irq;
irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
if (!irq) {
error_setg(errp, "spapr_allocate_lsi failed");
return;
}
sphb->lsi_table[i].irq = irq;
}
/* allocate connectors for child PCI devices */
if (sphb->dr_enabled) {
for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
spapr_dr_connector_new(OBJECT(phb),
SPAPR_DR_CONNECTOR_TYPE_PCI,
(sphb->index << 16) | i);
}
}
if (!info->finish_realize) {
error_setg(errp, "finish_realize not defined");
return;
}
info->finish_realize(sphb, errp);
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
}
static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
{
sPAPRTCETable *tcet;
uint32_t nb_table;
nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
if (!tcet) {
error_setg(errp, "Unable to create TCE table for %s",
sphb->dtbusname);
return ;
}
/* Register default 32bit DMA window */
memory_region_add_subregion(&sphb->iommu_root, 0,
spapr_tce_get_iommu(tcet));
}
static int spapr_phb_children_reset(Object *child, void *opaque)
{
DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
if (dev) {
device_reset(dev);
}
return 0;
}
static void spapr_phb_reset(DeviceState *qdev)
{
/* Reset the IOMMU state */
object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
}
static Property spapr_phb_properties[] = {
DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
SPAPR_PCI_MMIO_WIN_SIZE),
DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
SPAPR_PCI_IO_WIN_SIZE),
DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
true),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_spapr_pci_lsi = {
.name = "spapr_pci/lsi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pci_msi = {
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
.name = "spapr_pci/msi",
.version_id = 1,
.minimum_version_id = 1,
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
.fields = (VMStateField []) {
VMSTATE_UINT32(key, spapr_pci_msi_mig),
VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
static void spapr_pci_pre_save(void *opaque)
{
sPAPRPHBState *sphb = opaque;
GHashTableIter iter;
gpointer key, value;
int i;
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
if (sphb->msi_devs) {
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
}
sphb->msi_devs_num = g_hash_table_size(sphb->msi);
if (!sphb->msi_devs_num) {
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
return;
}
sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
g_hash_table_iter_init(&iter, sphb->msi);
for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
sphb->msi_devs[i].key = *(uint32_t *) key;
sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
}
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
}
static int spapr_pci_post_load(void *opaque, int version_id)
{
sPAPRPHBState *sphb = opaque;
gpointer key, value;
int i;
for (i = 0; i < sphb->msi_devs_num; ++i) {
key = g_memdup(&sphb->msi_devs[i].key,
sizeof(sphb->msi_devs[i].key));
value = g_memdup(&sphb->msi_devs[i].value,
sizeof(sphb->msi_devs[i].value));
g_hash_table_insert(sphb->msi, key, value);
}
if (sphb->msi_devs) {
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
}
sphb->msi_devs_num = 0;
return 0;
}
static const VMStateDescription vmstate_spapr_pci = {
.name = "spapr_pci",
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
.version_id = 2,
.minimum_version_id = 2,
.pre_save = spapr_pci_pre_save,
.post_load = spapr_pci_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
spapr_pci: Use XICS interrupt allocator and do not cache interrupts in PHB Currently SPAPR PHB keeps track of all allocated MSI (here and below MSI stands for both MSI and MSIX) interrupt because XICS used to be unable to reuse interrupts. This is a problem for dynamic MSI reconfiguration which happens when guest reloads a driver or performs PCI hotplug. Another problem is that the existing implementation can enable MSI on 32 devices maximum (SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that. This makes use of new XICS ability to reuse interrupts. This reorganizes MSI information storage in sPAPRPHBState. Instead of static array of 32 descriptors (one per a PCI function), this patch adds a GHashTable when @config_addr is a key and (first_irq, num) pair is a value. GHashTable can dynamically grow and shrink so the initial limit of 32 devices is gone. This changes migration stream as @msi_table was a static array while new @msi_devs is a dynamic hash table. This adds temporary array which is used for migration, it is populated in "spapr_pci"::pre_save() callback and expanded into the hash table in post_load() callback. Since the destination side does not know the number of MSI-enabled devices in advance and cannot pre-allocate the temporary array to receive migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro which allocates the array automatically. This resets the MSI configuration space when interrupts are released by the ibm,change-msi RTAS call. This fixed traces to be more informative. This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which was incorrect by accident. As the internal representation changed, thus bumps migration version number. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [agraf: drop g_malloc_n usage] Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 13:34:20 +04:00
VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
vmstate_spapr_pci_msi, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
pci: Replace pci_find_domain() with more general pci_root_bus_path() pci_find_domain() is used in a number of places where we want an id for a whole PCI domain (i.e. the subtree under a PCI root bus). The trouble is that many platforms may support multiple independent host bridges with no hardware supplied notion of domain number. This patch, therefore, replaces calls to pci_find_domain() with calls to a new pci_root_bus_path() returning a string. The new call is implemented in terms of a new callback in the host bridge class, so it can be defined in some way that's well defined for the platform. When no callback is available we fall back on the qbus name. Most current uses of pci_find_domain() are for error or informational messages, so the change in identifiers should be harmless. The exception is pci_get_dev_path(), whose results form part of migration streams. To maintain compatibility with old migration streams, the PIIX PCI host is altered to always supply "0000" for this path, which matches the old domain number (since the code didn't actually support domains other than 0). For the pseries (spapr) PCI bridge we use a different platform-unique identifier (pseries machines can routinely have dozens of PCI host bridges). Theoretically that breaks migration streams, but given that we don't yet have migration support for pseries, it doesn't matter. Any other machines that have working migration support including PCI devices will need to be updated to maintain migration stream compatibility. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-06-06 12:48:49 +04:00
static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
return sphb->dtbusname;
}
static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
pci: Replace pci_find_domain() with more general pci_root_bus_path() pci_find_domain() is used in a number of places where we want an id for a whole PCI domain (i.e. the subtree under a PCI root bus). The trouble is that many platforms may support multiple independent host bridges with no hardware supplied notion of domain number. This patch, therefore, replaces calls to pci_find_domain() with calls to a new pci_root_bus_path() returning a string. The new call is implemented in terms of a new callback in the host bridge class, so it can be defined in some way that's well defined for the platform. When no callback is available we fall back on the qbus name. Most current uses of pci_find_domain() are for error or informational messages, so the change in identifiers should be harmless. The exception is pci_get_dev_path(), whose results form part of migration streams. To maintain compatibility with old migration streams, the PIIX PCI host is altered to always supply "0000" for this path, which matches the old domain number (since the code didn't actually support domains other than 0). For the pseries (spapr) PCI bridge we use a different platform-unique identifier (pseries machines can routinely have dozens of PCI host bridges). Theoretically that breaks migration streams, but given that we don't yet have migration support for pseries, it doesn't matter. Any other machines that have working migration support including PCI devices will need to be updated to maintain migration stream compatibility. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-06-06 12:48:49 +04:00
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
pci: Replace pci_find_domain() with more general pci_root_bus_path() pci_find_domain() is used in a number of places where we want an id for a whole PCI domain (i.e. the subtree under a PCI root bus). The trouble is that many platforms may support multiple independent host bridges with no hardware supplied notion of domain number. This patch, therefore, replaces calls to pci_find_domain() with calls to a new pci_root_bus_path() returning a string. The new call is implemented in terms of a new callback in the host bridge class, so it can be defined in some way that's well defined for the platform. When no callback is available we fall back on the qbus name. Most current uses of pci_find_domain() are for error or informational messages, so the change in identifiers should be harmless. The exception is pci_get_dev_path(), whose results form part of migration streams. To maintain compatibility with old migration streams, the PIIX PCI host is altered to always supply "0000" for this path, which matches the old domain number (since the code didn't actually support domains other than 0). For the pseries (spapr) PCI bridge we use a different platform-unique identifier (pseries machines can routinely have dozens of PCI host bridges). Theoretically that breaks migration streams, but given that we don't yet have migration support for pseries, it doesn't matter. Any other machines that have working migration support including PCI devices will need to be updated to maintain migration stream compatibility. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-06-06 12:48:49 +04:00
hc->root_bus_path = spapr_phb_root_bus_path;
dc->realize = spapr_phb_realize;
dc->props = spapr_phb_properties;
dc->reset = spapr_phb_reset;
dc->vmsd = &vmstate_spapr_pci;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
dc->cannot_instantiate_with_device_add_yet = false;
spc->finish_realize = spapr_phb_finish_realize;
hp->plug = spapr_phb_hot_plug_child;
hp->unplug = spapr_phb_hot_unplug_child;
}
static const TypeInfo spapr_phb_info = {
.name = TYPE_SPAPR_PCI_HOST_BRIDGE,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(sPAPRPHBState),
.class_init = spapr_phb_class_init,
.class_size = sizeof(sPAPRPHBClass),
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", index);
qdev_init_nofail(dev);
return PCI_HOST_BRIDGE(dev);
}
typedef struct sPAPRFDT {
void *fdt;
int node_off;
sPAPRPHBState *sphb;
} sPAPRFDT;
static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
PCIBus *sec_bus;
sPAPRFDT *p = opaque;
int offset;
sPAPRFDT s_fdt;
uint32_t drc_index = spapr_phb_get_pci_drc_index(p->sphb, pdev);
offset = spapr_create_pci_child_dt(p->sphb, pdev,
drc_index, NULL,
p->fdt, p->node_off);
if (!offset) {
error_report("Failed to create pci child device tree node");
return;
}
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
s_fdt.fdt = p->fdt;
s_fdt.node_off = offset;
s_fdt.sphb = p->sphb;
pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
spapr_populate_pci_devices_dt,
&s_fdt);
}
static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
unsigned int *bus_no = opaque;
unsigned int primary = *bus_no;
unsigned int subordinate = 0xff;
PCIBus *sec_bus = NULL;
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
(*bus_no)++;
pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
spapr_phb_pci_enumerate_bridge, bus_no);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
}
static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
{
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
unsigned int bus_no = 0;
pci_for_each_device(bus, pci_bus_num(bus),
spapr_phb_pci_enumerate_bridge,
&bus_no);
}
int spapr_populate_pci_dt(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
int bus_off, i, j, ret;
char nodename[FDT_NAME_MAX];
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
const uint64_t mmiosize = memory_region_size(&phb->memwindow);
const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
const uint64_t w32size = MIN(w32max, mmiosize);
const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} QEMU_PACKED ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(w32size),
},
{
cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
cpu_to_be64(phb->mem_win_addr + w32size),
cpu_to_be64(w64size)
},
};
const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
sPAPRTCETable *tcet;
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
sPAPRFDT s_fdt;
/* Start populating the FDT */
snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
bus_off = fdt_add_subnode(fdt, 0, nodename);
if (bus_off < 0) {
return bus_off;
}
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
/* Build the interrupt-map, this must matches what is done
* in pci_spapr_map_irq
*/
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
for (i = 0; i < PCI_SLOT_MAX; i++) {
for (j = 0; j < PCI_NUM_PINS; j++) {
uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
int lsi_num = pci_spapr_swizzle(i, j);
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = cpu_to_be32(j+1);
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
irqmap[6] = cpu_to_be32(0x8);
}
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
sizeof(interrupt_map)));
tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
tcet->liobn, tcet->bus_offset,
tcet->nb_table << tcet->page_shift);
/* Walk the bridges and program the bus numbers*/
spapr_phb_pci_enumerate(phb);
_FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
/* Populate tree nodes with PCI devices attached */
s_fdt.fdt = fdt;
s_fdt.node_off = bus_off;
s_fdt.sphb = phb;
pci_for_each_device(bus, pci_bus_num(bus),
spapr_populate_pci_devices_dt,
&s_fdt);
ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
SPAPR_DR_CONNECTOR_TYPE_PCI);
if (ret) {
return ret;
}
return 0;
}
void spapr_pci_rtas_init(void)
{
spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
rtas_read_pci_config);
spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
rtas_write_pci_config);
spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
rtas_ibm_read_pci_config);
spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
rtas_ibm_write_pci_config);
if (msi_supported) {
spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
"ibm,query-interrupt-source-number",
rtas_ibm_query_interrupt_source_number);
spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
rtas_ibm_change_msi);
}
spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
"ibm,set-eeh-option",
rtas_ibm_set_eeh_option);
spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
"ibm,get-config-addr-info2",
rtas_ibm_get_config_addr_info2);
spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
"ibm,read-slot-reset-state2",
rtas_ibm_read_slot_reset_state2);
spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
"ibm,set-slot-reset",
rtas_ibm_set_slot_reset);
spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
"ibm,configure-pe",
rtas_ibm_configure_pe);
spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
"ibm,slot-error-detail",
rtas_ibm_slot_error_detail);
}
static void spapr_pci_register_types(void)
{
type_register_static(&spapr_phb_info);
}
type_init(spapr_pci_register_types)
static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
{
bool be = *(bool *)opaque;
if (object_dynamic_cast(OBJECT(dev), "VGA")
|| object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
&error_abort);
}
return 0;
}
void spapr_pci_switch_vga(bool big_endian)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
sPAPRPHBState *sphb;
/*
* For backward compatibility with existing guests, we switch
* the endianness of the VGA controller when changing the guest
* interrupt mode
*/
QLIST_FOREACH(sphb, &spapr->phbs, list) {
BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
&big_endian);
}
}