qemu/migration/multifd.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1311 lines
37 KiB
C
Raw Normal View History

/*
* Multifd common code
*
* Copyright (c) 2019-2020 Red Hat Inc
*
* Authors:
* Juan Quintela <quintela@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/rcu.h"
#include "exec/target_page.h"
#include "sysemu/sysemu.h"
#include "exec/ramblock.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "ram.h"
#include "migration.h"
#include "migration-stats.h"
#include "socket.h"
#include "tls.h"
#include "qemu-file.h"
#include "trace.h"
#include "multifd.h"
#include "threadinfo.h"
#include "options.h"
#include "qemu/yank.h"
#include "io/channel-socket.h"
#include "yank_functions.h"
/* Multiple fd's */
#define MULTIFD_MAGIC 0x11223344U
#define MULTIFD_VERSION 1
typedef struct {
uint32_t magic;
uint32_t version;
unsigned char uuid[16]; /* QemuUUID */
uint8_t id;
uint8_t unused1[7]; /* Reserved for future use */
uint64_t unused2[4]; /* Reserved for future use */
} __attribute__((packed)) MultiFDInit_t;
/* Multifd without compression */
/**
* nocomp_send_setup: setup send side
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int nocomp_send_setup(MultiFDSendParams *p, Error **errp)
{
if (migrate_zero_copy_send()) {
p->write_flags |= QIO_CHANNEL_WRITE_FLAG_ZERO_COPY;
}
return 0;
}
/**
* nocomp_send_cleanup: cleanup send side
*
* For no compression this function does nothing.
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static void nocomp_send_cleanup(MultiFDSendParams *p, Error **errp)
{
return;
}
/**
* nocomp_send_prepare: prepare date to be able to send
*
* For no compression we just have to calculate the size of the
* packet.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int nocomp_send_prepare(MultiFDSendParams *p, Error **errp)
{
bool use_zero_copy_send = migrate_zero_copy_send();
MultiFDPages_t *pages = p->pages;
int ret;
if (!use_zero_copy_send) {
/*
* Only !zerocopy needs the header in IOV; zerocopy will
* send it separately.
*/
multifd_send_prepare_header(p);
}
for (int i = 0; i < pages->num; i++) {
p->iov[p->iovs_num].iov_base = pages->block->host + pages->offset[i];
p->iov[p->iovs_num].iov_len = p->page_size;
p->iovs_num++;
}
p->next_packet_size = pages->num * p->page_size;
p->flags |= MULTIFD_FLAG_NOCOMP;
multifd_send_fill_packet(p);
if (use_zero_copy_send) {
/* Send header first, without zerocopy */
ret = qio_channel_write_all(p->c, (void *)p->packet,
p->packet_len, errp);
if (ret != 0) {
return -1;
}
}
return 0;
}
/**
* nocomp_recv_setup: setup receive side
*
* For no compression this function does nothing.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
{
return 0;
}
/**
* nocomp_recv_cleanup: setup receive side
*
* For no compression this function does nothing.
*
* @p: Params for the channel that we are using
*/
static void nocomp_recv_cleanup(MultiFDRecvParams *p)
{
}
/**
* nocomp_recv_pages: read the data from the channel into actual pages
*
* For no compression we just need to read things into the correct place.
*
* Returns 0 for success or -1 for error
*
* @p: Params for the channel that we are using
* @errp: pointer to an error
*/
static int nocomp_recv_pages(MultiFDRecvParams *p, Error **errp)
{
uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
if (flags != MULTIFD_FLAG_NOCOMP) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_NOCOMP);
return -1;
}
for (int i = 0; i < p->normal_num; i++) {
p->iov[i].iov_base = p->host + p->normal[i];
p->iov[i].iov_len = p->page_size;
}
return qio_channel_readv_all(p->c, p->iov, p->normal_num, errp);
}
static MultiFDMethods multifd_nocomp_ops = {
.send_setup = nocomp_send_setup,
.send_cleanup = nocomp_send_cleanup,
.send_prepare = nocomp_send_prepare,
.recv_setup = nocomp_recv_setup,
.recv_cleanup = nocomp_recv_cleanup,
.recv_pages = nocomp_recv_pages
};
static MultiFDMethods *multifd_ops[MULTIFD_COMPRESSION__MAX] = {
[MULTIFD_COMPRESSION_NONE] = &multifd_nocomp_ops,
};
void multifd_register_ops(int method, MultiFDMethods *ops)
{
assert(0 < method && method < MULTIFD_COMPRESSION__MAX);
multifd_ops[method] = ops;
}
/* Reset a MultiFDPages_t* object for the next use */
static void multifd_pages_reset(MultiFDPages_t *pages)
{
/*
* We don't need to touch offset[] array, because it will be
* overwritten later when reused.
*/
pages->num = 0;
pages->block = NULL;
}
static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
{
MultiFDInit_t msg = {};
size_t size = sizeof(msg);
int ret;
msg.magic = cpu_to_be32(MULTIFD_MAGIC);
msg.version = cpu_to_be32(MULTIFD_VERSION);
msg.id = p->id;
memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
ret = qio_channel_write_all(p->c, (char *)&msg, size, errp);
if (ret != 0) {
return -1;
}
stat64_add(&mig_stats.multifd_bytes, size);
return 0;
}
static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
{
MultiFDInit_t msg;
int ret;
ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
if (ret != 0) {
return -1;
}
msg.magic = be32_to_cpu(msg.magic);
msg.version = be32_to_cpu(msg.version);
if (msg.magic != MULTIFD_MAGIC) {
error_setg(errp, "multifd: received packet magic %x "
"expected %x", msg.magic, MULTIFD_MAGIC);
return -1;
}
if (msg.version != MULTIFD_VERSION) {
error_setg(errp, "multifd: received packet version %u "
"expected %u", msg.version, MULTIFD_VERSION);
return -1;
}
if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
error_setg(errp, "multifd: received uuid '%s' and expected "
"uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
g_free(uuid);
g_free(msg_uuid);
return -1;
}
if (msg.id > migrate_multifd_channels()) {
error_setg(errp, "multifd: received channel id %u is greater than "
"number of channels %u", msg.id, migrate_multifd_channels());
return -1;
}
return msg.id;
}
static MultiFDPages_t *multifd_pages_init(uint32_t n)
{
MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
pages->allocated = n;
pages->offset = g_new0(ram_addr_t, n);
return pages;
}
static void multifd_pages_clear(MultiFDPages_t *pages)
{
multifd_pages_reset(pages);
pages->allocated = 0;
g_free(pages->offset);
pages->offset = NULL;
g_free(pages);
}
void multifd_send_fill_packet(MultiFDSendParams *p)
{
MultiFDPacket_t *packet = p->packet;
MultiFDPages_t *pages = p->pages;
int i;
packet->flags = cpu_to_be32(p->flags);
packet->pages_alloc = cpu_to_be32(p->pages->allocated);
packet->normal_pages = cpu_to_be32(pages->num);
packet->next_packet_size = cpu_to_be32(p->next_packet_size);
packet->packet_num = cpu_to_be64(p->packet_num);
if (pages->block) {
strncpy(packet->ramblock, pages->block->idstr, 256);
}
for (i = 0; i < pages->num; i++) {
/* there are architectures where ram_addr_t is 32 bit */
uint64_t temp = pages->offset[i];
packet->offset[i] = cpu_to_be64(temp);
}
p->packets_sent++;
p->total_normal_pages += pages->num;
trace_multifd_send(p->id, p->packet_num, pages->num, p->flags,
p->next_packet_size);
}
static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
MultiFDPacket_t *packet = p->packet;
int i;
packet->magic = be32_to_cpu(packet->magic);
if (packet->magic != MULTIFD_MAGIC) {
error_setg(errp, "multifd: received packet "
"magic %x and expected magic %x",
packet->magic, MULTIFD_MAGIC);
return -1;
}
packet->version = be32_to_cpu(packet->version);
if (packet->version != MULTIFD_VERSION) {
error_setg(errp, "multifd: received packet "
"version %u and expected version %u",
packet->version, MULTIFD_VERSION);
return -1;
}
p->flags = be32_to_cpu(packet->flags);
packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
/*
* If we received a packet that is 100 times bigger than expected
* just stop migration. It is a magic number.
*/
if (packet->pages_alloc > p->page_count) {
error_setg(errp, "multifd: received packet "
"with size %u and expected a size of %u",
packet->pages_alloc, p->page_count) ;
return -1;
}
p->normal_num = be32_to_cpu(packet->normal_pages);
if (p->normal_num > packet->pages_alloc) {
error_setg(errp, "multifd: received packet "
"with %u pages and expected maximum pages are %u",
p->normal_num, packet->pages_alloc) ;
return -1;
}
p->next_packet_size = be32_to_cpu(packet->next_packet_size);
p->packet_num = be64_to_cpu(packet->packet_num);
p->packets_recved++;
p->total_normal_pages += p->normal_num;
trace_multifd_recv(p->id, p->packet_num, p->normal_num, p->flags,
p->next_packet_size);
if (p->normal_num == 0) {
return 0;
}
/* make sure that ramblock is 0 terminated */
packet->ramblock[255] = 0;
p->block = qemu_ram_block_by_name(packet->ramblock);
if (!p->block) {
error_setg(errp, "multifd: unknown ram block %s",
packet->ramblock);
return -1;
}
p->host = p->block->host;
for (i = 0; i < p->normal_num; i++) {
uint64_t offset = be64_to_cpu(packet->offset[i]);
if (offset > (p->block->used_length - p->page_size)) {
error_setg(errp, "multifd: offset too long %" PRIu64
" (max " RAM_ADDR_FMT ")",
offset, p->block->used_length);
return -1;
}
p->normal[i] = offset;
}
return 0;
}
struct {
MultiFDSendParams *params;
/* array of pages to sent */
MultiFDPages_t *pages;
/* global number of generated multifd packets */
uint64_t packet_num;
/* send channels ready */
QemuSemaphore channels_ready;
/*
* Have we already run terminate threads. There is a race when it
* happens that we got one error while we are exiting.
* We will use atomic operations. Only valid values are 0 and 1.
*/
int exiting;
/* multifd ops */
MultiFDMethods *ops;
} *multifd_send_state;
static bool multifd_send_should_exit(void)
{
return qatomic_read(&multifd_send_state->exiting);
}
/*
* The migration thread can wait on either of the two semaphores. This
* function can be used to kick the main thread out of waiting on either of
* them. Should mostly only be called when something wrong happened with
* the current multifd send thread.
*/
static void multifd_send_kick_main(MultiFDSendParams *p)
{
qemu_sem_post(&p->sem_sync);
qemu_sem_post(&multifd_send_state->channels_ready);
}
/*
* How we use multifd_send_state->pages and channel->pages?
*
* We create a pages for each channel, and a main one. Each time that
* we need to send a batch of pages we interchange the ones between
* multifd_send_state and the channel that is sending it. There are
* two reasons for that:
* - to not have to do so many mallocs during migration
* - to make easier to know what to free at the end of migration
*
* This way we always know who is the owner of each "pages" struct,
* and we don't need any locking. It belongs to the migration thread
* or to the channel thread. Switching is safe because the migration
* thread is using the channel mutex when changing it, and the channel
* have to had finish with its own, otherwise pending_job can't be
* false.
*
* Returns true if succeed, false otherwise.
*/
static bool multifd_send_pages(void)
{
int i;
static int next_channel;
MultiFDSendParams *p = NULL; /* make happy gcc */
MultiFDPages_t *pages = multifd_send_state->pages;
if (multifd_send_should_exit()) {
return false;
}
/* We wait here, until at least one channel is ready */
qemu_sem_wait(&multifd_send_state->channels_ready);
/*
* next_channel can remain from a previous migration that was
* using more channels, so ensure it doesn't overflow if the
* limit is lower now.
*/
next_channel %= migrate_multifd_channels();
for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
if (multifd_send_should_exit()) {
return false;
}
p = &multifd_send_state->params[i];
/*
* Lockless read to p->pending_job is safe, because only multifd
* sender thread can clear it.
*/
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
if (qatomic_read(&p->pending_job) == false) {
next_channel = (i + 1) % migrate_multifd_channels();
break;
}
}
qemu_mutex_lock(&p->mutex);
assert(!p->pages->num);
assert(!p->pages->block);
/*
* Double check on pending_job==false with the lock. In the future if
* we can have >1 requester thread, we can replace this with a "goto
* retry", but that is for later.
*/
assert(qatomic_read(&p->pending_job) == false);
qatomic_set(&p->pending_job, true);
p->packet_num = multifd_send_state->packet_num++;
multifd_send_state->pages = p->pages;
p->pages = pages;
qemu_mutex_unlock(&p->mutex);
qemu_sem_post(&p->sem);
return true;
}
static inline bool multifd_queue_empty(MultiFDPages_t *pages)
{
return pages->num == 0;
}
static inline bool multifd_queue_full(MultiFDPages_t *pages)
{
return pages->num == pages->allocated;
}
static inline void multifd_enqueue(MultiFDPages_t *pages, ram_addr_t offset)
{
pages->offset[pages->num++] = offset;
}
/* Returns true if enqueue successful, false otherwise */
bool multifd_queue_page(RAMBlock *block, ram_addr_t offset)
{
MultiFDPages_t *pages;
retry:
pages = multifd_send_state->pages;
/* If the queue is empty, we can already enqueue now */
if (multifd_queue_empty(pages)) {
pages->block = block;
multifd_enqueue(pages, offset);
return true;
}
/*
* Not empty, meanwhile we need a flush. It can because of either:
*
* (1) The page is not on the same ramblock of previous ones, or,
* (2) The queue is full.
*
* After flush, always retry.
*/
if (pages->block != block || multifd_queue_full(pages)) {
if (!multifd_send_pages()) {
return false;
}
goto retry;
}
/* Not empty, and we still have space, do it! */
multifd_enqueue(pages, offset);
return true;
}
/* Multifd send side hit an error; remember it and prepare to quit */
static void multifd_send_set_error(Error *err)
{
/*
* We don't want to exit each threads twice. Depending on where
* we get the error, or if there are two independent errors in two
* threads at the same time, we can end calling this function
* twice.
*/
if (qatomic_xchg(&multifd_send_state->exiting, 1)) {
return;
}
if (err) {
MigrationState *s = migrate_get_current();
migrate_set_error(s, err);
if (s->state == MIGRATION_STATUS_SETUP ||
s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
s->state == MIGRATION_STATUS_DEVICE ||
s->state == MIGRATION_STATUS_ACTIVE) {
migrate_set_state(&s->state, s->state,
MIGRATION_STATUS_FAILED);
}
}
}
static void multifd_send_terminate_threads(void)
{
int i;
trace_multifd_send_terminate_threads();
/*
* Tell everyone we're quitting. No xchg() needed here; we simply
* always set it.
*/
qatomic_set(&multifd_send_state->exiting, 1);
/*
* Firstly, kick all threads out; no matter whether they are just idle,
* or blocked in an IO system call.
*/
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
qemu_sem_post(&p->sem);
multifd: Shut down the QIO channels to avoid blocking the send threads when they are terminated. When doing live migration with multifd channels 8, 16 or larger number, the guest hangs in the presence of the network errors such as missing TCP ACKs. At sender's side: The main thread is blocked on qemu_thread_join, migration_fd_cleanup is called because one thread fails on qio_channel_write_all when the network problem happens and other send threads are blocked on sendmsg. They could not be terminated. So the main thread is blocked on qemu_thread_join to wait for the threads terminated. (gdb) bt 0 0x00007f30c8dcffc0 in __pthread_clockjoin_ex () at /lib64/libpthread.so.0 1 0x000055cbb716084b in qemu_thread_join (thread=0x55cbb881f418) at ../util/qemu-thread-posix.c:627 2 0x000055cbb6b54e40 in multifd_save_cleanup () at ../migration/multifd.c:542 3 0x000055cbb6b4de06 in migrate_fd_cleanup (s=0x55cbb8024000) at ../migration/migration.c:1808 4 0x000055cbb6b4dfb4 in migrate_fd_cleanup_bh (opaque=0x55cbb8024000) at ../migration/migration.c:1850 5 0x000055cbb7173ac1 in aio_bh_call (bh=0x55cbb7eb98e0) at ../util/async.c:141 6 0x000055cbb7173bcb in aio_bh_poll (ctx=0x55cbb7ebba80) at ../util/async.c:169 7 0x000055cbb715ba4b in aio_dispatch (ctx=0x55cbb7ebba80) at ../util/aio-posix.c:381 8 0x000055cbb7173ffe in aio_ctx_dispatch (source=0x55cbb7ebba80, callback=0x0, user_data=0x0) at ../util/async.c:311 9 0x00007f30c9c8cdf4 in g_main_context_dispatch () at /usr/lib64/libglib-2.0.so.0 10 0x000055cbb71851a2 in glib_pollfds_poll () at ../util/main-loop.c:232 11 0x000055cbb718521c in os_host_main_loop_wait (timeout=42251070366) at ../util/main-loop.c:255 12 0x000055cbb7185321 in main_loop_wait (nonblocking=0) at ../util/main-loop.c:531 13 0x000055cbb6e6ba27 in qemu_main_loop () at ../softmmu/runstate.c:726 14 0x000055cbb6ad6fd7 in main (argc=68, argv=0x7ffc0c578888, envp=0x7ffc0c578ab0) at ../softmmu/main.c:50 To make sure that the send threads could be terminated, IO channels should be shut down to avoid waiting IO. Signed-off-by: Li Zhang <lizhang@suse.de> Reviewed-by: Daniel P. Berrangé <berrange@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
2021-12-03 14:55:33 +03:00
if (p->c) {
qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
}
}
/*
* Finally recycle all the threads.
*
* TODO: p->running is still buggy, e.g. we can reach here without the
* corresponding multifd_new_send_channel_async() get invoked yet,
* then a new thread can even be created after this function returns.
*/
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
if (p->running) {
qemu_thread_join(&p->thread);
}
}
}
static int multifd_send_channel_destroy(QIOChannel *send)
{
return socket_send_channel_destroy(send);
}
static bool multifd_send_cleanup_channel(MultiFDSendParams *p, Error **errp)
{
if (p->registered_yank) {
migration_ioc_unregister_yank(p->c);
}
multifd_send_channel_destroy(p->c);
p->c = NULL;
qemu_mutex_destroy(&p->mutex);
qemu_sem_destroy(&p->sem);
qemu_sem_destroy(&p->sem_sync);
g_free(p->name);
p->name = NULL;
multifd_pages_clear(p->pages);
p->pages = NULL;
p->packet_len = 0;
g_free(p->packet);
p->packet = NULL;
g_free(p->iov);
p->iov = NULL;
multifd_send_state->ops->send_cleanup(p, errp);
return *errp == NULL;
}
static void multifd_send_cleanup_state(void)
{
qemu_sem_destroy(&multifd_send_state->channels_ready);
g_free(multifd_send_state->params);
multifd_send_state->params = NULL;
multifd_pages_clear(multifd_send_state->pages);
multifd_send_state->pages = NULL;
g_free(multifd_send_state);
multifd_send_state = NULL;
}
void multifd_save_cleanup(void)
{
int i;
if (!migrate_multifd()) {
return;
}
multifd_send_terminate_threads();
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
Error *local_err = NULL;
if (!multifd_send_cleanup_channel(p, &local_err)) {
migrate_set_error(migrate_get_current(), local_err);
migration/multifd: Do error_free after migrate_set_error to avoid memleaks When error happen in multifd_send_thread, it use error_copy to set migrate error in multifd_send_terminate_threads(). We should call error_free after it. Similarly, fix another two places in multifd_recv_thread/multifd_save_cleanup. The leak stack: Direct leak of 48 byte(s) in 1 object(s) allocated from: #0 0x7f781af07cf0 in calloc (/lib64/libasan.so.5+0xefcf0) #1 0x7f781a2ce22d in g_malloc0 (/lib64/libglib-2.0.so.0+0x5322d) #2 0x55ee1d075c17 in error_setv /mnt/sdb/backup/qemu/util/error.c:61 #3 0x55ee1d076464 in error_setg_errno_internal /mnt/sdb/backup/qemu/util/error.c:109 #4 0x55ee1cef066e in qio_channel_socket_writev /mnt/sdb/backup/qemu/io/channel-socket.c:569 #5 0x55ee1cee806b in qio_channel_writev /mnt/sdb/backup/qemu/io/channel.c:207 #6 0x55ee1cee806b in qio_channel_writev_all /mnt/sdb/backup/qemu/io/channel.c:171 #7 0x55ee1cee8248 in qio_channel_write_all /mnt/sdb/backup/qemu/io/channel.c:257 #8 0x55ee1ca12c9a in multifd_send_thread /mnt/sdb/backup/qemu/migration/multifd.c:657 #9 0x55ee1d0607fc in qemu_thread_start /mnt/sdb/backup/qemu/util/qemu-thread-posix.c:519 #10 0x7f78159ae2dd in start_thread (/lib64/libpthread.so.0+0x82dd) #11 0x7f78156df4b2 in __GI___clone (/lib64/libc.so.6+0xfc4b2) Indirect leak of 52 byte(s) in 1 object(s) allocated from: #0 0x7f781af07f28 in __interceptor_realloc (/lib64/libasan.so.5+0xeff28) #1 0x7f78156f07d9 in __GI___vasprintf_chk (/lib64/libc.so.6+0x10d7d9) #2 0x7f781a30ea6c in g_vasprintf (/lib64/libglib-2.0.so.0+0x93a6c) #3 0x7f781a2e7cd0 in g_strdup_vprintf (/lib64/libglib-2.0.so.0+0x6ccd0) #4 0x7f781a2e7d8c in g_strdup_printf (/lib64/libglib-2.0.so.0+0x6cd8c) #5 0x55ee1d075c86 in error_setv /mnt/sdb/backup/qemu/util/error.c:65 #6 0x55ee1d076464 in error_setg_errno_internal /mnt/sdb/backup/qemu/util/error.c:109 #7 0x55ee1cef066e in qio_channel_socket_writev /mnt/sdb/backup/qemu/io/channel-socket.c:569 #8 0x55ee1cee806b in qio_channel_writev /mnt/sdb/backup/qemu/io/channel.c:207 #9 0x55ee1cee806b in qio_channel_writev_all /mnt/sdb/backup/qemu/io/channel.c:171 #10 0x55ee1cee8248 in qio_channel_write_all /mnt/sdb/backup/qemu/io/channel.c:257 #11 0x55ee1ca12c9a in multifd_send_thread /mnt/sdb/backup/qemu/migration/multifd.c:657 #12 0x55ee1d0607fc in qemu_thread_start /mnt/sdb/backup/qemu/util/qemu-thread-posix.c:519 #13 0x7f78159ae2dd in start_thread (/lib64/libpthread.so.0+0x82dd) #14 0x7f78156df4b2 in __GI___clone (/lib64/libc.so.6+0xfc4b2) Reported-by: Euler Robot <euler.robot@huawei.com> Signed-off-by: Pan Nengyuan <pannengyuan@huawei.com> Message-Id: <20200506095416.26099-3-pannengyuan@huawei.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-05-06 12:54:16 +03:00
error_free(local_err);
}
}
multifd_send_cleanup_state();
}
static int multifd_zero_copy_flush(QIOChannel *c)
{
int ret;
Error *err = NULL;
ret = qio_channel_flush(c, &err);
if (ret < 0) {
error_report_err(err);
return -1;
}
if (ret == 1) {
stat64_add(&mig_stats.dirty_sync_missed_zero_copy, 1);
}
return ret;
}
int multifd_send_sync_main(void)
{
int i;
bool flush_zero_copy;
if (!migrate_multifd()) {
return 0;
}
if (multifd_send_state->pages->num) {
if (!multifd_send_pages()) {
error_report("%s: multifd_send_pages fail", __func__);
return -1;
}
}
flush_zero_copy = migrate_zero_copy_send();
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
if (multifd_send_should_exit()) {
return -1;
}
trace_multifd_send_sync_main_signal(p->id);
qemu_mutex_lock(&p->mutex);
p->packet_num = multifd_send_state->packet_num++;
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
/*
* We should be the only user so far, so not possible to be set by
* others concurrently.
*/
assert(qatomic_read(&p->pending_sync) == false);
qatomic_set(&p->pending_sync, true);
qemu_mutex_unlock(&p->mutex);
qemu_sem_post(&p->sem);
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
if (multifd_send_should_exit()) {
return -1;
}
qemu_sem_wait(&multifd_send_state->channels_ready);
trace_multifd_send_sync_main_wait(p->id);
qemu_sem_wait(&p->sem_sync);
if (flush_zero_copy && p->c && (multifd_zero_copy_flush(p->c) < 0)) {
return -1;
}
}
trace_multifd_send_sync_main(multifd_send_state->packet_num);
return 0;
}
static void *multifd_send_thread(void *opaque)
{
MultiFDSendParams *p = opaque;
MigrationThread *thread = NULL;
Error *local_err = NULL;
int ret = 0;
thread = migration_threads_add(p->name, qemu_get_thread_id());
trace_multifd_send_thread_start(p->id);
rcu_register_thread();
if (multifd_send_initial_packet(p, &local_err) < 0) {
ret = -1;
goto out;
}
while (true) {
qemu_sem_post(&multifd_send_state->channels_ready);
qemu_sem_wait(&p->sem);
if (multifd_send_should_exit()) {
break;
}
qemu_mutex_lock(&p->mutex);
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
if (qatomic_read(&p->pending_job)) {
MultiFDPages_t *pages = p->pages;
p->iovs_num = 0;
assert(pages->num);
ret = multifd_send_state->ops->send_prepare(p, &local_err);
if (ret != 0) {
qemu_mutex_unlock(&p->mutex);
break;
}
ret = qio_channel_writev_full_all(p->c, p->iov, p->iovs_num, NULL,
0, p->write_flags, &local_err);
if (ret != 0) {
qemu_mutex_unlock(&p->mutex);
break;
}
stat64_add(&mig_stats.multifd_bytes,
p->next_packet_size + p->packet_len);
multifd_pages_reset(p->pages);
p->next_packet_size = 0;
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
qatomic_set(&p->pending_job, false);
qemu_mutex_unlock(&p->mutex);
} else {
/* If not a normal job, must be a sync request */
assert(qatomic_read(&p->pending_sync));
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
p->flags = MULTIFD_FLAG_SYNC;
multifd_send_fill_packet(p);
ret = qio_channel_write_all(p->c, (void *)p->packet,
p->packet_len, &local_err);
if (ret != 0) {
qemu_mutex_unlock(&p->mutex);
break;
}
migration/multifd: Separate SYNC request with normal jobs Multifd provide a threaded model for processing jobs. On sender side, there can be two kinds of job: (1) a list of pages to send, or (2) a sync request. The sync request is a very special kind of job. It never contains a page array, but only a multifd packet telling the dest side to synchronize with sent pages. Before this patch, both requests use the pending_job field, no matter what the request is, it will boost pending_job, while multifd sender thread will decrement it after it finishes one job. However this should be racy, because SYNC is special in that it needs to set p->flags with MULTIFD_FLAG_SYNC, showing that this is a sync request. Consider a sequence of operations where: - migration thread enqueue a job to send some pages, pending_job++ (0->1) - [...before the selected multifd sender thread wakes up...] - migration thread enqueue another job to sync, pending_job++ (1->2), setup p->flags=MULTIFD_FLAG_SYNC - multifd sender thread wakes up, found pending_job==2 - send the 1st packet with MULTIFD_FLAG_SYNC and list of pages - send the 2nd packet with flags==0 and no pages This is not expected, because MULTIFD_FLAG_SYNC should hopefully be done after all the pages are received. Meanwhile, the 2nd packet will be completely useless, which contains zero information. I didn't verify above, but I think this issue is still benign in that at least on the recv side we always receive pages before handling MULTIFD_FLAG_SYNC. However that's not always guaranteed and just tricky. One other reason I want to separate it is using p->flags to communicate between the two threads is also not clearly defined, it's very hard to read and understand why accessing p->flags is always safe; see the current impl of multifd_send_thread() where we tried to cache only p->flags. It doesn't need to be that complicated. This patch introduces pending_sync, a separate flag just to show that the requester needs a sync. Alongside, we remove the tricky caching of p->flags now because after this patch p->flags should only be used by multifd sender thread now, which will be crystal clear. So it is always thread safe to access p->flags. With that, we can also safely convert the pending_job into a boolean, because we don't support >1 pending jobs anyway. Always use atomic ops to access both flags to make sure no cache effect. When at it, drop the initial setting of "pending_job = 0" because it's always allocated using g_new0(). Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/20240202102857.110210-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com>
2024-02-02 13:28:40 +03:00
/* p->next_packet_size will always be zero for a SYNC packet */
stat64_add(&mig_stats.multifd_bytes, p->packet_len);
p->flags = 0;
qatomic_set(&p->pending_sync, false);
qemu_mutex_unlock(&p->mutex);
qemu_sem_post(&p->sem_sync);
}
}
out:
if (ret) {
assert(local_err);
trace_multifd_send_error(p->id);
multifd_send_set_error(local_err);
multifd_send_kick_main(p);
error_free(local_err);
}
qemu_mutex_lock(&p->mutex);
p->running = false;
qemu_mutex_unlock(&p->mutex);
rcu_unregister_thread();
migration_threads_remove(thread);
trace_multifd_send_thread_end(p->id, p->packets_sent, p->total_normal_pages);
return NULL;
}
static bool multifd_channel_connect(MultiFDSendParams *p,
QIOChannel *ioc,
Error **errp);
static void multifd_tls_outgoing_handshake(QIOTask *task,
gpointer opaque)
{
MultiFDSendParams *p = opaque;
QIOChannel *ioc = QIO_CHANNEL(qio_task_get_source(task));
Error *err = NULL;
if (!qio_task_propagate_error(task, &err)) {
trace_multifd_tls_outgoing_handshake_complete(ioc);
if (multifd_channel_connect(p, ioc, &err)) {
return;
}
}
trace_multifd_tls_outgoing_handshake_error(ioc, error_get_pretty(err));
multifd_send_set_error(err);
multifd_send_kick_main(p);
error_free(err);
}
static void *multifd_tls_handshake_thread(void *opaque)
{
MultiFDSendParams *p = opaque;
QIOChannelTLS *tioc = QIO_CHANNEL_TLS(p->c);
qio_channel_tls_handshake(tioc,
multifd_tls_outgoing_handshake,
p,
NULL,
NULL);
return NULL;
}
static bool multifd_tls_channel_connect(MultiFDSendParams *p,
QIOChannel *ioc,
Error **errp)
{
MigrationState *s = migrate_get_current();
const char *hostname = s->hostname;
QIOChannelTLS *tioc;
tioc = migration_tls_client_create(ioc, hostname, errp);
if (!tioc) {
return false;
}
object_unref(OBJECT(ioc));
trace_multifd_tls_outgoing_handshake_start(ioc, tioc, hostname);
qio_channel_set_name(QIO_CHANNEL(tioc), "multifd-tls-outgoing");
p->c = QIO_CHANNEL(tioc);
qemu_thread_create(&p->thread, "multifd-tls-handshake-worker",
multifd_tls_handshake_thread, p,
QEMU_THREAD_JOINABLE);
return true;
}
static bool multifd_channel_connect(MultiFDSendParams *p,
QIOChannel *ioc,
Error **errp)
{
trace_multifd_set_outgoing_channel(
ioc, object_get_typename(OBJECT(ioc)),
migrate_get_current()->hostname);
if (migrate_channel_requires_tls_upgrade(ioc)) {
/*
* tls_channel_connect will call back to this
* function after the TLS handshake,
* so we mustn't call multifd_send_thread until then
*/
return multifd_tls_channel_connect(p, ioc, errp);
}
migration_ioc_register_yank(ioc);
p->registered_yank = true;
p->c = ioc;
qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
QEMU_THREAD_JOINABLE);
return true;
}
static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
{
MultiFDSendParams *p = opaque;
QIOChannel *ioc = QIO_CHANNEL(qio_task_get_source(task));
Error *local_err = NULL;
trace_multifd_new_send_channel_async(p->id);
if (!qio_task_propagate_error(task, &local_err)) {
qio_channel_set_delay(ioc, false);
p->running = true;
if (multifd_channel_connect(p, ioc, &local_err)) {
return;
}
}
trace_multifd_new_send_channel_async_error(p->id, local_err);
multifd_send_set_error(local_err);
multifd_send_kick_main(p);
object_unref(OBJECT(ioc));
error_free(local_err);
}
static void multifd_new_send_channel_create(gpointer opaque)
{
socket_send_channel_create(multifd_new_send_channel_async, opaque);
}
int multifd_save_setup(Error **errp)
{
int thread_count;
uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
uint8_t i;
if (!migrate_multifd()) {
return 0;
}
thread_count = migrate_multifd_channels();
multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
multifd_send_state->pages = multifd_pages_init(page_count);
qemu_sem_init(&multifd_send_state->channels_ready, 0);
qatomic_set(&multifd_send_state->exiting, 0);
multifd_send_state->ops = multifd_ops[migrate_multifd_compression()];
for (i = 0; i < thread_count; i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
qemu_mutex_init(&p->mutex);
qemu_sem_init(&p->sem, 0);
qemu_sem_init(&p->sem_sync, 0);
p->id = i;
p->pages = multifd_pages_init(page_count);
p->packet_len = sizeof(MultiFDPacket_t)
+ sizeof(uint64_t) * page_count;
p->packet = g_malloc0(p->packet_len);
p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
p->packet->version = cpu_to_be32(MULTIFD_VERSION);
p->name = g_strdup_printf("multifdsend_%d", i);
/* We need one extra place for the packet header */
p->iov = g_new0(struct iovec, page_count + 1);
p->page_size = qemu_target_page_size();
p->page_count = page_count;
p->write_flags = 0;
multifd_new_send_channel_create(p);
}
for (i = 0; i < thread_count; i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
int ret;
ret = multifd_send_state->ops->send_setup(p, errp);
if (ret) {
return ret;
}
}
return 0;
}
struct {
MultiFDRecvParams *params;
/* number of created threads */
int count;
/* syncs main thread and channels */
QemuSemaphore sem_sync;
/* global number of generated multifd packets */
uint64_t packet_num;
/* multifd ops */
MultiFDMethods *ops;
} *multifd_recv_state;
static void multifd_recv_terminate_threads(Error *err)
{
int i;
trace_multifd_recv_terminate_threads(err != NULL);
if (err) {
MigrationState *s = migrate_get_current();
migrate_set_error(s, err);
if (s->state == MIGRATION_STATUS_SETUP ||
s->state == MIGRATION_STATUS_ACTIVE) {
migrate_set_state(&s->state, s->state,
MIGRATION_STATUS_FAILED);
}
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
qemu_mutex_lock(&p->mutex);
p->quit = true;
/*
* We could arrive here for two reasons:
* - normal quit, i.e. everything went fine, just finished
* - error quit: We close the channels so the channel threads
* finish the qio_channel_read_all_eof()
*/
if (p->c) {
qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
}
qemu_mutex_unlock(&p->mutex);
}
}
migration/multifd: Move load_cleanup inside incoming_state_destroy Currently running migration_incoming_state_destroy() without first running multifd_load_cleanup() will cause a yank error: qemu-system-x86_64: ../util/yank.c:107: yank_unregister_instance: Assertion `QLIST_EMPTY(&entry->yankfns)' failed. (core dumped) The above error happens in the target host, when multifd is being used for precopy, and then postcopy is triggered and the migration finishes. This will crash the VM in the target host. To avoid that, move multifd_load_cleanup() inside migration_incoming_state_destroy(), so that the load cleanup becomes part of the incoming state destroying process. Running multifd_load_cleanup() twice can become an issue, though, but the only scenario it could be ran twice is on process_incoming_migration_bh(). So removing this extra call is necessary. On the other hand, this multifd_load_cleanup() call happens way before the migration_incoming_state_destroy() and having this happening before dirty_bitmap_mig_before_vm_start() and vm_start() may be a need. So introduce a new function multifd_load_shutdown() that will mainly stop all multifd threads and close their QIOChannels. Then use this function instead of multifd_load_cleanup() to make sure nothing else is received before dirty_bitmap_mig_before_vm_start(). Fixes: b5eea99ec2 ("migration: Add yank feature") Reported-by: Li Xiaohui <xiaohli@redhat.com> Signed-off-by: Leonardo Bras <leobras@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
2023-02-10 09:36:31 +03:00
void multifd_load_shutdown(void)
{
if (migrate_multifd()) {
migration/multifd: Move load_cleanup inside incoming_state_destroy Currently running migration_incoming_state_destroy() without first running multifd_load_cleanup() will cause a yank error: qemu-system-x86_64: ../util/yank.c:107: yank_unregister_instance: Assertion `QLIST_EMPTY(&entry->yankfns)' failed. (core dumped) The above error happens in the target host, when multifd is being used for precopy, and then postcopy is triggered and the migration finishes. This will crash the VM in the target host. To avoid that, move multifd_load_cleanup() inside migration_incoming_state_destroy(), so that the load cleanup becomes part of the incoming state destroying process. Running multifd_load_cleanup() twice can become an issue, though, but the only scenario it could be ran twice is on process_incoming_migration_bh(). So removing this extra call is necessary. On the other hand, this multifd_load_cleanup() call happens way before the migration_incoming_state_destroy() and having this happening before dirty_bitmap_mig_before_vm_start() and vm_start() may be a need. So introduce a new function multifd_load_shutdown() that will mainly stop all multifd threads and close their QIOChannels. Then use this function instead of multifd_load_cleanup() to make sure nothing else is received before dirty_bitmap_mig_before_vm_start(). Fixes: b5eea99ec2 ("migration: Add yank feature") Reported-by: Li Xiaohui <xiaohli@redhat.com> Signed-off-by: Leonardo Bras <leobras@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
2023-02-10 09:36:31 +03:00
multifd_recv_terminate_threads(NULL);
}
}
void multifd_load_cleanup(void)
{
int i;
if (!migrate_multifd()) {
return;
}
multifd_recv_terminate_threads(NULL);
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
if (p->running) {
/*
* multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
* however try to wakeup it without harm in cleanup phase.
*/
qemu_sem_post(&p->sem_sync);
}
qemu_thread_join(&p->thread);
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
migration_ioc_unregister_yank(p->c);
object_unref(OBJECT(p->c));
p->c = NULL;
qemu_mutex_destroy(&p->mutex);
qemu_sem_destroy(&p->sem_sync);
g_free(p->name);
p->name = NULL;
p->packet_len = 0;
g_free(p->packet);
p->packet = NULL;
g_free(p->iov);
p->iov = NULL;
g_free(p->normal);
p->normal = NULL;
multifd_recv_state->ops->recv_cleanup(p);
}
qemu_sem_destroy(&multifd_recv_state->sem_sync);
g_free(multifd_recv_state->params);
multifd_recv_state->params = NULL;
g_free(multifd_recv_state);
multifd_recv_state = NULL;
}
void multifd_recv_sync_main(void)
{
int i;
if (!migrate_multifd()) {
return;
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
trace_multifd_recv_sync_main_wait(p->id);
qemu_sem_wait(&multifd_recv_state->sem_sync);
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
WITH_QEMU_LOCK_GUARD(&p->mutex) {
if (multifd_recv_state->packet_num < p->packet_num) {
multifd_recv_state->packet_num = p->packet_num;
}
}
trace_multifd_recv_sync_main_signal(p->id);
qemu_sem_post(&p->sem_sync);
}
trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
}
static void *multifd_recv_thread(void *opaque)
{
MultiFDRecvParams *p = opaque;
Error *local_err = NULL;
int ret;
trace_multifd_recv_thread_start(p->id);
rcu_register_thread();
while (true) {
uint32_t flags;
if (p->quit) {
break;
}
ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
p->packet_len, &local_err);
if (ret == 0 || ret == -1) { /* 0: EOF -1: Error */
break;
}
qemu_mutex_lock(&p->mutex);
ret = multifd_recv_unfill_packet(p, &local_err);
if (ret) {
qemu_mutex_unlock(&p->mutex);
break;
}
flags = p->flags;
/* recv methods don't know how to handle the SYNC flag */
p->flags &= ~MULTIFD_FLAG_SYNC;
qemu_mutex_unlock(&p->mutex);
if (p->normal_num) {
ret = multifd_recv_state->ops->recv_pages(p, &local_err);
if (ret != 0) {
break;
}
}
if (flags & MULTIFD_FLAG_SYNC) {
qemu_sem_post(&multifd_recv_state->sem_sync);
qemu_sem_wait(&p->sem_sync);
}
}
if (local_err) {
multifd_recv_terminate_threads(local_err);
migration/multifd: Do error_free after migrate_set_error to avoid memleaks When error happen in multifd_send_thread, it use error_copy to set migrate error in multifd_send_terminate_threads(). We should call error_free after it. Similarly, fix another two places in multifd_recv_thread/multifd_save_cleanup. The leak stack: Direct leak of 48 byte(s) in 1 object(s) allocated from: #0 0x7f781af07cf0 in calloc (/lib64/libasan.so.5+0xefcf0) #1 0x7f781a2ce22d in g_malloc0 (/lib64/libglib-2.0.so.0+0x5322d) #2 0x55ee1d075c17 in error_setv /mnt/sdb/backup/qemu/util/error.c:61 #3 0x55ee1d076464 in error_setg_errno_internal /mnt/sdb/backup/qemu/util/error.c:109 #4 0x55ee1cef066e in qio_channel_socket_writev /mnt/sdb/backup/qemu/io/channel-socket.c:569 #5 0x55ee1cee806b in qio_channel_writev /mnt/sdb/backup/qemu/io/channel.c:207 #6 0x55ee1cee806b in qio_channel_writev_all /mnt/sdb/backup/qemu/io/channel.c:171 #7 0x55ee1cee8248 in qio_channel_write_all /mnt/sdb/backup/qemu/io/channel.c:257 #8 0x55ee1ca12c9a in multifd_send_thread /mnt/sdb/backup/qemu/migration/multifd.c:657 #9 0x55ee1d0607fc in qemu_thread_start /mnt/sdb/backup/qemu/util/qemu-thread-posix.c:519 #10 0x7f78159ae2dd in start_thread (/lib64/libpthread.so.0+0x82dd) #11 0x7f78156df4b2 in __GI___clone (/lib64/libc.so.6+0xfc4b2) Indirect leak of 52 byte(s) in 1 object(s) allocated from: #0 0x7f781af07f28 in __interceptor_realloc (/lib64/libasan.so.5+0xeff28) #1 0x7f78156f07d9 in __GI___vasprintf_chk (/lib64/libc.so.6+0x10d7d9) #2 0x7f781a30ea6c in g_vasprintf (/lib64/libglib-2.0.so.0+0x93a6c) #3 0x7f781a2e7cd0 in g_strdup_vprintf (/lib64/libglib-2.0.so.0+0x6ccd0) #4 0x7f781a2e7d8c in g_strdup_printf (/lib64/libglib-2.0.so.0+0x6cd8c) #5 0x55ee1d075c86 in error_setv /mnt/sdb/backup/qemu/util/error.c:65 #6 0x55ee1d076464 in error_setg_errno_internal /mnt/sdb/backup/qemu/util/error.c:109 #7 0x55ee1cef066e in qio_channel_socket_writev /mnt/sdb/backup/qemu/io/channel-socket.c:569 #8 0x55ee1cee806b in qio_channel_writev /mnt/sdb/backup/qemu/io/channel.c:207 #9 0x55ee1cee806b in qio_channel_writev_all /mnt/sdb/backup/qemu/io/channel.c:171 #10 0x55ee1cee8248 in qio_channel_write_all /mnt/sdb/backup/qemu/io/channel.c:257 #11 0x55ee1ca12c9a in multifd_send_thread /mnt/sdb/backup/qemu/migration/multifd.c:657 #12 0x55ee1d0607fc in qemu_thread_start /mnt/sdb/backup/qemu/util/qemu-thread-posix.c:519 #13 0x7f78159ae2dd in start_thread (/lib64/libpthread.so.0+0x82dd) #14 0x7f78156df4b2 in __GI___clone (/lib64/libc.so.6+0xfc4b2) Reported-by: Euler Robot <euler.robot@huawei.com> Signed-off-by: Pan Nengyuan <pannengyuan@huawei.com> Message-Id: <20200506095416.26099-3-pannengyuan@huawei.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-05-06 12:54:16 +03:00
error_free(local_err);
}
qemu_mutex_lock(&p->mutex);
p->running = false;
qemu_mutex_unlock(&p->mutex);
rcu_unregister_thread();
trace_multifd_recv_thread_end(p->id, p->packets_recved, p->total_normal_pages);
return NULL;
}
int multifd_load_setup(Error **errp)
{
int thread_count;
uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
uint8_t i;
2022-12-20 21:44:18 +03:00
/*
* Return successfully if multiFD recv state is already initialised
* or multiFD is not enabled.
*/
if (multifd_recv_state || !migrate_multifd()) {
return 0;
}
2022-12-20 21:44:18 +03:00
thread_count = migrate_multifd_channels();
multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
qatomic_set(&multifd_recv_state->count, 0);
qemu_sem_init(&multifd_recv_state->sem_sync, 0);
multifd_recv_state->ops = multifd_ops[migrate_multifd_compression()];
for (i = 0; i < thread_count; i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
qemu_mutex_init(&p->mutex);
qemu_sem_init(&p->sem_sync, 0);
p->quit = false;
p->id = i;
p->packet_len = sizeof(MultiFDPacket_t)
+ sizeof(uint64_t) * page_count;
p->packet = g_malloc0(p->packet_len);
p->name = g_strdup_printf("multifdrecv_%d", i);
p->iov = g_new0(struct iovec, page_count);
p->normal = g_new0(ram_addr_t, page_count);
p->page_count = page_count;
p->page_size = qemu_target_page_size();
}
for (i = 0; i < thread_count; i++) {
MultiFDRecvParams *p = &multifd_recv_state->params[i];
int ret;
ret = multifd_recv_state->ops->recv_setup(p, errp);
if (ret) {
return ret;
}
}
return 0;
}
bool multifd_recv_all_channels_created(void)
{
int thread_count = migrate_multifd_channels();
if (!migrate_multifd()) {
return true;
}
if (!multifd_recv_state) {
/* Called before any connections created */
return false;
}
return thread_count == qatomic_read(&multifd_recv_state->count);
}
/*
* Try to receive all multifd channels to get ready for the migration.
2022-12-20 21:44:18 +03:00
* Sets @errp when failing to receive the current channel.
*/
2022-12-20 21:44:18 +03:00
void multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
{
MultiFDRecvParams *p;
Error *local_err = NULL;
int id;
id = multifd_recv_initial_packet(ioc, &local_err);
if (id < 0) {
multifd_recv_terminate_threads(local_err);
error_propagate_prepend(errp, local_err,
"failed to receive packet"
" via multifd channel %d: ",
qatomic_read(&multifd_recv_state->count));
2022-12-20 21:44:18 +03:00
return;
}
trace_multifd_recv_new_channel(id);
p = &multifd_recv_state->params[id];
if (p->c != NULL) {
error_setg(&local_err, "multifd: received id '%d' already setup'",
id);
multifd_recv_terminate_threads(local_err);
error_propagate(errp, local_err);
2022-12-20 21:44:18 +03:00
return;
}
p->c = ioc;
object_ref(OBJECT(ioc));
p->running = true;
qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
QEMU_THREAD_JOINABLE);
qatomic_inc(&multifd_recv_state->count);
}