qemu/hw/openpic.c

1543 lines
43 KiB
C
Raw Normal View History

/*
* OpenPIC emulation
*
* Copyright (c) 2004 Jocelyn Mayer
* 2011 Alexander Graf
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
*
* Based on OpenPic implementations:
* - Intel GW80314 I/O companion chip developer's manual
* - Motorola MPC8245 & MPC8540 user manuals.
* - Motorola MCP750 (aka Raven) programmer manual.
* - Motorola Harrier programmer manuel
*
* Serial interrupts, as implemented in Raven chipset are not supported yet.
*
*/
#include "hw.h"
#include "ppc_mac.h"
#include "pci/pci.h"
#include "openpic.h"
#include "sysbus.h"
#include "pci/msi.h"
#include "qemu/bitops.h"
#include "ppc.h"
//#define DEBUG_OPENPIC
#ifdef DEBUG_OPENPIC
static const int debug_openpic = 1;
#else
static const int debug_openpic = 0;
#endif
#define DPRINTF(fmt, ...) do { \
if (debug_openpic) { \
printf(fmt , ## __VA_ARGS__); \
} \
} while (0)
#define MAX_CPU 15
#define MAX_SRC 256
#define MAX_TMR 4
#define MAX_IPI 4
#define MAX_MSI 8
#define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
#define VID 0x03 /* MPIC version ID */
/* OpenPIC capability flags */
#define OPENPIC_FLAG_IDR_CRIT (1 << 0)
/* OpenPIC address map */
#define OPENPIC_GLB_REG_START 0x0
#define OPENPIC_GLB_REG_SIZE 0x10F0
#define OPENPIC_TMR_REG_START 0x10F0
#define OPENPIC_TMR_REG_SIZE 0x220
#define OPENPIC_MSI_REG_START 0x1600
#define OPENPIC_MSI_REG_SIZE 0x200
#define OPENPIC_SRC_REG_START 0x10000
#define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
#define OPENPIC_CPU_REG_START 0x20000
#define OPENPIC_CPU_REG_SIZE 0x100 + ((MAX_CPU - 1) * 0x1000)
/* Raven */
#define RAVEN_MAX_CPU 2
#define RAVEN_MAX_EXT 48
#define RAVEN_MAX_IRQ 64
#define RAVEN_MAX_TMR MAX_TMR
#define RAVEN_MAX_IPI MAX_IPI
/* Interrupt definitions */
#define RAVEN_FE_IRQ (RAVEN_MAX_EXT) /* Internal functional IRQ */
#define RAVEN_ERR_IRQ (RAVEN_MAX_EXT + 1) /* Error IRQ */
#define RAVEN_TMR_IRQ (RAVEN_MAX_EXT + 2) /* First timer IRQ */
#define RAVEN_IPI_IRQ (RAVEN_TMR_IRQ + RAVEN_MAX_TMR) /* First IPI IRQ */
/* First doorbell IRQ */
#define RAVEN_DBL_IRQ (RAVEN_IPI_IRQ + (RAVEN_MAX_CPU * RAVEN_MAX_IPI))
/* FSL_MPIC_20 */
#define FSL_MPIC_20_MAX_CPU 1
#define FSL_MPIC_20_MAX_EXT 12
#define FSL_MPIC_20_MAX_INT 64
#define FSL_MPIC_20_MAX_IRQ MAX_IRQ
/* Interrupt definitions */
/* IRQs, accessible through the IRQ region */
#define FSL_MPIC_20_EXT_IRQ 0x00
#define FSL_MPIC_20_INT_IRQ 0x10
#define FSL_MPIC_20_MSG_IRQ 0xb0
#define FSL_MPIC_20_MSI_IRQ 0xe0
/* These are available through separate regions, but
for simplicity's sake mapped into the same number space */
#define FSL_MPIC_20_TMR_IRQ 0x100
#define FSL_MPIC_20_IPI_IRQ 0x104
/*
* Block Revision Register1 (BRR1): QEMU does not fully emulate
* any version on MPIC. So to start with, set the IP version to 0.
*
* NOTE: This is Freescale MPIC specific register. Keep it here till
* this code is refactored for different variants of OPENPIC and MPIC.
*/
#define FSL_BRR1_IPID (0x0040 << 16) /* 16 bit IP-block ID */
#define FSL_BRR1_IPMJ (0x00 << 8) /* 8 bit IP major number */
#define FSL_BRR1_IPMN 0x00 /* 8 bit IP minor number */
#define FRR_NIRQ_SHIFT 16
#define FRR_NCPU_SHIFT 8
#define FRR_VID_SHIFT 0
#define VID_REVISION_1_2 2
#define VID_REVISION_1_3 3
#define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
#define GCR_RESET 0x80000000
#define GCR_MODE_PASS 0x00000000
#define GCR_MODE_MIXED 0x20000000
#define GCR_MODE_PROXY 0x60000000
#define TBCR_CI 0x80000000 /* count inhibit */
#define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
#define IDR_EP_SHIFT 31
#define IDR_EP_MASK (1 << IDR_EP_SHIFT)
#define IDR_CI0_SHIFT 30
#define IDR_CI1_SHIFT 29
#define IDR_P1_SHIFT 1
#define IDR_P0_SHIFT 0
#define MSIIR_OFFSET 0x140
#define MSIIR_SRS_SHIFT 29
#define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
#define MSIIR_IBS_SHIFT 24
#define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
static int get_current_cpu(void)
{
CPUState *cpu_single_cpu;
if (!cpu_single_env) {
return -1;
}
cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
return cpu_single_cpu->cpu_index;
}
static uint32_t openpic_cpu_read_internal(void *opaque, hwaddr addr,
int idx);
static void openpic_cpu_write_internal(void *opaque, hwaddr addr,
uint32_t val, int idx);
typedef enum IRQType {
IRQ_TYPE_NORMAL = 0,
IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
} IRQType;
typedef struct IRQQueue {
/* Round up to the nearest 64 IRQs so that the queue length
* won't change when moving between 32 and 64 bit hosts.
*/
unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
int next;
int priority;
} IRQQueue;
typedef struct IRQSource {
uint32_t ivpr; /* IRQ vector/priority register */
uint32_t idr; /* IRQ destination register */
uint32_t destmask; /* bitmap of CPU destinations */
int last_cpu;
int output; /* IRQ level, e.g. OPENPIC_OUTPUT_INT */
int pending; /* TRUE if IRQ is pending */
IRQType type;
bool level:1; /* level-triggered */
bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
} IRQSource;
#define IVPR_MASK_SHIFT 31
#define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
#define IVPR_ACTIVITY_SHIFT 30
#define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
#define IVPR_MODE_SHIFT 29
#define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
#define IVPR_POLARITY_SHIFT 23
#define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
#define IVPR_SENSE_SHIFT 22
#define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
#define IVPR_PRIORITY_MASK (0xF << 16)
#define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
#define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
/* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
#define IDR_EP 0x80000000 /* external pin */
#define IDR_CI 0x40000000 /* critical interrupt */
typedef struct IRQDest {
int32_t ctpr; /* CPU current task priority */
IRQQueue raised;
IRQQueue servicing;
qemu_irq *irqs;
/* Count of IRQ sources asserting on non-INT outputs */
uint32_t outputs_active[OPENPIC_OUTPUT_NB];
} IRQDest;
typedef struct OpenPICState {
SysBusDevice busdev;
MemoryRegion mem;
/* Behavior control */
uint32_t model;
uint32_t flags;
uint32_t nb_irqs;
uint32_t vid;
uint32_t vir; /* Vendor identification register */
uint32_t vector_mask;
uint32_t tfrr_reset;
uint32_t ivpr_reset;
uint32_t idr_reset;
uint32_t brr1;
uint32_t mpic_mode_mask;
/* Sub-regions */
MemoryRegion sub_io_mem[5];
/* Global registers */
uint32_t frr; /* Feature reporting register */
uint32_t gcr; /* Global configuration register */
uint32_t pir; /* Processor initialization register */
uint32_t spve; /* Spurious vector register */
uint32_t tfrr; /* Timer frequency reporting register */
/* Source registers */
IRQSource src[MAX_IRQ];
/* Local registers per output pin */
IRQDest dst[MAX_CPU];
uint32_t nb_cpus;
/* Timer registers */
struct {
uint32_t tccr; /* Global timer current count register */
uint32_t tbcr; /* Global timer base count register */
} timers[MAX_TMR];
/* Shared MSI registers */
struct {
uint32_t msir; /* Shared Message Signaled Interrupt Register */
} msi[MAX_MSI];
uint32_t max_irq;
uint32_t irq_ipi0;
uint32_t irq_tim0;
uint32_t irq_msi;
} OpenPICState;
static inline void IRQ_setbit(IRQQueue *q, int n_IRQ)
{
set_bit(n_IRQ, q->queue);
}
static inline void IRQ_resetbit(IRQQueue *q, int n_IRQ)
{
clear_bit(n_IRQ, q->queue);
}
static inline int IRQ_testbit(IRQQueue *q, int n_IRQ)
{
return test_bit(n_IRQ, q->queue);
}
static void IRQ_check(OpenPICState *opp, IRQQueue *q)
{
int irq = -1;
int next = -1;
int priority = -1;
for (;;) {
irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
if (irq == opp->max_irq) {
break;
}
DPRINTF("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
next = irq;
priority = IVPR_PRIORITY(opp->src[irq].ivpr);
}
}
q->next = next;
q->priority = priority;
}
static int IRQ_get_next(OpenPICState *opp, IRQQueue *q)
{
/* XXX: optimize */
IRQ_check(opp, q);
return q->next;
}
static void IRQ_local_pipe(OpenPICState *opp, int n_CPU, int n_IRQ,
bool active, bool was_active)
{
IRQDest *dst;
IRQSource *src;
int priority;
dst = &opp->dst[n_CPU];
src = &opp->src[n_IRQ];
DPRINTF("%s: IRQ %d active %d was %d\n",
__func__, n_IRQ, active, was_active);
if (src->output != OPENPIC_OUTPUT_INT) {
DPRINTF("%s: output %d irq %d active %d was %d count %d\n",
__func__, src->output, n_IRQ, active, was_active,
dst->outputs_active[src->output]);
/* On Freescale MPIC, critical interrupts ignore priority,
* IACK, EOI, etc. Before MPIC v4.1 they also ignore
* masking.
*/
if (active) {
if (!was_active && dst->outputs_active[src->output]++ == 0) {
DPRINTF("%s: Raise OpenPIC output %d cpu %d irq %d\n",
__func__, src->output, n_CPU, n_IRQ);
qemu_irq_raise(dst->irqs[src->output]);
}
} else {
if (was_active && --dst->outputs_active[src->output] == 0) {
DPRINTF("%s: Lower OpenPIC output %d cpu %d irq %d\n",
__func__, src->output, n_CPU, n_IRQ);
qemu_irq_lower(dst->irqs[src->output]);
}
}
return;
}
priority = IVPR_PRIORITY(src->ivpr);
/* Even if the interrupt doesn't have enough priority,
* it is still raised, in case ctpr is lowered later.
*/
if (active) {
IRQ_setbit(&dst->raised, n_IRQ);
} else {
IRQ_resetbit(&dst->raised, n_IRQ);
}
IRQ_check(opp, &dst->raised);
if (active && priority <= dst->ctpr) {
DPRINTF("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
__func__, n_IRQ, priority, dst->ctpr, n_CPU);
active = 0;
}
if (active) {
if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
priority <= dst->servicing.priority) {
DPRINTF("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
__func__, n_IRQ, dst->servicing.next, n_CPU);
} else {
DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
__func__, n_CPU, n_IRQ, dst->raised.next);
qemu_irq_raise(opp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]);
}
} else {
IRQ_get_next(opp, &dst->servicing);
if (dst->raised.priority > dst->ctpr &&
dst->raised.priority > dst->servicing.priority) {
DPRINTF("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
__func__, n_IRQ, dst->raised.next, dst->raised.priority,
dst->ctpr, dst->servicing.priority, n_CPU);
/* IRQ line stays asserted */
} else {
DPRINTF("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
__func__, n_IRQ, dst->ctpr, dst->servicing.priority, n_CPU);
qemu_irq_lower(opp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]);
}
}
}
/* update pic state because registers for n_IRQ have changed value */
static void openpic_update_irq(OpenPICState *opp, int n_IRQ)
{
IRQSource *src;
bool active, was_active;
int i;
src = &opp->src[n_IRQ];
active = src->pending;
if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
/* Interrupt source is disabled */
DPRINTF("%s: IRQ %d is disabled\n", __func__, n_IRQ);
active = false;
}
was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
/*
* We don't have a similar check for already-active because
* ctpr may have changed and we need to withdraw the interrupt.
*/
if (!active && !was_active) {
DPRINTF("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
return;
}
if (active) {
src->ivpr |= IVPR_ACTIVITY_MASK;
} else {
src->ivpr &= ~IVPR_ACTIVITY_MASK;
}
if (src->idr == 0) {
/* No target */
DPRINTF("%s: IRQ %d has no target\n", __func__, n_IRQ);
return;
}
if (src->idr == (1 << src->last_cpu)) {
/* Only one CPU is allowed to receive this IRQ */
IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
} else if (!(src->ivpr & IVPR_MODE_MASK)) {
/* Directed delivery mode */
for (i = 0; i < opp->nb_cpus; i++) {
if (src->destmask & (1 << i)) {
IRQ_local_pipe(opp, i, n_IRQ, active, was_active);
}
}
} else {
/* Distributed delivery mode */
for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
if (i == opp->nb_cpus) {
i = 0;
}
if (src->destmask & (1 << i)) {
IRQ_local_pipe(opp, i, n_IRQ, active, was_active);
src->last_cpu = i;
break;
}
}
}
}
static void openpic_set_irq(void *opaque, int n_IRQ, int level)
{
OpenPICState *opp = opaque;
IRQSource *src;
if (n_IRQ >= MAX_IRQ) {
fprintf(stderr, "%s: IRQ %d out of range\n", __func__, n_IRQ);
abort();
}
src = &opp->src[n_IRQ];
DPRINTF("openpic: set irq %d = %d ivpr=0x%08x\n",
n_IRQ, level, src->ivpr);
if (src->level) {
/* level-sensitive irq */
src->pending = level;
openpic_update_irq(opp, n_IRQ);
} else {
/* edge-sensitive irq */
if (level) {
src->pending = 1;
openpic_update_irq(opp, n_IRQ);
}
if (src->output != OPENPIC_OUTPUT_INT) {
/* Edge-triggered interrupts shouldn't be used
* with non-INT delivery, but just in case,
* try to make it do something sane rather than
* cause an interrupt storm. This is close to
* what you'd probably see happen in real hardware.
*/
src->pending = 0;
openpic_update_irq(opp, n_IRQ);
}
}
}
static void openpic_reset(DeviceState *d)
{
OpenPICState *opp = FROM_SYSBUS(typeof(*opp), SYS_BUS_DEVICE(d));
int i;
opp->gcr = GCR_RESET;
/* Initialise controller registers */
opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
((opp->nb_cpus - 1) << FRR_NCPU_SHIFT) |
(opp->vid << FRR_VID_SHIFT);
opp->pir = 0;
opp->spve = -1 & opp->vector_mask;
opp->tfrr = opp->tfrr_reset;
/* Initialise IRQ sources */
for (i = 0; i < opp->max_irq; i++) {
opp->src[i].ivpr = opp->ivpr_reset;
opp->src[i].idr = opp->idr_reset;
switch (opp->src[i].type) {
case IRQ_TYPE_NORMAL:
opp->src[i].level = !!(opp->ivpr_reset & IVPR_SENSE_MASK);
break;
case IRQ_TYPE_FSLINT:
opp->src[i].ivpr |= IVPR_POLARITY_MASK;
break;
case IRQ_TYPE_FSLSPECIAL:
break;
}
}
/* Initialise IRQ destinations */
for (i = 0; i < MAX_CPU; i++) {
opp->dst[i].ctpr = 15;
memset(&opp->dst[i].raised, 0, sizeof(IRQQueue));
opp->dst[i].raised.next = -1;
memset(&opp->dst[i].servicing, 0, sizeof(IRQQueue));
opp->dst[i].servicing.next = -1;
}
/* Initialise timers */
for (i = 0; i < MAX_TMR; i++) {
opp->timers[i].tccr = 0;
opp->timers[i].tbcr = TBCR_CI;
}
/* Go out of RESET state */
opp->gcr = 0;
}
static inline uint32_t read_IRQreg_idr(OpenPICState *opp, int n_IRQ)
{
return opp->src[n_IRQ].idr;
}
static inline uint32_t read_IRQreg_ivpr(OpenPICState *opp, int n_IRQ)
{
return opp->src[n_IRQ].ivpr;
}
static inline void write_IRQreg_idr(OpenPICState *opp, int n_IRQ, uint32_t val)
{
IRQSource *src = &opp->src[n_IRQ];
uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
uint32_t crit_mask = 0;
uint32_t mask = normal_mask;
int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
int i;
if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
crit_mask = mask << crit_shift;
mask |= crit_mask | IDR_EP;
}
src->idr = val & mask;
DPRINTF("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
if (src->idr & crit_mask) {
if (src->idr & normal_mask) {
DPRINTF("%s: IRQ configured for multiple output types, using "
"critical\n", __func__);
}
src->output = OPENPIC_OUTPUT_CINT;
src->nomask = true;
src->destmask = 0;
for (i = 0; i < opp->nb_cpus; i++) {
int n_ci = IDR_CI0_SHIFT - i;
if (src->idr & (1UL << n_ci)) {
src->destmask |= 1UL << i;
}
}
} else {
src->output = OPENPIC_OUTPUT_INT;
src->nomask = false;
src->destmask = src->idr & normal_mask;
}
} else {
src->destmask = src->idr;
}
}
static inline void write_IRQreg_ivpr(OpenPICState *opp, int n_IRQ, uint32_t val)
{
uint32_t mask;
/* NOTE when implementing newer FSL MPIC models: starting with v4.0,
* the polarity bit is read-only on internal interrupts.
*/
mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
IVPR_POLARITY_MASK | opp->vector_mask;
/* ACTIVITY bit is read-only */
opp->src[n_IRQ].ivpr =
(opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
/* For FSL internal interrupts, The sense bit is reserved and zero,
* and the interrupt is always level-triggered. Timers and IPIs
* have no sense or polarity bits, and are edge-triggered.
*/
switch (opp->src[n_IRQ].type) {
case IRQ_TYPE_NORMAL:
opp->src[n_IRQ].level = !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
break;
case IRQ_TYPE_FSLINT:
opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
break;
case IRQ_TYPE_FSLSPECIAL:
opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
break;
}
openpic_update_irq(opp, n_IRQ);
DPRINTF("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
opp->src[n_IRQ].ivpr);
}
static void openpic_gcr_write(OpenPICState *opp, uint64_t val)
{
bool mpic_proxy = false;
if (val & GCR_RESET) {
openpic_reset(&opp->busdev.qdev);
return;
}
opp->gcr &= ~opp->mpic_mode_mask;
opp->gcr |= val & opp->mpic_mode_mask;
/* Set external proxy mode */
if ((val & opp->mpic_mode_mask) == GCR_MODE_PROXY) {
mpic_proxy = true;
}
ppce500_set_mpic_proxy(mpic_proxy);
}
static void openpic_gbl_write(void *opaque, hwaddr addr, uint64_t val,
unsigned len)
{
OpenPICState *opp = opaque;
IRQDest *dst;
int idx;
DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64 "\n",
__func__, addr, val);
if (addr & 0xF) {
return;
}
switch (addr) {
case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
break;
case 0x40:
case 0x50:
case 0x60:
case 0x70:
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
openpic_cpu_write_internal(opp, addr, val, get_current_cpu());
break;
case 0x1000: /* FRR */
break;
case 0x1020: /* GCR */
openpic_gcr_write(opp, val);
break;
case 0x1080: /* VIR */
break;
case 0x1090: /* PIR */
for (idx = 0; idx < opp->nb_cpus; idx++) {
if ((val & (1 << idx)) && !(opp->pir & (1 << idx))) {
DPRINTF("Raise OpenPIC RESET output for CPU %d\n", idx);
dst = &opp->dst[idx];
qemu_irq_raise(dst->irqs[OPENPIC_OUTPUT_RESET]);
} else if (!(val & (1 << idx)) && (opp->pir & (1 << idx))) {
DPRINTF("Lower OpenPIC RESET output for CPU %d\n", idx);
dst = &opp->dst[idx];
qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_RESET]);
}
}
opp->pir = val;
break;
case 0x10A0: /* IPI_IVPR */
case 0x10B0:
case 0x10C0:
case 0x10D0:
{
int idx;
idx = (addr - 0x10A0) >> 4;
write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
}
break;
case 0x10E0: /* SPVE */
opp->spve = val & opp->vector_mask;
break;
default:
break;
}
}
static uint64_t openpic_gbl_read(void *opaque, hwaddr addr, unsigned len)
{
OpenPICState *opp = opaque;
uint32_t retval;
DPRINTF("%s: addr %#" HWADDR_PRIx "\n", __func__, addr);
retval = 0xFFFFFFFF;
if (addr & 0xF) {
return retval;
}
switch (addr) {
case 0x1000: /* FRR */
retval = opp->frr;
break;
case 0x1020: /* GCR */
retval = opp->gcr;
break;
case 0x1080: /* VIR */
retval = opp->vir;
break;
case 0x1090: /* PIR */
retval = 0x00000000;
break;
case 0x00: /* Block Revision Register1 (BRR1) */
retval = opp->brr1;
break;
case 0x40:
case 0x50:
case 0x60:
case 0x70:
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
retval = openpic_cpu_read_internal(opp, addr, get_current_cpu());
break;
case 0x10A0: /* IPI_IVPR */
case 0x10B0:
case 0x10C0:
case 0x10D0:
{
int idx;
idx = (addr - 0x10A0) >> 4;
retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
}
break;
case 0x10E0: /* SPVE */
retval = opp->spve;
break;
default:
break;
}
DPRINTF("%s: => 0x%08x\n", __func__, retval);
return retval;
}
static void openpic_tmr_write(void *opaque, hwaddr addr, uint64_t val,
unsigned len)
{
OpenPICState *opp = opaque;
int idx;
DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64 "\n",
__func__, addr, val);
if (addr & 0xF) {
return;
}
idx = (addr >> 6) & 0x3;
addr = addr & 0x30;
if (addr == 0x0) {
/* TFRR */
opp->tfrr = val;
return;
}
switch (addr & 0x30) {
case 0x00: /* TCCR */
break;
case 0x10: /* TBCR */
if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
(val & TBCR_CI) == 0 &&
(opp->timers[idx].tbcr & TBCR_CI) != 0) {
opp->timers[idx].tccr &= ~TCCR_TOG;
}
opp->timers[idx].tbcr = val;
break;
case 0x20: /* TVPR */
write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
break;
case 0x30: /* TDR */
write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
break;
}
}
static uint64_t openpic_tmr_read(void *opaque, hwaddr addr, unsigned len)
{
OpenPICState *opp = opaque;
uint32_t retval = -1;
int idx;
DPRINTF("%s: addr %#" HWADDR_PRIx "\n", __func__, addr);
if (addr & 0xF) {
goto out;
}
idx = (addr >> 6) & 0x3;
if (addr == 0x0) {
/* TFRR */
retval = opp->tfrr;
goto out;
}
switch (addr & 0x30) {
case 0x00: /* TCCR */
retval = opp->timers[idx].tccr;
break;
case 0x10: /* TBCR */
retval = opp->timers[idx].tbcr;
break;
case 0x20: /* TIPV */
retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
break;
case 0x30: /* TIDE (TIDR) */
retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
break;
}
out:
DPRINTF("%s: => 0x%08x\n", __func__, retval);
return retval;
}
static void openpic_src_write(void *opaque, hwaddr addr, uint64_t val,
unsigned len)
{
OpenPICState *opp = opaque;
int idx;
DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64 "\n",
__func__, addr, val);
if (addr & 0xF) {
return;
}
addr = addr & 0xFFF0;
idx = addr >> 5;
if (addr & 0x10) {
/* EXDE / IFEDE / IEEDE */
write_IRQreg_idr(opp, idx, val);
} else {
/* EXVP / IFEVP / IEEVP */
write_IRQreg_ivpr(opp, idx, val);
}
}
static uint64_t openpic_src_read(void *opaque, uint64_t addr, unsigned len)
{
OpenPICState *opp = opaque;
uint32_t retval;
int idx;
DPRINTF("%s: addr %#" HWADDR_PRIx "\n", __func__, addr);
retval = 0xFFFFFFFF;
if (addr & 0xF) {
return retval;
}
addr = addr & 0xFFF0;
idx = addr >> 5;
if (addr & 0x10) {
/* EXDE / IFEDE / IEEDE */
retval = read_IRQreg_idr(opp, idx);
} else {
/* EXVP / IFEVP / IEEVP */
retval = read_IRQreg_ivpr(opp, idx);
}
DPRINTF("%s: => 0x%08x\n", __func__, retval);
return retval;
}
static void openpic_msi_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
OpenPICState *opp = opaque;
int idx = opp->irq_msi;
int srs, ibs;
DPRINTF("%s: addr %#" HWADDR_PRIx " <= 0x%08" PRIx64 "\n",
__func__, addr, val);
if (addr & 0xF) {
return;
}
switch (addr) {
case MSIIR_OFFSET:
srs = val >> MSIIR_SRS_SHIFT;
idx += srs;
ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
opp->msi[srs].msir |= 1 << ibs;
openpic_set_irq(opp, idx, 1);
break;
default:
/* most registers are read-only, thus ignored */
break;
}
}
static uint64_t openpic_msi_read(void *opaque, hwaddr addr, unsigned size)
{
OpenPICState *opp = opaque;
uint64_t r = 0;
int i, srs;
DPRINTF("%s: addr %#" HWADDR_PRIx "\n", __func__, addr);
if (addr & 0xF) {
return -1;
}
srs = addr >> 4;
switch (addr) {
case 0x00:
case 0x10:
case 0x20:
case 0x30:
case 0x40:
case 0x50:
case 0x60:
case 0x70: /* MSIRs */
r = opp->msi[srs].msir;
/* Clear on read */
opp->msi[srs].msir = 0;
openpic_set_irq(opp, opp->irq_msi + srs, 0);
break;
case 0x120: /* MSISR */
for (i = 0; i < MAX_MSI; i++) {
r |= (opp->msi[i].msir ? 1 : 0) << i;
}
break;
}
return r;
}
static void openpic_cpu_write_internal(void *opaque, hwaddr addr,
uint32_t val, int idx)
{
OpenPICState *opp = opaque;
IRQSource *src;
IRQDest *dst;
int s_IRQ, n_IRQ;
DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx " <= 0x%08x\n", __func__, idx,
addr, val);
if (idx < 0) {
return;
}
if (addr & 0xF) {
return;
}
dst = &opp->dst[idx];
addr &= 0xFF0;
switch (addr) {
case 0x40: /* IPIDR */
case 0x50:
case 0x60:
case 0x70:
idx = (addr - 0x40) >> 4;
/* we use IDE as mask which CPUs to deliver the IPI to still. */
write_IRQreg_idr(opp, opp->irq_ipi0 + idx,
opp->src[opp->irq_ipi0 + idx].idr | val);
openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
break;
case 0x80: /* CTPR */
dst->ctpr = val & 0x0000000F;
DPRINTF("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
__func__, idx, dst->ctpr, dst->raised.priority,
dst->servicing.priority);
if (dst->raised.priority <= dst->ctpr) {
DPRINTF("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
__func__, idx);
qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_INT]);
} else if (dst->raised.priority > dst->servicing.priority) {
DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d\n",
__func__, idx, dst->raised.next);
qemu_irq_raise(dst->irqs[OPENPIC_OUTPUT_INT]);
}
break;
case 0x90: /* WHOAMI */
/* Read-only register */
break;
case 0xA0: /* IACK */
/* Read-only register */
break;
case 0xB0: /* EOI */
DPRINTF("EOI\n");
s_IRQ = IRQ_get_next(opp, &dst->servicing);
if (s_IRQ < 0) {
DPRINTF("%s: EOI with no interrupt in service\n", __func__);
break;
}
IRQ_resetbit(&dst->servicing, s_IRQ);
/* Set up next servicing IRQ */
s_IRQ = IRQ_get_next(opp, &dst->servicing);
/* Check queued interrupts. */
n_IRQ = IRQ_get_next(opp, &dst->raised);
src = &opp->src[n_IRQ];
if (n_IRQ != -1 &&
(s_IRQ == -1 ||
IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
DPRINTF("Raise OpenPIC INT output cpu %d irq %d\n",
idx, n_IRQ);
qemu_irq_raise(opp->dst[idx].irqs[OPENPIC_OUTPUT_INT]);
}
break;
default:
break;
}
}
static void openpic_cpu_write(void *opaque, hwaddr addr, uint64_t val,
unsigned len)
{
openpic_cpu_write_internal(opaque, addr, val, (addr & 0x1f000) >> 12);
}
static uint32_t openpic_iack(OpenPICState *opp, IRQDest *dst, int cpu)
{
IRQSource *src;
int retval, irq;
DPRINTF("Lower OpenPIC INT output\n");
qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_INT]);
irq = IRQ_get_next(opp, &dst->raised);
DPRINTF("IACK: irq=%d\n", irq);
if (irq == -1) {
/* No more interrupt pending */
return opp->spve;
}
src = &opp->src[irq];
if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
!(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
fprintf(stderr, "%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
__func__, irq, dst->ctpr, src->ivpr);
openpic_update_irq(opp, irq);
retval = opp->spve;
} else {
/* IRQ enter servicing state */
IRQ_setbit(&dst->servicing, irq);
retval = IVPR_VECTOR(opp, src->ivpr);
}
if (!src->level) {
/* edge-sensitive IRQ */
src->ivpr &= ~IVPR_ACTIVITY_MASK;
src->pending = 0;
IRQ_resetbit(&dst->raised, irq);
}
if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
src->idr &= ~(1 << cpu);
if (src->idr && !src->level) {
/* trigger on CPUs that didn't know about it yet */
openpic_set_irq(opp, irq, 1);
openpic_set_irq(opp, irq, 0);
/* if all CPUs knew about it, set active bit again */
src->ivpr |= IVPR_ACTIVITY_MASK;
}
}
return retval;
}
static uint32_t openpic_cpu_read_internal(void *opaque, hwaddr addr,
int idx)
{
OpenPICState *opp = opaque;
IRQDest *dst;
uint32_t retval;
DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx "\n", __func__, idx, addr);
retval = 0xFFFFFFFF;
if (idx < 0) {
return retval;
}
if (addr & 0xF) {
return retval;
}
dst = &opp->dst[idx];
addr &= 0xFF0;
switch (addr) {
case 0x80: /* CTPR */
retval = dst->ctpr;
break;
case 0x90: /* WHOAMI */
retval = idx;
break;
case 0xA0: /* IACK */
retval = openpic_iack(opp, dst, idx);
break;
case 0xB0: /* EOI */
retval = 0;
break;
default:
break;
}
DPRINTF("%s: => 0x%08x\n", __func__, retval);
return retval;
}
static uint64_t openpic_cpu_read(void *opaque, hwaddr addr, unsigned len)
{
return openpic_cpu_read_internal(opaque, addr, (addr & 0x1f000) >> 12);
}
static const MemoryRegionOps openpic_glb_ops_le = {
.write = openpic_gbl_write,
.read = openpic_gbl_read,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_glb_ops_be = {
.write = openpic_gbl_write,
.read = openpic_gbl_read,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_tmr_ops_le = {
.write = openpic_tmr_write,
.read = openpic_tmr_read,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_tmr_ops_be = {
.write = openpic_tmr_write,
.read = openpic_tmr_read,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_cpu_ops_le = {
.write = openpic_cpu_write,
.read = openpic_cpu_read,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_cpu_ops_be = {
.write = openpic_cpu_write,
.read = openpic_cpu_read,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_src_ops_le = {
.write = openpic_src_write,
.read = openpic_src_read,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_src_ops_be = {
.write = openpic_src_write,
.read = openpic_src_read,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_msi_ops_le = {
.read = openpic_msi_read,
.write = openpic_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps openpic_msi_ops_be = {
.read = openpic_msi_read,
.write = openpic_msi_write,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void openpic_save_IRQ_queue(QEMUFile* f, IRQQueue *q)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(q->queue); i++) {
/* Always put the lower half of a 64-bit long first, in case we
* restore on a 32-bit host. The least significant bits correspond
* to lower IRQ numbers in the bitmap.
*/
qemu_put_be32(f, (uint32_t)q->queue[i]);
#if LONG_MAX > 0x7FFFFFFF
qemu_put_be32(f, (uint32_t)(q->queue[i] >> 32));
#endif
}
qemu_put_sbe32s(f, &q->next);
qemu_put_sbe32s(f, &q->priority);
}
static void openpic_save(QEMUFile* f, void *opaque)
{
OpenPICState *opp = (OpenPICState *)opaque;
unsigned int i;
qemu_put_be32s(f, &opp->gcr);
qemu_put_be32s(f, &opp->vir);
qemu_put_be32s(f, &opp->pir);
qemu_put_be32s(f, &opp->spve);
qemu_put_be32s(f, &opp->tfrr);
qemu_put_be32s(f, &opp->nb_cpus);
for (i = 0; i < opp->nb_cpus; i++) {
qemu_put_sbe32s(f, &opp->dst[i].ctpr);
openpic_save_IRQ_queue(f, &opp->dst[i].raised);
openpic_save_IRQ_queue(f, &opp->dst[i].servicing);
qemu_put_buffer(f, (uint8_t *)&opp->dst[i].outputs_active,
sizeof(opp->dst[i].outputs_active));
}
for (i = 0; i < MAX_TMR; i++) {
qemu_put_be32s(f, &opp->timers[i].tccr);
qemu_put_be32s(f, &opp->timers[i].tbcr);
}
for (i = 0; i < opp->max_irq; i++) {
qemu_put_be32s(f, &opp->src[i].ivpr);
qemu_put_be32s(f, &opp->src[i].idr);
qemu_put_sbe32s(f, &opp->src[i].last_cpu);
qemu_put_sbe32s(f, &opp->src[i].pending);
}
}
static void openpic_load_IRQ_queue(QEMUFile* f, IRQQueue *q)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(q->queue); i++) {
unsigned long val;
val = qemu_get_be32(f);
#if LONG_MAX > 0x7FFFFFFF
val <<= 32;
val |= qemu_get_be32(f);
#endif
q->queue[i] = val;
}
qemu_get_sbe32s(f, &q->next);
qemu_get_sbe32s(f, &q->priority);
}
static int openpic_load(QEMUFile* f, void *opaque, int version_id)
{
OpenPICState *opp = (OpenPICState *)opaque;
unsigned int i;
if (version_id != 1) {
return -EINVAL;
}
qemu_get_be32s(f, &opp->gcr);
qemu_get_be32s(f, &opp->vir);
qemu_get_be32s(f, &opp->pir);
qemu_get_be32s(f, &opp->spve);
qemu_get_be32s(f, &opp->tfrr);
qemu_get_be32s(f, &opp->nb_cpus);
for (i = 0; i < opp->nb_cpus; i++) {
qemu_get_sbe32s(f, &opp->dst[i].ctpr);
openpic_load_IRQ_queue(f, &opp->dst[i].raised);
openpic_load_IRQ_queue(f, &opp->dst[i].servicing);
qemu_get_buffer(f, (uint8_t *)&opp->dst[i].outputs_active,
sizeof(opp->dst[i].outputs_active));
}
for (i = 0; i < MAX_TMR; i++) {
qemu_get_be32s(f, &opp->timers[i].tccr);
qemu_get_be32s(f, &opp->timers[i].tbcr);
}
for (i = 0; i < opp->max_irq; i++) {
uint32_t val;
val = qemu_get_be32(f);
write_IRQreg_idr(opp, i, val);
val = qemu_get_be32(f);
write_IRQreg_ivpr(opp, i, val);
qemu_get_be32s(f, &opp->src[i].ivpr);
qemu_get_be32s(f, &opp->src[i].idr);
qemu_get_sbe32s(f, &opp->src[i].last_cpu);
qemu_get_sbe32s(f, &opp->src[i].pending);
}
return 0;
}
typedef struct MemReg {
const char *name;
MemoryRegionOps const *ops;
bool map;
hwaddr start_addr;
ram_addr_t size;
} MemReg;
static int openpic_init(SysBusDevice *dev)
{
OpenPICState *opp = FROM_SYSBUS(typeof (*opp), dev);
int i, j;
MemReg list_le[] = {
{"glb", &openpic_glb_ops_le, true,
OPENPIC_GLB_REG_START, OPENPIC_GLB_REG_SIZE},
{"tmr", &openpic_tmr_ops_le, true,
OPENPIC_TMR_REG_START, OPENPIC_TMR_REG_SIZE},
{"msi", &openpic_msi_ops_le, true,
OPENPIC_MSI_REG_START, OPENPIC_MSI_REG_SIZE},
{"src", &openpic_src_ops_le, true,
OPENPIC_SRC_REG_START, OPENPIC_SRC_REG_SIZE},
{"cpu", &openpic_cpu_ops_le, true,
OPENPIC_CPU_REG_START, OPENPIC_CPU_REG_SIZE},
};
MemReg list_be[] = {
{"glb", &openpic_glb_ops_be, true,
OPENPIC_GLB_REG_START, OPENPIC_GLB_REG_SIZE},
{"tmr", &openpic_tmr_ops_be, true,
OPENPIC_TMR_REG_START, OPENPIC_TMR_REG_SIZE},
{"msi", &openpic_msi_ops_be, true,
OPENPIC_MSI_REG_START, OPENPIC_MSI_REG_SIZE},
{"src", &openpic_src_ops_be, true,
OPENPIC_SRC_REG_START, OPENPIC_SRC_REG_SIZE},
{"cpu", &openpic_cpu_ops_be, true,
OPENPIC_CPU_REG_START, OPENPIC_CPU_REG_SIZE},
};
MemReg *list;
switch (opp->model) {
case OPENPIC_MODEL_FSL_MPIC_20:
default:
opp->flags |= OPENPIC_FLAG_IDR_CRIT;
opp->nb_irqs = 80;
opp->vid = VID_REVISION_1_2;
opp->vir = VIR_GENERIC;
opp->vector_mask = 0xFFFF;
opp->tfrr_reset = 0;
opp->ivpr_reset = IVPR_MASK_MASK;
opp->idr_reset = 1 << 0;
opp->max_irq = FSL_MPIC_20_MAX_IRQ;
opp->irq_ipi0 = FSL_MPIC_20_IPI_IRQ;
opp->irq_tim0 = FSL_MPIC_20_TMR_IRQ;
opp->irq_msi = FSL_MPIC_20_MSI_IRQ;
opp->brr1 = FSL_BRR1_IPID | FSL_BRR1_IPMJ | FSL_BRR1_IPMN;
/* XXX really only available as of MPIC 4.0 */
opp->mpic_mode_mask = GCR_MODE_PROXY;
msi_supported = true;
list = list_be;
for (i = 0; i < FSL_MPIC_20_MAX_EXT; i++) {
opp->src[i].level = false;
}
/* Internal interrupts, including message and MSI */
for (i = 16; i < MAX_SRC; i++) {
opp->src[i].type = IRQ_TYPE_FSLINT;
opp->src[i].level = true;
}
/* timers and IPIs */
for (i = MAX_SRC; i < MAX_IRQ; i++) {
opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
opp->src[i].level = false;
}
break;
case OPENPIC_MODEL_RAVEN:
opp->nb_irqs = RAVEN_MAX_EXT;
opp->vid = VID_REVISION_1_3;
opp->vir = VIR_GENERIC;
opp->vector_mask = 0xFF;
opp->tfrr_reset = 4160000;
opp->ivpr_reset = IVPR_MASK_MASK | IVPR_MODE_MASK;
opp->idr_reset = 0;
opp->max_irq = RAVEN_MAX_IRQ;
opp->irq_ipi0 = RAVEN_IPI_IRQ;
opp->irq_tim0 = RAVEN_TMR_IRQ;
opp->brr1 = -1;
opp->mpic_mode_mask = GCR_MODE_MIXED;
list = list_le;
/* Don't map MSI region */
list[2].map = false;
/* Only UP supported today */
if (opp->nb_cpus != 1) {
return -EINVAL;
}
break;
}
memory_region_init(&opp->mem, "openpic", 0x40000);
for (i = 0; i < ARRAY_SIZE(list_le); i++) {
if (!list[i].map) {
continue;
}
memory_region_init_io(&opp->sub_io_mem[i], list[i].ops, opp,
list[i].name, list[i].size);
memory_region_add_subregion(&opp->mem, list[i].start_addr,
&opp->sub_io_mem[i]);
}
for (i = 0; i < opp->nb_cpus; i++) {
opp->dst[i].irqs = g_new(qemu_irq, OPENPIC_OUTPUT_NB);
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_init_irq(dev, &opp->dst[i].irqs[j]);
}
}
register_savevm(&opp->busdev.qdev, "openpic", 0, 2,
openpic_save, openpic_load, opp);
sysbus_init_mmio(dev, &opp->mem);
qdev_init_gpio_in(&dev->qdev, openpic_set_irq, opp->max_irq);
return 0;
}
static Property openpic_properties[] = {
DEFINE_PROP_UINT32("model", OpenPICState, model, OPENPIC_MODEL_FSL_MPIC_20),
DEFINE_PROP_UINT32("nb_cpus", OpenPICState, nb_cpus, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void openpic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = openpic_init;
dc->props = openpic_properties;
dc->reset = openpic_reset;
}
static const TypeInfo openpic_info = {
.name = "openpic",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(OpenPICState),
.class_init = openpic_class_init,
};
static void openpic_register_types(void)
{
type_register_static(&openpic_info);
}
type_init(openpic_register_types)