qemu/linux-user/elfload.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4774 lines
147 KiB
C
Raw Normal View History

/* This is the Linux kernel elf-loading code, ported into user space */
#include "qemu/osdep.h"
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/shm.h>
#include "qemu.h"
#include "user-internals.h"
#include "signal-common.h"
#include "loader.h"
#include "user-mmap.h"
#include "disas/disas.h"
#include "qemu/bitops.h"
#include "qemu/path.h"
#include "qemu/queue.h"
#include "qemu/guest-random.h"
#include "qemu/units.h"
#include "qemu/selfmap.h"
#include "qemu/lockable.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "target_signal.h"
#include "tcg/debuginfo.h"
#ifdef TARGET_ARM
#include "target/arm/cpu-features.h"
#endif
#ifdef _ARCH_PPC64
#undef ARCH_DLINFO
#undef ELF_PLATFORM
#undef ELF_HWCAP
#undef ELF_HWCAP2
#undef ELF_CLASS
#undef ELF_DATA
#undef ELF_ARCH
#endif
#ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
#define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
#endif
typedef struct {
const uint8_t *image;
const uint32_t *relocs;
unsigned image_size;
unsigned reloc_count;
unsigned sigreturn_ofs;
unsigned rt_sigreturn_ofs;
} VdsoImageInfo;
#define ELF_OSABI ELFOSABI_SYSV
/* from personality.h */
/*
* Flags for bug emulation.
*
* These occupy the top three bytes.
*/
enum {
ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
descriptors (signal handling) */
MMAP_PAGE_ZERO = 0x0100000,
ADDR_COMPAT_LAYOUT = 0x0200000,
READ_IMPLIES_EXEC = 0x0400000,
ADDR_LIMIT_32BIT = 0x0800000,
SHORT_INODE = 0x1000000,
WHOLE_SECONDS = 0x2000000,
STICKY_TIMEOUTS = 0x4000000,
ADDR_LIMIT_3GB = 0x8000000,
};
/*
* Personality types.
*
* These go in the low byte. Avoid using the top bit, it will
* conflict with error returns.
*/
enum {
PER_LINUX = 0x0000,
PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
PER_BSD = 0x0006,
PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
PER_LINUX32 = 0x0008,
PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
PER_RISCOS = 0x000c,
PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
PER_OSF4 = 0x000f, /* OSF/1 v4 */
PER_HPUX = 0x0010,
PER_MASK = 0x00ff,
};
/*
* Return the base personality without flags.
*/
#define personality(pers) (pers & PER_MASK)
int info_is_fdpic(struct image_info *info)
{
return info->personality == PER_LINUX_FDPIC;
}
/* this flag is uneffective under linux too, should be deleted */
#ifndef MAP_DENYWRITE
#define MAP_DENYWRITE 0
#endif
/* should probably go in elf.h */
#ifndef ELIBBAD
#define ELIBBAD 80
#endif
#if TARGET_BIG_ENDIAN
#define ELF_DATA ELFDATA2MSB
#else
#define ELF_DATA ELFDATA2LSB
#endif
#ifdef TARGET_ABI_MIPSN32
typedef abi_ullong target_elf_greg_t;
#define tswapreg(ptr) tswap64(ptr)
#else
typedef abi_ulong target_elf_greg_t;
#define tswapreg(ptr) tswapal(ptr)
#endif
#ifdef USE_UID16
typedef abi_ushort target_uid_t;
typedef abi_ushort target_gid_t;
#else
typedef abi_uint target_uid_t;
typedef abi_uint target_gid_t;
#endif
typedef abi_int target_pid_t;
#ifdef TARGET_I386
#define ELF_HWCAP get_elf_hwcap()
static uint32_t get_elf_hwcap(void)
{
X86CPU *cpu = X86_CPU(thread_cpu);
return cpu->env.features[FEAT_1_EDX];
}
#ifdef TARGET_X86_64
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_X86_64
#define ELF_PLATFORM "x86_64"
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
regs->rax = 0;
regs->rsp = infop->start_stack;
regs->rip = infop->entry;
}
#define ELF_NREG 27
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/*
* Note that ELF_NREG should be 29 as there should be place for
* TRAPNO and ERR "registers" as well but linux doesn't dump
* those.
*
* See linux kernel: arch/x86/include/asm/elf.h
*/
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
{
(*regs)[0] = tswapreg(env->regs[15]);
(*regs)[1] = tswapreg(env->regs[14]);
(*regs)[2] = tswapreg(env->regs[13]);
(*regs)[3] = tswapreg(env->regs[12]);
(*regs)[4] = tswapreg(env->regs[R_EBP]);
(*regs)[5] = tswapreg(env->regs[R_EBX]);
(*regs)[6] = tswapreg(env->regs[11]);
(*regs)[7] = tswapreg(env->regs[10]);
(*regs)[8] = tswapreg(env->regs[9]);
(*regs)[9] = tswapreg(env->regs[8]);
(*regs)[10] = tswapreg(env->regs[R_EAX]);
(*regs)[11] = tswapreg(env->regs[R_ECX]);
(*regs)[12] = tswapreg(env->regs[R_EDX]);
(*regs)[13] = tswapreg(env->regs[R_ESI]);
(*regs)[14] = tswapreg(env->regs[R_EDI]);
(*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
(*regs)[16] = tswapreg(env->eip);
(*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
(*regs)[18] = tswapreg(env->eflags);
(*regs)[19] = tswapreg(env->regs[R_ESP]);
(*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
(*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
(*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
(*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
(*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
(*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
(*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
}
#if ULONG_MAX > UINT32_MAX
#define INIT_GUEST_COMMPAGE
static bool init_guest_commpage(void)
{
/*
* The vsyscall page is at a high negative address aka kernel space,
* which means that we cannot actually allocate it with target_mmap.
* We still should be able to use page_set_flags, unless the user
* has specified -R reserved_va, which would trigger an assert().
*/
if (reserved_va != 0 &&
TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
error_report("Cannot allocate vsyscall page");
exit(EXIT_FAILURE);
}
page_set_flags(TARGET_VSYSCALL_PAGE,
TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
PAGE_EXEC | PAGE_VALID);
return true;
}
#endif
#else
/*
* This is used to ensure we don't load something for the wrong architecture.
*/
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
/*
* These are used to set parameters in the core dumps.
*/
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_386
#define ELF_PLATFORM get_elf_platform()
#define EXSTACK_DEFAULT true
static const char *get_elf_platform(void)
{
static char elf_platform[] = "i386";
int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
if (family > 6) {
family = 6;
}
if (family >= 3) {
elf_platform[1] = '0' + family;
}
return elf_platform;
}
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->esp = infop->start_stack;
regs->eip = infop->entry;
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
starts %edx contains a pointer to a function which might be
registered using `atexit'. This provides a mean for the
dynamic linker to call DT_FINI functions for shared libraries
that have been loaded before the code runs.
A value of 0 tells we have no such handler. */
regs->edx = 0;
}
#define ELF_NREG 17
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/*
* Note that ELF_NREG should be 19 as there should be place for
* TRAPNO and ERR "registers" as well but linux doesn't dump
* those.
*
* See linux kernel: arch/x86/include/asm/elf.h
*/
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
{
(*regs)[0] = tswapreg(env->regs[R_EBX]);
(*regs)[1] = tswapreg(env->regs[R_ECX]);
(*regs)[2] = tswapreg(env->regs[R_EDX]);
(*regs)[3] = tswapreg(env->regs[R_ESI]);
(*regs)[4] = tswapreg(env->regs[R_EDI]);
(*regs)[5] = tswapreg(env->regs[R_EBP]);
(*regs)[6] = tswapreg(env->regs[R_EAX]);
(*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
(*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
(*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
(*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
(*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
(*regs)[12] = tswapreg(env->eip);
(*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
(*regs)[14] = tswapreg(env->eflags);
(*regs)[15] = tswapreg(env->regs[R_ESP]);
(*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
}
/*
* i386 is the only target which supplies AT_SYSINFO for the vdso.
* All others only supply AT_SYSINFO_EHDR.
*/
#define DLINFO_ARCH_ITEMS (vdso_info != NULL)
#define ARCH_DLINFO \
do { \
if (vdso_info) { \
NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
} \
} while (0)
#endif /* TARGET_X86_64 */
#define VDSO_HEADER "vdso.c.inc"
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#endif /* TARGET_I386 */
#ifdef TARGET_ARM
#ifndef TARGET_AARCH64
/* 32 bit ARM definitions */
#define ELF_ARCH EM_ARM
#define ELF_CLASS ELFCLASS32
#define EXSTACK_DEFAULT true
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
abi_long stack = infop->start_stack;
memset(regs, 0, sizeof(*regs));
regs->uregs[16] = ARM_CPU_MODE_USR;
if (infop->entry & 1) {
regs->uregs[16] |= CPSR_T;
}
regs->uregs[15] = infop->entry & 0xfffffffe;
regs->uregs[13] = infop->start_stack;
/* FIXME - what to for failure of get_user()? */
get_user_ual(regs->uregs[2], stack + 8); /* envp */
get_user_ual(regs->uregs[1], stack + 4); /* envp */
/* XXX: it seems that r0 is zeroed after ! */
regs->uregs[0] = 0;
/* For uClinux PIC binaries. */
/* XXX: Linux does this only on ARM with no MMU (do we care ?) */
regs->uregs[10] = infop->start_data;
/* Support ARM FDPIC. */
if (info_is_fdpic(infop)) {
/* As described in the ABI document, r7 points to the loadmap info
* prepared by the kernel. If an interpreter is needed, r8 points
* to the interpreter loadmap and r9 points to the interpreter
* PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
* r9 points to the main program PT_DYNAMIC info.
*/
regs->uregs[7] = infop->loadmap_addr;
if (infop->interpreter_loadmap_addr) {
/* Executable is dynamically loaded. */
regs->uregs[8] = infop->interpreter_loadmap_addr;
regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
} else {
regs->uregs[8] = 0;
regs->uregs[9] = infop->pt_dynamic_addr;
}
}
}
#define ELF_NREG 18
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
{
(*regs)[0] = tswapreg(env->regs[0]);
(*regs)[1] = tswapreg(env->regs[1]);
(*regs)[2] = tswapreg(env->regs[2]);
(*regs)[3] = tswapreg(env->regs[3]);
(*regs)[4] = tswapreg(env->regs[4]);
(*regs)[5] = tswapreg(env->regs[5]);
(*regs)[6] = tswapreg(env->regs[6]);
(*regs)[7] = tswapreg(env->regs[7]);
(*regs)[8] = tswapreg(env->regs[8]);
(*regs)[9] = tswapreg(env->regs[9]);
(*regs)[10] = tswapreg(env->regs[10]);
(*regs)[11] = tswapreg(env->regs[11]);
(*regs)[12] = tswapreg(env->regs[12]);
(*regs)[13] = tswapreg(env->regs[13]);
(*regs)[14] = tswapreg(env->regs[14]);
(*regs)[15] = tswapreg(env->regs[15]);
(*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
(*regs)[17] = tswapreg(env->regs[0]); /* XXX */
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
enum
{
ARM_HWCAP_ARM_SWP = 1 << 0,
ARM_HWCAP_ARM_HALF = 1 << 1,
ARM_HWCAP_ARM_THUMB = 1 << 2,
ARM_HWCAP_ARM_26BIT = 1 << 3,
ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
ARM_HWCAP_ARM_FPA = 1 << 5,
ARM_HWCAP_ARM_VFP = 1 << 6,
ARM_HWCAP_ARM_EDSP = 1 << 7,
ARM_HWCAP_ARM_JAVA = 1 << 8,
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
ARM_HWCAP_ARM_CRUNCH = 1 << 10,
ARM_HWCAP_ARM_THUMBEE = 1 << 11,
ARM_HWCAP_ARM_NEON = 1 << 12,
ARM_HWCAP_ARM_VFPv3 = 1 << 13,
ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
ARM_HWCAP_ARM_TLS = 1 << 15,
ARM_HWCAP_ARM_VFPv4 = 1 << 16,
ARM_HWCAP_ARM_IDIVA = 1 << 17,
ARM_HWCAP_ARM_IDIVT = 1 << 18,
ARM_HWCAP_ARM_VFPD32 = 1 << 19,
ARM_HWCAP_ARM_LPAE = 1 << 20,
ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
ARM_HWCAP_ARM_FPHP = 1 << 22,
ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
ARM_HWCAP_ARM_I8MM = 1 << 27,
};
enum {
ARM_HWCAP2_ARM_AES = 1 << 0,
ARM_HWCAP2_ARM_PMULL = 1 << 1,
ARM_HWCAP2_ARM_SHA1 = 1 << 2,
ARM_HWCAP2_ARM_SHA2 = 1 << 3,
ARM_HWCAP2_ARM_CRC32 = 1 << 4,
ARM_HWCAP2_ARM_SB = 1 << 5,
ARM_HWCAP2_ARM_SSBS = 1 << 6,
};
/* The commpage only exists for 32 bit kernels */
#define HI_COMMPAGE (intptr_t)0xffff0f00u
static bool init_guest_commpage(void)
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
abi_ptr commpage;
void *want;
void *addr;
/*
* M-profile allocates maximum of 2GB address space, so can never
* allocate the commpage. Skip it.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
return true;
}
commpage = HI_COMMPAGE & -qemu_host_page_size;
want = g2h_untagged(commpage);
addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (addr == MAP_FAILED) {
perror("Allocating guest commpage");
exit(EXIT_FAILURE);
}
if (addr != want) {
return false;
}
/* Set kernel helper versions; rest of page is 0. */
__put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
perror("Protecting guest commpage");
exit(EXIT_FAILURE);
}
page_set_flags(commpage, commpage | ~qemu_host_page_mask,
PAGE_READ | PAGE_EXEC | PAGE_VALID);
return true;
}
#define ELF_HWCAP get_elf_hwcap()
#define ELF_HWCAP2 get_elf_hwcap2()
uint32_t get_elf_hwcap(void)
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
uint32_t hwcaps = 0;
hwcaps |= ARM_HWCAP_ARM_SWP;
hwcaps |= ARM_HWCAP_ARM_HALF;
hwcaps |= ARM_HWCAP_ARM_THUMB;
hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
/* probe for the extra features */
#define GET_FEATURE(feat, hwcap) \
do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
#define GET_FEATURE_ID(feat, hwcap) \
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
/* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
cpu_isar_feature(aa32_fpdp_v3, cpu)) {
hwcaps |= ARM_HWCAP_ARM_VFPv3;
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
hwcaps |= ARM_HWCAP_ARM_VFPD32;
} else {
hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
}
}
GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
/*
* MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
* isar_feature function for both. The kernel reports them as two hwcaps.
*/
GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
return hwcaps;
}
uint64_t get_elf_hwcap2(void)
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
uint64_t hwcaps = 0;
GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
return hwcaps;
}
const char *elf_hwcap_str(uint32_t bit)
{
static const char *hwcap_str[] = {
[__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
[__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
[__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
[__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
[__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
[__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
[__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
[__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
[__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
[__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
[__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
[__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
[__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
[__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
[__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
[__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
[__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
[__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
[__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
[__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
[__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
[__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
[__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
[__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
};
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
}
const char *elf_hwcap2_str(uint32_t bit)
{
static const char *hwcap_str[] = {
[__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
[__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
[__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
[__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
[__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
[__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
[__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
};
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
}
#undef GET_FEATURE
#undef GET_FEATURE_ID
#define ELF_PLATFORM get_elf_platform()
static const char *get_elf_platform(void)
{
CPUARMState *env = cpu_env(thread_cpu);
#if TARGET_BIG_ENDIAN
# define END "b"
#else
# define END "l"
#endif
if (arm_feature(env, ARM_FEATURE_V8)) {
return "v8" END;
} else if (arm_feature(env, ARM_FEATURE_V7)) {
if (arm_feature(env, ARM_FEATURE_M)) {
return "v7m" END;
} else {
return "v7" END;
}
} else if (arm_feature(env, ARM_FEATURE_V6)) {
return "v6" END;
} else if (arm_feature(env, ARM_FEATURE_V5)) {
return "v5" END;
} else {
return "v4" END;
}
#undef END
}
#else
/* 64 bit ARM definitions */
#define ELF_ARCH EM_AARCH64
#define ELF_CLASS ELFCLASS64
#if TARGET_BIG_ENDIAN
# define ELF_PLATFORM "aarch64_be"
#else
# define ELF_PLATFORM "aarch64"
#endif
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
abi_long stack = infop->start_stack;
memset(regs, 0, sizeof(*regs));
regs->pc = infop->entry & ~0x3ULL;
regs->sp = stack;
}
#define ELF_NREG 34
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUARMState *env)
{
int i;
for (i = 0; i < 32; i++) {
(*regs)[i] = tswapreg(env->xregs[i]);
}
(*regs)[32] = tswapreg(env->pc);
(*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
enum {
ARM_HWCAP_A64_FP = 1 << 0,
ARM_HWCAP_A64_ASIMD = 1 << 1,
ARM_HWCAP_A64_EVTSTRM = 1 << 2,
ARM_HWCAP_A64_AES = 1 << 3,
ARM_HWCAP_A64_PMULL = 1 << 4,
ARM_HWCAP_A64_SHA1 = 1 << 5,
ARM_HWCAP_A64_SHA2 = 1 << 6,
ARM_HWCAP_A64_CRC32 = 1 << 7,
ARM_HWCAP_A64_ATOMICS = 1 << 8,
ARM_HWCAP_A64_FPHP = 1 << 9,
ARM_HWCAP_A64_ASIMDHP = 1 << 10,
ARM_HWCAP_A64_CPUID = 1 << 11,
ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
ARM_HWCAP_A64_JSCVT = 1 << 13,
ARM_HWCAP_A64_FCMA = 1 << 14,
ARM_HWCAP_A64_LRCPC = 1 << 15,
ARM_HWCAP_A64_DCPOP = 1 << 16,
ARM_HWCAP_A64_SHA3 = 1 << 17,
ARM_HWCAP_A64_SM3 = 1 << 18,
ARM_HWCAP_A64_SM4 = 1 << 19,
ARM_HWCAP_A64_ASIMDDP = 1 << 20,
ARM_HWCAP_A64_SHA512 = 1 << 21,
ARM_HWCAP_A64_SVE = 1 << 22,
ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
ARM_HWCAP_A64_DIT = 1 << 24,
ARM_HWCAP_A64_USCAT = 1 << 25,
ARM_HWCAP_A64_ILRCPC = 1 << 26,
ARM_HWCAP_A64_FLAGM = 1 << 27,
ARM_HWCAP_A64_SSBS = 1 << 28,
ARM_HWCAP_A64_SB = 1 << 29,
ARM_HWCAP_A64_PACA = 1 << 30,
ARM_HWCAP_A64_PACG = 1UL << 31,
ARM_HWCAP2_A64_DCPODP = 1 << 0,
ARM_HWCAP2_A64_SVE2 = 1 << 1,
ARM_HWCAP2_A64_SVEAES = 1 << 2,
ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
ARM_HWCAP2_A64_SVESM4 = 1 << 6,
ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
ARM_HWCAP2_A64_FRINT = 1 << 8,
ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
ARM_HWCAP2_A64_I8MM = 1 << 13,
ARM_HWCAP2_A64_BF16 = 1 << 14,
ARM_HWCAP2_A64_DGH = 1 << 15,
ARM_HWCAP2_A64_RNG = 1 << 16,
ARM_HWCAP2_A64_BTI = 1 << 17,
ARM_HWCAP2_A64_MTE = 1 << 18,
ARM_HWCAP2_A64_ECV = 1 << 19,
ARM_HWCAP2_A64_AFP = 1 << 20,
ARM_HWCAP2_A64_RPRES = 1 << 21,
ARM_HWCAP2_A64_MTE3 = 1 << 22,
ARM_HWCAP2_A64_SME = 1 << 23,
ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
ARM_HWCAP2_A64_WFXT = 1ULL << 31,
ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
ARM_HWCAP2_A64_CSSC = 1ULL << 34,
ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
ARM_HWCAP2_A64_SME2 = 1ULL << 37,
ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
ARM_HWCAP2_A64_MOPS = 1ULL << 43,
ARM_HWCAP2_A64_HBC = 1ULL << 44,
};
#define ELF_HWCAP get_elf_hwcap()
#define ELF_HWCAP2 get_elf_hwcap2()
#define GET_FEATURE_ID(feat, hwcap) \
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
uint32_t get_elf_hwcap(void)
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
uint32_t hwcaps = 0;
hwcaps |= ARM_HWCAP_A64_FP;
hwcaps |= ARM_HWCAP_A64_ASIMD;
hwcaps |= ARM_HWCAP_A64_CPUID;
/* probe for the extra features */
GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
return hwcaps;
}
uint64_t get_elf_hwcap2(void)
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
uint64_t hwcaps = 0;
GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
ARM_HWCAP2_A64_SME_F32F32 |
ARM_HWCAP2_A64_SME_B16F32 |
ARM_HWCAP2_A64_SME_F16F32 |
ARM_HWCAP2_A64_SME_I8I32));
GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
return hwcaps;
}
const char *elf_hwcap_str(uint32_t bit)
{
static const char *hwcap_str[] = {
[__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
[__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
[__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
[__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
[__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
[__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
[__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
[__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
[__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
[__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
[__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
[__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
[__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
[__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
[__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
[__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
[__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
[__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
[__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
[__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
[__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
[__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
[__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
[__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
[__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
[__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
[__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
[__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
[__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
[__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
[__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
[__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
};
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
}
const char *elf_hwcap2_str(uint32_t bit)
{
static const char *hwcap_str[] = {
[__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
[__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
[__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
[__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
[__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
[__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
[__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
[__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
[__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
[__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
[__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
[__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
[__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
[__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
[__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
[__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
[__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
[__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
[__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
[__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
[__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
[__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
[__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
[__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
[__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
[__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
[__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
[__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
[__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
[__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
[__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
[__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
[__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
[__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
[__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
[__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
[__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
[__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
[__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
[__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
[__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
[__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
[__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
[__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
[__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
};
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
}
#undef GET_FEATURE_ID
#endif /* not TARGET_AARCH64 */
#if TARGET_BIG_ENDIAN
# define VDSO_HEADER "vdso-be.c.inc"
#else
# define VDSO_HEADER "vdso-le.c.inc"
#endif
#endif /* TARGET_ARM */
#ifdef TARGET_SPARC
#ifdef TARGET_SPARC64
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
| HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
#ifndef TARGET_ABI32
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
#else
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
#endif
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_SPARCV9
#else
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
| HWCAP_SPARC_MULDIV)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_SPARC
#endif /* TARGET_SPARC64 */
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
/* Note that target_cpu_copy_regs does not read psr/tstate. */
regs->pc = infop->entry;
regs->npc = regs->pc + 4;
regs->y = 0;
regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
- TARGET_STACK_BIAS);
}
#endif /* TARGET_SPARC */
#ifdef TARGET_PPC
#define ELF_MACHINE PPC_ELF_MACHINE
#if defined(TARGET_PPC64)
#define elf_check_arch(x) ( (x) == EM_PPC64 )
#define ELF_CLASS ELFCLASS64
#else
#define ELF_CLASS ELFCLASS32
#define EXSTACK_DEFAULT true
#endif
#define ELF_ARCH EM_PPC
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
See arch/powerpc/include/asm/cputable.h. */
enum {
QEMU_PPC_FEATURE_32 = 0x80000000,
QEMU_PPC_FEATURE_64 = 0x40000000,
QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
QEMU_PPC_FEATURE_NO_TB = 0x00100000,
QEMU_PPC_FEATURE_POWER4 = 0x00080000,
QEMU_PPC_FEATURE_POWER5 = 0x00040000,
QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
QEMU_PPC_FEATURE_CELL = 0x00010000,
QEMU_PPC_FEATURE_BOOKE = 0x00008000,
QEMU_PPC_FEATURE_SMT = 0x00004000,
QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
QEMU_PPC_FEATURE_PA6T = 0x00000800,
QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
/* Feature definitions in AT_HWCAP2. */
QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
};
#define ELF_HWCAP get_elf_hwcap()
static uint32_t get_elf_hwcap(void)
{
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
uint32_t features = 0;
/* We don't have to be terribly complete here; the high points are
Altivec/FP/SPE support. Anything else is just a bonus. */
#define GET_FEATURE(flag, feature) \
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
#define GET_FEATURE2(flags, feature) \
do { \
if ((cpu->env.insns_flags2 & flags) == flags) { \
features |= feature; \
} \
} while (0)
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
QEMU_PPC_FEATURE_ARCH_2_06);
#undef GET_FEATURE
#undef GET_FEATURE2
return features;
}
#define ELF_HWCAP2 get_elf_hwcap2()
static uint32_t get_elf_hwcap2(void)
{
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
uint32_t features = 0;
#define GET_FEATURE(flag, feature) \
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
#define GET_FEATURE2(flag, feature) \
do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
QEMU_PPC_FEATURE2_VEC_CRYPTO);
GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
QEMU_PPC_FEATURE2_MMA);
#undef GET_FEATURE
#undef GET_FEATURE2
return features;
}
/*
* The requirements here are:
* - keep the final alignment of sp (sp & 0xf)
* - make sure the 32-bit value at the first 16 byte aligned position of
* AUXV is greater than 16 for glibc compatibility.
* AT_IGNOREPPC is used for that.
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
*/
#define DLINFO_ARCH_ITEMS 5
#define ARCH_DLINFO \
do { \
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
/* \
linux-user: Put PPC AT_IGNOREPPC auxv entries in the right place The 32-bit PPC auxv is a bit complicated because in the mists of time it used to be 16-aligned rather than directly after the environment. Older glibc versions had code to try to probe for whether it needed alignment or not: https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/powerpc/dl-sysdep.c;hb=e84eabb3871c9b39e59323bf3f6b98c2ca9d1cd0 and the kernel has code which puts some magic entries at the bottom to ensure that the alignment probe fails: http://elixir.free-electrons.com/linux/latest/source/arch/powerpc/include/asm/elf.h#L158 QEMU has similar code too, but it was broken by commit 7c4ee5bcc82e64, which changed elfload.c from filling in the auxv starting at the highest address and working down to starting at the lowest address and working up. This means that the ARCH_DLINFO hook must now be invoked first rather than last, and the entries in it for PPC must be reversed so that the magic AT_IGNOREPPC entries come at the lowest address in the auxv as they should. The effect of this was that if running a guest binary that used an old glibc with the alignment probing the guest ld.so code would segfault if the size of the guest environment and argv happened to put the auxv at an address that triggered the alignment code in the guest glibc. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Tested-by: Richard Henderson <rth@twiddle.net> Message-id: 1498582198-6649-1-git-send-email-peter.maydell@linaro.org
2017-06-27 19:49:58 +03:00
* Handle glibc compatibility: these magic entries must \
* be at the lowest addresses in the final auxv. \
*/ \
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
linux-user: Put PPC AT_IGNOREPPC auxv entries in the right place The 32-bit PPC auxv is a bit complicated because in the mists of time it used to be 16-aligned rather than directly after the environment. Older glibc versions had code to try to probe for whether it needed alignment or not: https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/powerpc/dl-sysdep.c;hb=e84eabb3871c9b39e59323bf3f6b98c2ca9d1cd0 and the kernel has code which puts some magic entries at the bottom to ensure that the alignment probe fails: http://elixir.free-electrons.com/linux/latest/source/arch/powerpc/include/asm/elf.h#L158 QEMU has similar code too, but it was broken by commit 7c4ee5bcc82e64, which changed elfload.c from filling in the auxv starting at the highest address and working down to starting at the lowest address and working up. This means that the ARCH_DLINFO hook must now be invoked first rather than last, and the entries in it for PPC must be reversed so that the magic AT_IGNOREPPC entries come at the lowest address in the auxv as they should. The effect of this was that if running a guest binary that used an old glibc with the alignment probing the guest ld.so code would segfault if the size of the guest environment and argv happened to put the auxv at an address that triggered the alignment code in the guest glibc. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Tested-by: Richard Henderson <rth@twiddle.net> Message-id: 1498582198-6649-1-git-send-email-peter.maydell@linaro.org
2017-06-27 19:49:58 +03:00
NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
} while (0)
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
{
_regs->gpr[1] = infop->start_stack;
#if defined(TARGET_PPC64)
if (get_ppc64_abi(infop) < 2) {
uint64_t val;
get_user_u64(val, infop->entry + 8);
_regs->gpr[2] = val + infop->load_bias;
get_user_u64(val, infop->entry);
infop->entry = val + infop->load_bias;
} else {
_regs->gpr[12] = infop->entry; /* r12 set to global entry address */
}
#endif
_regs->nip = infop->entry;
}
/* See linux kernel: arch/powerpc/include/asm/elf.h. */
#define ELF_NREG 48
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
{
int i;
target_ulong ccr = 0;
for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
(*regs)[i] = tswapreg(env->gpr[i]);
}
(*regs)[32] = tswapreg(env->nip);
(*regs)[33] = tswapreg(env->msr);
(*regs)[35] = tswapreg(env->ctr);
(*regs)[36] = tswapreg(env->lr);
(*regs)[37] = tswapreg(cpu_read_xer(env));
ccr = ppc_get_cr(env);
(*regs)[38] = tswapreg(ccr);
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#ifndef TARGET_PPC64
# define VDSO_HEADER "vdso-32.c.inc"
#elif TARGET_BIG_ENDIAN
# define VDSO_HEADER "vdso-64.c.inc"
#else
# define VDSO_HEADER "vdso-64le.c.inc"
#endif
#endif
#ifdef TARGET_LOONGARCH64
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_LOONGARCH
#define EXSTACK_DEFAULT true
#define elf_check_arch(x) ((x) == EM_LOONGARCH)
#define VDSO_HEADER "vdso.c.inc"
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
/*Set crmd PG,DA = 1,0 */
regs->csr.crmd = 2 << 3;
regs->csr.era = infop->entry;
regs->regs[3] = infop->start_stack;
}
/* See linux kernel: arch/loongarch/include/asm/elf.h */
#define ELF_NREG 45
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
enum {
TARGET_EF_R0 = 0,
TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
};
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPULoongArchState *env)
{
int i;
(*regs)[TARGET_EF_R0] = 0;
for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
}
(*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
(*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#define ELF_HWCAP get_elf_hwcap()
/* See arch/loongarch/include/uapi/asm/hwcap.h */
enum {
HWCAP_LOONGARCH_CPUCFG = (1 << 0),
HWCAP_LOONGARCH_LAM = (1 << 1),
HWCAP_LOONGARCH_UAL = (1 << 2),
HWCAP_LOONGARCH_FPU = (1 << 3),
HWCAP_LOONGARCH_LSX = (1 << 4),
HWCAP_LOONGARCH_LASX = (1 << 5),
HWCAP_LOONGARCH_CRC32 = (1 << 6),
HWCAP_LOONGARCH_COMPLEX = (1 << 7),
HWCAP_LOONGARCH_CRYPTO = (1 << 8),
HWCAP_LOONGARCH_LVZ = (1 << 9),
HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
};
static uint32_t get_elf_hwcap(void)
{
LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
uint32_t hwcaps = 0;
hwcaps |= HWCAP_LOONGARCH_CRC32;
if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
hwcaps |= HWCAP_LOONGARCH_UAL;
}
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
hwcaps |= HWCAP_LOONGARCH_FPU;
}
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
hwcaps |= HWCAP_LOONGARCH_LAM;
}
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
hwcaps |= HWCAP_LOONGARCH_LSX;
}
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
hwcaps |= HWCAP_LOONGARCH_LASX;
}
return hwcaps;
}
#define ELF_PLATFORM "loongarch"
#endif /* TARGET_LOONGARCH64 */
#ifdef TARGET_MIPS
#ifdef TARGET_MIPS64
#define ELF_CLASS ELFCLASS64
#else
#define ELF_CLASS ELFCLASS32
#endif
#define ELF_ARCH EM_MIPS
#define EXSTACK_DEFAULT true
#ifdef TARGET_ABI_MIPSN32
#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
#else
#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
#endif
#define ELF_BASE_PLATFORM get_elf_base_platform()
#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
{ return _base_platform; } } while (0)
static const char *get_elf_base_platform(void)
{
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
/* 64 bit ISAs goes first */
MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
/* 32 bit ISAs */
MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
/* Fallback */
return "mips";
}
#undef MATCH_PLATFORM_INSN
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->cp0_status = 2 << CP0St_KSU;
regs->cp0_epc = infop->entry;
regs->regs[29] = infop->start_stack;
}
/* See linux kernel: arch/mips/include/asm/elf.h. */
#define ELF_NREG 45
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/* See linux kernel: arch/mips/include/asm/reg.h. */
enum {
#ifdef TARGET_MIPS64
TARGET_EF_R0 = 0,
#else
TARGET_EF_R0 = 6,
#endif
TARGET_EF_R26 = TARGET_EF_R0 + 26,
TARGET_EF_R27 = TARGET_EF_R0 + 27,
TARGET_EF_LO = TARGET_EF_R0 + 32,
TARGET_EF_HI = TARGET_EF_R0 + 33,
TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
};
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
{
int i;
for (i = 0; i < TARGET_EF_R0; i++) {
(*regs)[i] = 0;
}
(*regs)[TARGET_EF_R0] = 0;
for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
}
(*regs)[TARGET_EF_R26] = 0;
(*regs)[TARGET_EF_R27] = 0;
(*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
(*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
(*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
(*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
(*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
(*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
/* See arch/mips/include/uapi/asm/hwcap.h. */
enum {
HWCAP_MIPS_R6 = (1 << 0),
HWCAP_MIPS_MSA = (1 << 1),
HWCAP_MIPS_CRC32 = (1 << 2),
HWCAP_MIPS_MIPS16 = (1 << 3),
HWCAP_MIPS_MDMX = (1 << 4),
HWCAP_MIPS_MIPS3D = (1 << 5),
HWCAP_MIPS_SMARTMIPS = (1 << 6),
HWCAP_MIPS_DSP = (1 << 7),
HWCAP_MIPS_DSP2 = (1 << 8),
HWCAP_MIPS_DSP3 = (1 << 9),
HWCAP_MIPS_MIPS16E2 = (1 << 10),
HWCAP_LOONGSON_MMI = (1 << 11),
HWCAP_LOONGSON_EXT = (1 << 12),
HWCAP_LOONGSON_EXT2 = (1 << 13),
HWCAP_LOONGSON_CPUCFG = (1 << 14),
};
#define ELF_HWCAP get_elf_hwcap()
#define GET_FEATURE_INSN(_flag, _hwcap) \
do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
do { \
if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
hwcaps |= _hwcap; \
} \
} while (0)
static uint32_t get_elf_hwcap(void)
{
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
uint32_t hwcaps = 0;
GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
2, HWCAP_MIPS_R6);
GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
return hwcaps;
}
#undef GET_FEATURE_REG_EQU
#undef GET_FEATURE_REG_SET
#undef GET_FEATURE_INSN
#endif /* TARGET_MIPS */
#ifdef TARGET_MICROBLAZE
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_MICROBLAZE
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->pc = infop->entry;
regs->r1 = infop->start_stack;
}
#define ELF_EXEC_PAGESIZE 4096
#define USE_ELF_CORE_DUMP
#define ELF_NREG 38
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
{
int i, pos = 0;
for (i = 0; i < 32; i++) {
(*regs)[pos++] = tswapreg(env->regs[i]);
}
(*regs)[pos++] = tswapreg(env->pc);
(*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
(*regs)[pos++] = 0;
(*regs)[pos++] = tswapreg(env->ear);
(*regs)[pos++] = 0;
(*regs)[pos++] = tswapreg(env->esr);
}
#endif /* TARGET_MICROBLAZE */
#ifdef TARGET_NIOS2
#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_ALTERA_NIOS2
static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
regs->ea = infop->entry;
regs->sp = infop->start_stack;
}
#define LO_COMMPAGE TARGET_PAGE_SIZE
static bool init_guest_commpage(void)
{
static const uint8_t kuser_page[4 + 2 * 64] = {
/* __kuser_helper_version */
[0x00] = 0x02, 0x00, 0x00, 0x00,
/* __kuser_cmpxchg */
[0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
0x3a, 0x28, 0x00, 0xf8, /* ret */
/* __kuser_sigtramp */
[0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
};
void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (addr == MAP_FAILED) {
perror("Allocating guest commpage");
exit(EXIT_FAILURE);
}
if (addr != want) {
return false;
}
memcpy(addr, kuser_page, sizeof(kuser_page));
if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
perror("Protecting guest commpage");
exit(EXIT_FAILURE);
}
page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
PAGE_READ | PAGE_EXEC | PAGE_VALID);
return true;
}
#define ELF_EXEC_PAGESIZE 4096
#define USE_ELF_CORE_DUMP
#define ELF_NREG 49
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUNios2State *env)
{
int i;
(*regs)[0] = -1;
for (i = 1; i < 8; i++) /* r0-r7 */
(*regs)[i] = tswapreg(env->regs[i + 7]);
for (i = 8; i < 16; i++) /* r8-r15 */
(*regs)[i] = tswapreg(env->regs[i - 8]);
for (i = 16; i < 24; i++) /* r16-r23 */
(*regs)[i] = tswapreg(env->regs[i + 7]);
(*regs)[24] = -1; /* R_ET */
(*regs)[25] = -1; /* R_BT */
(*regs)[26] = tswapreg(env->regs[R_GP]);
(*regs)[27] = tswapreg(env->regs[R_SP]);
(*regs)[28] = tswapreg(env->regs[R_FP]);
(*regs)[29] = tswapreg(env->regs[R_EA]);
(*regs)[30] = -1; /* R_SSTATUS */
(*regs)[31] = tswapreg(env->regs[R_RA]);
(*regs)[32] = tswapreg(env->pc);
(*regs)[33] = -1; /* R_STATUS */
(*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
for (i = 35; i < 49; i++) /* ... */
(*regs)[i] = -1;
}
#endif /* TARGET_NIOS2 */
#ifdef TARGET_OPENRISC
#define ELF_ARCH EM_OPENRISC
#define ELF_CLASS ELFCLASS32
#define ELF_DATA ELFDATA2MSB
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->pc = infop->entry;
regs->gpr[1] = infop->start_stack;
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 8192
/* See linux kernel arch/openrisc/include/asm/elf.h. */
#define ELF_NREG 34 /* gprs and pc, sr */
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUOpenRISCState *env)
{
int i;
for (i = 0; i < 32; i++) {
(*regs)[i] = tswapreg(cpu_get_gpr(env, i));
}
(*regs)[32] = tswapreg(env->pc);
(*regs)[33] = tswapreg(cpu_get_sr(env));
}
#define ELF_HWCAP 0
#define ELF_PLATFORM NULL
#endif /* TARGET_OPENRISC */
#ifdef TARGET_SH4
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_SH
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
/* Check other registers XXXXX */
regs->pc = infop->entry;
regs->regs[15] = infop->start_stack;
}
/* See linux kernel: arch/sh/include/asm/elf.h. */
#define ELF_NREG 23
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
/* See linux kernel: arch/sh/include/asm/ptrace.h. */
enum {
TARGET_REG_PC = 16,
TARGET_REG_PR = 17,
TARGET_REG_SR = 18,
TARGET_REG_GBR = 19,
TARGET_REG_MACH = 20,
TARGET_REG_MACL = 21,
TARGET_REG_SYSCALL = 22
};
static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUSH4State *env)
{
int i;
for (i = 0; i < 16; i++) {
(*regs)[i] = tswapreg(env->gregs[i]);
}
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
(*regs)[TARGET_REG_PR] = tswapreg(env->pr);
(*regs)[TARGET_REG_SR] = tswapreg(env->sr);
(*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
(*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
(*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
(*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
enum {
SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
};
#define ELF_HWCAP get_elf_hwcap()
static uint32_t get_elf_hwcap(void)
{
SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
uint32_t hwcap = 0;
hwcap |= SH_CPU_HAS_FPU;
if (cpu->env.features & SH_FEATURE_SH4A) {
hwcap |= SH_CPU_HAS_LLSC;
}
return hwcap;
}
#endif
#ifdef TARGET_CRIS
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_CRIS
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->erp = infop->entry;
}
#define ELF_EXEC_PAGESIZE 8192
#endif
#ifdef TARGET_M68K
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_68K
/* ??? Does this need to do anything?
#define ELF_PLAT_INIT(_r) */
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->usp = infop->start_stack;
regs->sr = 0;
regs->pc = infop->entry;
}
/* See linux kernel: arch/m68k/include/asm/elf.h. */
#define ELF_NREG 20
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
{
(*regs)[0] = tswapreg(env->dregs[1]);
(*regs)[1] = tswapreg(env->dregs[2]);
(*regs)[2] = tswapreg(env->dregs[3]);
(*regs)[3] = tswapreg(env->dregs[4]);
(*regs)[4] = tswapreg(env->dregs[5]);
(*regs)[5] = tswapreg(env->dregs[6]);
(*regs)[6] = tswapreg(env->dregs[7]);
(*regs)[7] = tswapreg(env->aregs[0]);
(*regs)[8] = tswapreg(env->aregs[1]);
(*regs)[9] = tswapreg(env->aregs[2]);
(*regs)[10] = tswapreg(env->aregs[3]);
(*regs)[11] = tswapreg(env->aregs[4]);
(*regs)[12] = tswapreg(env->aregs[5]);
(*regs)[13] = tswapreg(env->aregs[6]);
(*regs)[14] = tswapreg(env->dregs[0]);
(*regs)[15] = tswapreg(env->aregs[7]);
(*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
(*regs)[17] = tswapreg(env->sr);
(*regs)[18] = tswapreg(env->pc);
(*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 8192
#endif
#ifdef TARGET_ALPHA
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_ALPHA
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->pc = infop->entry;
regs->ps = 8;
regs->usp = infop->start_stack;
}
#define ELF_EXEC_PAGESIZE 8192
#endif /* TARGET_ALPHA */
#ifdef TARGET_S390X
#define ELF_CLASS ELFCLASS64
#define ELF_DATA ELFDATA2MSB
#define ELF_ARCH EM_S390
#include "elf.h"
#define ELF_HWCAP get_elf_hwcap()
#define GET_FEATURE(_feat, _hwcap) \
do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
uint32_t get_elf_hwcap(void)
{
/*
* Let's assume we always have esan3 and zarch.
* 31-bit processes can use 64-bit registers (high gprs).
*/
uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
s390_has_feat(S390_FEAT_ETF3_ENH)) {
hwcap |= HWCAP_S390_ETF3EH;
}
GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
return hwcap;
}
const char *elf_hwcap_str(uint32_t bit)
{
static const char *hwcap_str[] = {
[HWCAP_S390_NR_ESAN3] = "esan3",
[HWCAP_S390_NR_ZARCH] = "zarch",
[HWCAP_S390_NR_STFLE] = "stfle",
[HWCAP_S390_NR_MSA] = "msa",
[HWCAP_S390_NR_LDISP] = "ldisp",
[HWCAP_S390_NR_EIMM] = "eimm",
[HWCAP_S390_NR_DFP] = "dfp",
[HWCAP_S390_NR_HPAGE] = "edat",
[HWCAP_S390_NR_ETF3EH] = "etf3eh",
[HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
[HWCAP_S390_NR_TE] = "te",
[HWCAP_S390_NR_VXRS] = "vx",
[HWCAP_S390_NR_VXRS_BCD] = "vxd",
[HWCAP_S390_NR_VXRS_EXT] = "vxe",
[HWCAP_S390_NR_GS] = "gs",
[HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
[HWCAP_S390_NR_VXRS_PDE] = "vxp",
[HWCAP_S390_NR_SORT] = "sort",
[HWCAP_S390_NR_DFLT] = "dflt",
[HWCAP_S390_NR_NNPA] = "nnpa",
[HWCAP_S390_NR_PCI_MIO] = "pcimio",
[HWCAP_S390_NR_SIE] = "sie",
};
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
}
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
regs->psw.addr = infop->entry;
regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
PSW_MASK_32;
regs->gprs[15] = infop->start_stack;
}
/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
#define ELF_NREG 27
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
enum {
TARGET_REG_PSWM = 0,
TARGET_REG_PSWA = 1,
TARGET_REG_GPRS = 2,
TARGET_REG_ARS = 18,
TARGET_REG_ORIG_R2 = 26,
};
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUS390XState *env)
{
int i;
uint32_t *aregs;
(*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
(*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
for (i = 0; i < 16; i++) {
(*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
}
aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
for (i = 0; i < 16; i++) {
aregs[i] = tswap32(env->aregs[i]);
}
(*regs)[TARGET_REG_ORIG_R2] = 0;
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#define VDSO_HEADER "vdso.c.inc"
#endif /* TARGET_S390X */
#ifdef TARGET_RISCV
#define ELF_ARCH EM_RISCV
#ifdef TARGET_RISCV32
#define ELF_CLASS ELFCLASS32
#define VDSO_HEADER "vdso-32.c.inc"
#else
#define ELF_CLASS ELFCLASS64
#define VDSO_HEADER "vdso-64.c.inc"
#endif
#define ELF_HWCAP get_elf_hwcap()
static uint32_t get_elf_hwcap(void)
{
#define MISA_BIT(EXT) (1 << (EXT - 'A'))
RISCVCPU *cpu = RISCV_CPU(thread_cpu);
uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
| MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
| MISA_BIT('V');
return cpu->env.misa_ext & mask;
#undef MISA_BIT
}
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->sepc = infop->entry;
regs->sp = infop->start_stack;
}
#define ELF_EXEC_PAGESIZE 4096
#endif /* TARGET_RISCV */
#ifdef TARGET_HPPA
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_PARISC
#define ELF_PLATFORM "PARISC"
#define STACK_GROWS_DOWN 0
#define STACK_ALIGNMENT 64
#define VDSO_HEADER "vdso.c.inc"
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->iaoq[0] = infop->entry;
regs->iaoq[1] = infop->entry + 4;
regs->gr[23] = 0;
regs->gr[24] = infop->argv;
regs->gr[25] = infop->argc;
/* The top-of-stack contains a linkage buffer. */
regs->gr[30] = infop->start_stack + 64;
regs->gr[31] = infop->entry;
}
#define LO_COMMPAGE 0
static bool init_guest_commpage(void)
{
void *want = g2h_untagged(LO_COMMPAGE);
void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (addr == MAP_FAILED) {
perror("Allocating guest commpage");
exit(EXIT_FAILURE);
}
if (addr != want) {
return false;
}
/*
* On Linux, page zero is normally marked execute only + gateway.
* Normal read or write is supposed to fail (thus PROT_NONE above),
* but specific offsets have kernel code mapped to raise permissions
* and implement syscalls. Here, simply mark the page executable.
* Special case the entry points during translation (see do_page_zero).
*/
page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
PAGE_EXEC | PAGE_VALID);
return true;
}
#endif /* TARGET_HPPA */
#ifdef TARGET_XTENSA
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_XTENSA
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->windowbase = 0;
regs->windowstart = 1;
regs->areg[1] = infop->start_stack;
regs->pc = infop->entry;
if (info_is_fdpic(infop)) {
regs->areg[4] = infop->loadmap_addr;
regs->areg[5] = infop->interpreter_loadmap_addr;
if (infop->interpreter_loadmap_addr) {
regs->areg[6] = infop->interpreter_pt_dynamic_addr;
} else {
regs->areg[6] = infop->pt_dynamic_addr;
}
}
}
/* See linux kernel: arch/xtensa/include/asm/elf.h. */
#define ELF_NREG 128
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
enum {
TARGET_REG_PC,
TARGET_REG_PS,
TARGET_REG_LBEG,
TARGET_REG_LEND,
TARGET_REG_LCOUNT,
TARGET_REG_SAR,
TARGET_REG_WINDOWSTART,
TARGET_REG_WINDOWBASE,
TARGET_REG_THREADPTR,
TARGET_REG_AR0 = 64,
};
static void elf_core_copy_regs(target_elf_gregset_t *regs,
const CPUXtensaState *env)
{
unsigned i;
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
(*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
(*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
(*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
(*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
(*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
(*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
(*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
(*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
xtensa_sync_phys_from_window((CPUXtensaState *)env);
for (i = 0; i < env->config->nareg; ++i) {
(*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
}
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#endif /* TARGET_XTENSA */
#ifdef TARGET_HEXAGON
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_HEXAGON
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->sepc = infop->entry;
regs->sp = infop->start_stack;
}
#endif /* TARGET_HEXAGON */
#ifndef ELF_BASE_PLATFORM
#define ELF_BASE_PLATFORM (NULL)
#endif
#ifndef ELF_PLATFORM
#define ELF_PLATFORM (NULL)
#endif
#ifndef ELF_MACHINE
#define ELF_MACHINE ELF_ARCH
#endif
#ifndef elf_check_arch
#define elf_check_arch(x) ((x) == ELF_ARCH)
#endif
#ifndef elf_check_abi
#define elf_check_abi(x) (1)
#endif
#ifndef ELF_HWCAP
#define ELF_HWCAP 0
#endif
#ifndef STACK_GROWS_DOWN
#define STACK_GROWS_DOWN 1
#endif
#ifndef STACK_ALIGNMENT
#define STACK_ALIGNMENT 16
#endif
#ifdef TARGET_ABI32
#undef ELF_CLASS
#define ELF_CLASS ELFCLASS32
#undef bswaptls
#define bswaptls(ptr) bswap32s(ptr)
#endif
#ifndef EXSTACK_DEFAULT
#define EXSTACK_DEFAULT false
#endif
#include "elf.h"
/* We must delay the following stanzas until after "elf.h". */
#if defined(TARGET_AARCH64)
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
const uint32_t *data,
struct image_info *info,
Error **errp)
{
if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
if (pr_datasz != sizeof(uint32_t)) {
error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
return false;
}
/* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
info->note_flags = *data;
}
return true;
}
#define ARCH_USE_GNU_PROPERTY 1
#else
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
const uint32_t *data,
struct image_info *info,
Error **errp)
{
g_assert_not_reached();
}
#define ARCH_USE_GNU_PROPERTY 0
#endif
struct exec
{
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
unsigned int a_text; /* length of text, in bytes */
unsigned int a_data; /* length of data, in bytes */
unsigned int a_bss; /* length of uninitialized data area, in bytes */
unsigned int a_syms; /* length of symbol table data in file, in bytes */
unsigned int a_entry; /* start address */
unsigned int a_trsize; /* length of relocation info for text, in bytes */
unsigned int a_drsize; /* length of relocation info for data, in bytes */
};
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413
#define QMAGIC 0314
#define DLINFO_ITEMS 16
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
{
memcpy(to, from, n);
}
#ifdef BSWAP_NEEDED
static void bswap_ehdr(struct elfhdr *ehdr)
{
bswap16s(&ehdr->e_type); /* Object file type */
bswap16s(&ehdr->e_machine); /* Architecture */
bswap32s(&ehdr->e_version); /* Object file version */
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
}
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
{
int i;
for (i = 0; i < phnum; ++i, ++phdr) {
bswap32s(&phdr->p_type); /* Segment type */
bswap32s(&phdr->p_flags); /* Segment flags */
bswaptls(&phdr->p_offset); /* Segment file offset */
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
bswaptls(&phdr->p_paddr); /* Segment physical address */
bswaptls(&phdr->p_filesz); /* Segment size in file */
bswaptls(&phdr->p_memsz); /* Segment size in memory */
bswaptls(&phdr->p_align); /* Segment alignment */
}
}
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
{
int i;
for (i = 0; i < shnum; ++i, ++shdr) {
bswap32s(&shdr->sh_name);
bswap32s(&shdr->sh_type);
bswaptls(&shdr->sh_flags);
bswaptls(&shdr->sh_addr);
bswaptls(&shdr->sh_offset);
bswaptls(&shdr->sh_size);
bswap32s(&shdr->sh_link);
bswap32s(&shdr->sh_info);
bswaptls(&shdr->sh_addralign);
bswaptls(&shdr->sh_entsize);
}
}
static void bswap_sym(struct elf_sym *sym)
{
bswap32s(&sym->st_name);
bswaptls(&sym->st_value);
bswaptls(&sym->st_size);
bswap16s(&sym->st_shndx);
}
#ifdef TARGET_MIPS
static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
{
bswap16s(&abiflags->version);
bswap32s(&abiflags->ases);
bswap32s(&abiflags->isa_ext);
bswap32s(&abiflags->flags1);
bswap32s(&abiflags->flags2);
}
#endif
#else
static inline void bswap_ehdr(struct elfhdr *ehdr) { }
static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
static inline void bswap_sym(struct elf_sym *sym) { }
#ifdef TARGET_MIPS
static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
#endif
#endif
#ifdef USE_ELF_CORE_DUMP
static int elf_core_dump(int, const CPUArchState *);
#endif /* USE_ELF_CORE_DUMP */
static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
abi_ulong load_bias);
/* Verify the portions of EHDR within E_IDENT for the target.
This can be performed before bswapping the entire header. */
static bool elf_check_ident(struct elfhdr *ehdr)
{
return (ehdr->e_ident[EI_MAG0] == ELFMAG0
&& ehdr->e_ident[EI_MAG1] == ELFMAG1
&& ehdr->e_ident[EI_MAG2] == ELFMAG2
&& ehdr->e_ident[EI_MAG3] == ELFMAG3
&& ehdr->e_ident[EI_CLASS] == ELF_CLASS
&& ehdr->e_ident[EI_DATA] == ELF_DATA
&& ehdr->e_ident[EI_VERSION] == EV_CURRENT);
}
/* Verify the portions of EHDR outside of E_IDENT for the target.
This has to wait until after bswapping the header. */
static bool elf_check_ehdr(struct elfhdr *ehdr)
{
return (elf_check_arch(ehdr->e_machine)
&& elf_check_abi(ehdr->e_flags)
&& ehdr->e_ehsize == sizeof(struct elfhdr)
&& ehdr->e_phentsize == sizeof(struct elf_phdr)
&& (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
}
/*
* 'copy_elf_strings()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*
*/
static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
abi_ulong p, abi_ulong stack_limit)
{
char *tmp;
int len, i;
abi_ulong top = p;
if (!p) {
return 0; /* bullet-proofing */
}
if (STACK_GROWS_DOWN) {
int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
for (i = argc - 1; i >= 0; --i) {
tmp = argv[i];
if (!tmp) {
fprintf(stderr, "VFS: argc is wrong");
exit(-1);
}
len = strlen(tmp) + 1;
tmp += len;
if (len > (p - stack_limit)) {
return 0;
}
while (len) {
int bytes_to_copy = (len > offset) ? offset : len;
tmp -= bytes_to_copy;
p -= bytes_to_copy;
offset -= bytes_to_copy;
len -= bytes_to_copy;
memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
if (offset == 0) {
memcpy_to_target(p, scratch, top - p);
top = p;
offset = TARGET_PAGE_SIZE;
}
}
}
if (p != top) {
memcpy_to_target(p, scratch + offset, top - p);
}
} else {
int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
for (i = 0; i < argc; ++i) {
tmp = argv[i];
if (!tmp) {
fprintf(stderr, "VFS: argc is wrong");
exit(-1);
}
len = strlen(tmp) + 1;
if (len > (stack_limit - p)) {
return 0;
}
while (len) {
int bytes_to_copy = (len > remaining) ? remaining : len;
memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
tmp += bytes_to_copy;
remaining -= bytes_to_copy;
p += bytes_to_copy;
len -= bytes_to_copy;
if (remaining == 0) {
memcpy_to_target(top, scratch, p - top);
top = p;
remaining = TARGET_PAGE_SIZE;
}
}
}
if (p != top) {
memcpy_to_target(top, scratch, p - top);
}
}
return p;
}
/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
* argument/environment space. Newer kernels (>2.6.33) allow more,
* dependent on stack size, but guarantee at least 32 pages for
* backwards compatibility.
*/
#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
struct image_info *info)
{
abi_ulong size, error, guard;
int prot;
size = guest_stack_size;
if (size < STACK_LOWER_LIMIT) {
size = STACK_LOWER_LIMIT;
}
if (STACK_GROWS_DOWN) {
guard = TARGET_PAGE_SIZE;
if (guard < qemu_real_host_page_size()) {
guard = qemu_real_host_page_size();
}
} else {
/* no guard page for hppa target where stack grows upwards. */
guard = 0;
}
prot = PROT_READ | PROT_WRITE;
if (info->exec_stack) {
prot |= PROT_EXEC;
}
error = target_mmap(0, size + guard, prot,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (error == -1) {
perror("mmap stack");
exit(-1);
}
/* We reserve one extra page at the top of the stack as guard. */
if (STACK_GROWS_DOWN) {
target_mprotect(error, guard, PROT_NONE);
info->stack_limit = error + guard;
return info->stack_limit + size - sizeof(void *);
} else {
info->stack_limit = error + size;
return error;
}
}
/**
* zero_bss:
*
* Map and zero the bss. We need to explicitly zero any fractional pages
* after the data section (i.e. bss). Return false on mapping failure.
*/
static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
int prot, Error **errp)
{
abi_ulong align_bss;
/* We only expect writable bss; the code segment shouldn't need this. */
if (!(prot & PROT_WRITE)) {
error_setg(errp, "PT_LOAD with non-writable bss");
return false;
}
align_bss = TARGET_PAGE_ALIGN(start_bss);
end_bss = TARGET_PAGE_ALIGN(end_bss);
if (start_bss < align_bss) {
int flags = page_get_flags(start_bss);
if (!(flags & PAGE_BITS)) {
/*
* The whole address space of the executable was reserved
* at the start, therefore all pages will be VALID.
* But assuming there are no PROT_NONE PT_LOAD segments,
* a PROT_NONE page means no data all bss, and we can
* simply extend the new anon mapping back to the start
* of the page of bss.
*/
align_bss -= TARGET_PAGE_SIZE;
} else {
/*
* The start of the bss shares a page with something.
* The only thing that we expect is the data section,
* which would already be marked writable.
* Overlapping the RX code segment seems malformed.
*/
if (!(flags & PAGE_WRITE)) {
error_setg(errp, "PT_LOAD with bss overlapping "
"non-writable page");
return false;
}
/* The page is already mapped and writable. */
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
}
}
if (align_bss < end_bss &&
target_mmap(align_bss, end_bss - align_bss, prot,
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
error_setg_errno(errp, errno, "Error mapping bss");
return false;
}
return true;
}
#if defined(TARGET_ARM)
static int elf_is_fdpic(struct elfhdr *exec)
{
return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
}
#elif defined(TARGET_XTENSA)
static int elf_is_fdpic(struct elfhdr *exec)
{
return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
}
#else
/* Default implementation, always false. */
static int elf_is_fdpic(struct elfhdr *exec)
{
return 0;
}
#endif
static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
{
uint16_t n;
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
/* elf32_fdpic_loadseg */
n = info->nsegs;
while (n--) {
sp -= 12;
put_user_u32(loadsegs[n].addr, sp+0);
put_user_u32(loadsegs[n].p_vaddr, sp+4);
put_user_u32(loadsegs[n].p_memsz, sp+8);
}
/* elf32_fdpic_loadmap */
sp -= 4;
put_user_u16(0, sp+0); /* version */
put_user_u16(info->nsegs, sp+2); /* nsegs */
info->personality = PER_LINUX_FDPIC;
info->loadmap_addr = sp;
return sp;
}
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
struct elfhdr *exec,
struct image_info *info,
struct image_info *interp_info,
struct image_info *vdso_info)
{
abi_ulong sp;
abi_ulong u_argc, u_argv, u_envp, u_auxv;
int size;
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
int i;
abi_ulong u_rand_bytes;
uint8_t k_rand_bytes[16];
abi_ulong u_platform, u_base_platform;
const char *k_platform, *k_base_platform;
const int n = sizeof(elf_addr_t);
sp = p;
/* Needs to be before we load the env/argc/... */
if (elf_is_fdpic(exec)) {
/* Need 4 byte alignment for these structs */
sp &= ~3;
sp = loader_build_fdpic_loadmap(info, sp);
info->other_info = interp_info;
if (interp_info) {
interp_info->other_info = info;
sp = loader_build_fdpic_loadmap(interp_info, sp);
info->interpreter_loadmap_addr = interp_info->loadmap_addr;
info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
} else {
info->interpreter_loadmap_addr = 0;
info->interpreter_pt_dynamic_addr = 0;
}
}
u_base_platform = 0;
k_base_platform = ELF_BASE_PLATFORM;
if (k_base_platform) {
size_t len = strlen(k_base_platform) + 1;
if (STACK_GROWS_DOWN) {
sp -= (len + n - 1) & ~(n - 1);
u_base_platform = sp;
/* FIXME - check return value of memcpy_to_target() for failure */
memcpy_to_target(sp, k_base_platform, len);
} else {
memcpy_to_target(sp, k_base_platform, len);
u_base_platform = sp;
sp += len + 1;
}
}
u_platform = 0;
k_platform = ELF_PLATFORM;
if (k_platform) {
size_t len = strlen(k_platform) + 1;
if (STACK_GROWS_DOWN) {
sp -= (len + n - 1) & ~(n - 1);
u_platform = sp;
/* FIXME - check return value of memcpy_to_target() for failure */
memcpy_to_target(sp, k_platform, len);
} else {
memcpy_to_target(sp, k_platform, len);
u_platform = sp;
sp += len + 1;
}
}
/* Provide 16 byte alignment for the PRNG, and basic alignment for
* the argv and envp pointers.
*/
if (STACK_GROWS_DOWN) {
sp = QEMU_ALIGN_DOWN(sp, 16);
} else {
sp = QEMU_ALIGN_UP(sp, 16);
}
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
/*
* Generate 16 random bytes for userspace PRNG seeding.
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
*/
qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
if (STACK_GROWS_DOWN) {
sp -= 16;
u_rand_bytes = sp;
/* FIXME - check return value of memcpy_to_target() for failure */
memcpy_to_target(sp, k_rand_bytes, 16);
} else {
memcpy_to_target(sp, k_rand_bytes, 16);
u_rand_bytes = sp;
sp += 16;
}
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
size = (DLINFO_ITEMS + 1) * 2;
if (k_base_platform) {
size += 2;
}
if (k_platform) {
size += 2;
}
if (vdso_info) {
size += 2;
}
#ifdef DLINFO_ARCH_ITEMS
size += DLINFO_ARCH_ITEMS * 2;
#endif
#ifdef ELF_HWCAP2
size += 2;
#endif
info->auxv_len = size * n;
size += envc + argc + 2;
size += 1; /* argc itself */
size *= n;
/* Allocate space and finalize stack alignment for entry now. */
if (STACK_GROWS_DOWN) {
u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
sp = u_argc;
} else {
u_argc = sp;
sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
}
u_argv = u_argc + n;
u_envp = u_argv + (argc + 1) * n;
u_auxv = u_envp + (envc + 1) * n;
info->saved_auxv = u_auxv;
info->argc = argc;
info->envc = envc;
info->argv = u_argv;
info->envp = u_envp;
/* This is correct because Linux defines
* elf_addr_t as Elf32_Off / Elf64_Off
*/
#define NEW_AUX_ENT(id, val) do { \
put_user_ual(id, u_auxv); u_auxv += n; \
put_user_ual(val, u_auxv); u_auxv += n; \
} while(0)
linux-user: Put PPC AT_IGNOREPPC auxv entries in the right place The 32-bit PPC auxv is a bit complicated because in the mists of time it used to be 16-aligned rather than directly after the environment. Older glibc versions had code to try to probe for whether it needed alignment or not: https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/powerpc/dl-sysdep.c;hb=e84eabb3871c9b39e59323bf3f6b98c2ca9d1cd0 and the kernel has code which puts some magic entries at the bottom to ensure that the alignment probe fails: http://elixir.free-electrons.com/linux/latest/source/arch/powerpc/include/asm/elf.h#L158 QEMU has similar code too, but it was broken by commit 7c4ee5bcc82e64, which changed elfload.c from filling in the auxv starting at the highest address and working down to starting at the lowest address and working up. This means that the ARCH_DLINFO hook must now be invoked first rather than last, and the entries in it for PPC must be reversed so that the magic AT_IGNOREPPC entries come at the lowest address in the auxv as they should. The effect of this was that if running a guest binary that used an old glibc with the alignment probing the guest ld.so code would segfault if the size of the guest environment and argv happened to put the auxv at an address that triggered the alignment code in the guest glibc. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Tested-by: Richard Henderson <rth@twiddle.net> Message-id: 1498582198-6649-1-git-send-email-peter.maydell@linaro.org
2017-06-27 19:49:58 +03:00
#ifdef ARCH_DLINFO
/*
* ARCH_DLINFO must come first so platform specific code can enforce
* special alignment requirements on the AUXV if necessary (eg. PPC).
*/
ARCH_DLINFO;
#endif
/* There must be exactly DLINFO_ITEMS entries here, or the assert
* on info->auxv_len will trigger.
*/
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
if ((info->alignment & ~qemu_host_page_mask) != 0) {
/* Target doesn't support host page size alignment */
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
} else {
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
qemu_host_page_size)));
}
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
NEW_AUX_ENT(AT_ENTRY, info->entry);
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
NEW_AUX_ENT(AT_EXECFN, info->file_string);
linux-user: Define AT_RANDOM to support target stack protection mechanism. The dynamic linker from the GNU C library v2.10+ uses the ELF auxiliary vector AT_RANDOM [1] as a pointer to 16 bytes with random values to initialize the stack protection mechanism. Technically the emulated GNU dynamic linker crashes due to a NULL pointer derefencement if it is built with stack protection enabled and if AT_RANDOM is not defined by the QEMU ELF loader. [1] This ELF auxiliary vector was introduced in Linux v2.6.29. This patch can be tested with the code above: #include <elf.h> /* Elf*_auxv_t, AT_RANDOM, */ #include <stdio.h> /* printf(3), */ #include <stdlib.h> /* exit(3), EXIT_*, */ #include <stdint.h> /* uint8_t, */ #include <string.h> /* memcpy(3), */ #if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) # define Elf_auxv_t Elf64_auxv_t #else # define Elf_auxv_t Elf32_auxv_t #endif main(int argc, char* argv[], char* envp[]) { Elf_auxv_t *auxv; /* *envp = NULL marks end of envp. */ while (*envp++ != NULL); /* auxv->a_type = AT_NULL marks the end of auxv. */ for (auxv = (Elf_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { if (auxv->a_type == AT_RANDOM) { int i; uint8_t rand_bytes[16]; printf("AT_RANDOM is: 0x%x\n", auxv->a_un.a_val); memcpy(rand_bytes, (const uint8_t *)auxv->a_un.a_val, sizeof(rand_bytes)); printf("it points to: "); for (i = 0; i < 16; i++) { printf("0x%02x ", rand_bytes[i]); } printf("\n"); exit(EXIT_SUCCESS); } } exit(EXIT_FAILURE); } Changes introduced in v2 and v3: * Fix typos + thinko (AT_RANDOM is used for stack canary, not for ASLR) * AT_RANDOM points to 16 random bytes stored inside the user stack. * Add a small test program. Signed-off-by: Cédric VINCENT <cedric.vincent@st.com> Signed-off-by: Laurent ALFONSI <laurent.alfonsi@st.com> Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-06-20 10:43:13 +04:00
#ifdef ELF_HWCAP2
NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
#endif
if (u_base_platform) {
NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
}
if (u_platform) {
NEW_AUX_ENT(AT_PLATFORM, u_platform);
}
if (vdso_info) {
NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
}
NEW_AUX_ENT (AT_NULL, 0);
#undef NEW_AUX_ENT
/* Check that our initial calculation of the auxv length matches how much
* we actually put into it.
*/
assert(info->auxv_len == u_auxv - info->saved_auxv);
put_user_ual(argc, u_argc);
p = info->arg_strings;
for (i = 0; i < argc; ++i) {
put_user_ual(p, u_argv);
u_argv += n;
p += target_strlen(p) + 1;
}
put_user_ual(0, u_argv);
p = info->env_strings;
for (i = 0; i < envc; ++i) {
put_user_ual(p, u_envp);
u_envp += n;
p += target_strlen(p) + 1;
}
put_user_ual(0, u_envp);
return sp;
}
#if defined(HI_COMMPAGE)
#define LO_COMMPAGE -1
#elif defined(LO_COMMPAGE)
#define HI_COMMPAGE 0
#else
#define HI_COMMPAGE 0
#define LO_COMMPAGE -1
#ifndef INIT_GUEST_COMMPAGE
#define init_guest_commpage() true
#endif
#endif
/**
* pgb_try_mmap:
* @addr: host start address
* @addr_last: host last address
* @keep: do not unmap the probe region
*
* Return 1 if [@addr, @addr_last] is not mapped in the host,
* return 0 if it is not available to map, and -1 on mmap error.
* If @keep, the region is left mapped on success, otherwise unmapped.
*/
static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
{
size_t size = addr_last - addr + 1;
void *p = mmap((void *)addr, size, PROT_NONE,
MAP_ANONYMOUS | MAP_PRIVATE |
MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
int ret;
if (p == MAP_FAILED) {
return errno == EEXIST ? 0 : -1;
}
ret = p == (void *)addr;
if (!keep || !ret) {
munmap(p, size);
}
return ret;
}
/**
* pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
* @addr: host address
* @addr_last: host last address
* @brk: host brk
*
* Like pgb_try_mmap, but additionally reserve some memory following brk.
*/
static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
uintptr_t brk, bool keep)
{
uintptr_t brk_last = brk + 16 * MiB - 1;
/* Do not map anything close to the host brk. */
if (addr <= brk_last && brk <= addr_last) {
return 0;
}
return pgb_try_mmap(addr, addr_last, keep);
}
/**
* pgb_try_mmap_set:
* @ga: set of guest addrs
* @base: guest_base
* @brk: host brk
*
* Return true if all @ga can be mapped by the host at @base.
* On success, retain the mapping at index 0 for reserved_va.
*/
typedef struct PGBAddrs {
uintptr_t bounds[3][2]; /* start/last pairs */
int nbounds;
} PGBAddrs;
static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
{
for (int i = ga->nbounds - 1; i >= 0; --i) {
if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
ga->bounds[i][1] + base,
brk, i == 0 && reserved_va) <= 0) {
return false;
}
}
return true;
}
/**
* pgb_addr_set:
* @ga: output set of guest addrs
* @guest_loaddr: guest image low address
* @guest_loaddr: guest image high address
* @identity: create for identity mapping
*
* Fill in @ga with the image, COMMPAGE and NULL page.
*/
static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
abi_ulong guest_hiaddr, bool try_identity)
{
int n;
/*
* With a low commpage, or a guest mapped very low,
* we may not be able to use the identity map.
*/
if (try_identity) {
if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
return false;
}
if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
return false;
}
}
memset(ga, 0, sizeof(*ga));
n = 0;
if (reserved_va) {
ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
ga->bounds[n][1] = reserved_va;
n++;
/* LO_COMMPAGE and NULL handled by reserving from 0. */
} else {
/* Add any LO_COMMPAGE or NULL page. */
if (LO_COMMPAGE != -1) {
ga->bounds[n][0] = 0;
ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
n++;
} else if (!try_identity) {
ga->bounds[n][0] = 0;
ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
n++;
}
/* Add the guest image for ET_EXEC. */
if (guest_loaddr) {
ga->bounds[n][0] = guest_loaddr;
ga->bounds[n][1] = guest_hiaddr;
n++;
}
}
/*
* Temporarily disable
* "comparison is always false due to limited range of data type"
* due to comparison between unsigned and (possible) 0.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
/* Add any HI_COMMPAGE not covered by reserved_va. */
if (reserved_va < HI_COMMPAGE) {
ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
n++;
}
#pragma GCC diagnostic pop
ga->nbounds = n;
return true;
}
static void pgb_fail_in_use(const char *image_name)
{
error_report("%s: requires virtual address space that is in use "
"(omit the -B option or choose a different value)",
image_name);
exit(EXIT_FAILURE);
}
static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
uintptr_t guest_hiaddr, uintptr_t align)
{
PGBAddrs ga;
uintptr_t brk = (uintptr_t)sbrk(0);
linux-user: init_guest_space: Try to make ARM space+commpage continuous At a fixed distance after the usable memory that init_guest_space maps, for 32-bit ARM targets we also need to map a commpage. The normal init_guest_space logic doesn't keep this in mind when searching for an address range. If !host_start, then try to find a big continuous segment where we can put both the usable memory and the commpage; we then munmap that segment and set current_start to that address; and let the normal code mmap the usable memory and the commpage separately. That is: if we don't have hint of where to start looking for memory, come up with one that is better than NULL. Depending on host_size and guest_start, there may or may not be a gap between the usable memory and the commpage, so this is slightly more restrictive than it needs to be; but it's only a hint, so that's OK. We only do that for !host start, because if host_start, then either: - we got an address passed in with -B, in which case we don't want to interfere with what the user said; - or host_start is based off of the ELF image's loaddr. The check "if (host_start && real_start != current_start)" suggests that we really want lowest available address that is >= loaddr. I don't know why that is, but I'm trusting that Paul Brook knew what he was doing when he wrote the original version of that check in c581deda322080e8beb88b2e468d4af54454e4b3 way back in 2010. Signed-off-by: Luke Shumaker <lukeshu@parabola.nu> Message-Id: <20171228180814.9749-11-lukeshu@lukeshu.com> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2017-12-28 21:08:13 +03:00
if (!QEMU_IS_ALIGNED(guest_base, align)) {
fprintf(stderr, "Requested guest base %p does not satisfy "
"host minimum alignment (0x%" PRIxPTR ")\n",
(void *)guest_base, align);
exit(EXIT_FAILURE);
}
if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
|| !pgb_try_mmap_set(&ga, guest_base, brk)) {
pgb_fail_in_use(image_name);
}
}
/**
* pgb_find_fallback:
*
* This is a fallback method for finding holes in the host address space
* if we don't have the benefit of being able to access /proc/self/map.
* It can potentially take a very long time as we can only dumbly iterate
* up the host address space seeing if the allocation would work.
*/
static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
uintptr_t brk)
{
/* TODO: come up with a better estimate of how much to skip. */
uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
for (uintptr_t base = skip; ; base += skip) {
base = ROUND_UP(base, align);
if (pgb_try_mmap_set(ga, base, brk)) {
return base;
}
if (base >= -skip) {
return -1;
}
}
}
static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
IntervalTreeRoot *root)
{
for (int i = ga->nbounds - 1; i >= 0; --i) {
uintptr_t s = base + ga->bounds[i][0];
uintptr_t l = base + ga->bounds[i][1];
IntervalTreeNode *n;
if (l < s) {
/* Wraparound. Skip to advance S to mmap_min_addr. */
return mmap_min_addr - s;
}
n = interval_tree_iter_first(root, s, l);
if (n != NULL) {
/* Conflict. Skip to advance S to LAST + 1. */
return n->last - s + 1;
}
}
return 0; /* success */
}
static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
uintptr_t align, uintptr_t brk)
{
uintptr_t last = mmap_min_addr;
uintptr_t base, skip;
while (true) {
base = ROUND_UP(last, align);
if (base < last) {
return -1;
}
skip = pgb_try_itree(ga, base, root);
if (skip == 0) {
break;
}
last = base + skip;
if (last < base) {
return -1;
}
}
/*
* We've chosen 'base' based on holes in the interval tree,
* but we don't yet know if it is a valid host address.
* Because it is the first matching hole, if the host addresses
* are invalid we know there are no further matches.
*/
return pgb_try_mmap_set(ga, base, brk) ? base : -1;
}
static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
uintptr_t guest_hiaddr, uintptr_t align)
{
IntervalTreeRoot *root;
uintptr_t brk, ret;
PGBAddrs ga;
assert(QEMU_IS_ALIGNED(guest_loaddr, align));
/* Try the identity map first. */
if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
brk = (uintptr_t)sbrk(0);
if (pgb_try_mmap_set(&ga, 0, brk)) {
guest_base = 0;
return;
}
}
/*
* Rebuild the address set for non-identity map.
* This differs in the mapping of the guest NULL page.
*/
pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
root = read_self_maps();
/* Read brk after we've read the maps, which will malloc. */
brk = (uintptr_t)sbrk(0);
if (!root) {
ret = pgb_find_fallback(&ga, align, brk);
} else {
/*
* Reserve the area close to the host brk.
* This will be freed with the rest of the tree.
*/
IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
b->start = brk;
b->last = brk + 16 * MiB - 1;
interval_tree_insert(b, root);
ret = pgb_find_itree(&ga, root, align, brk);
free_self_maps(root);
}
if (ret == -1) {
int w = TARGET_LONG_BITS / 4;
error_report("%s: Unable to find a guest_base to satisfy all "
"guest address mapping requirements", image_name);
for (int i = 0; i < ga.nbounds; ++i) {
error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
w, (uint64_t)ga.bounds[i][0],
w, (uint64_t)ga.bounds[i][1]);
}
exit(EXIT_FAILURE);
}
guest_base = ret;
}
void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
abi_ulong guest_hiaddr)
{
/* In order to use host shmat, we must be able to honor SHMLBA. */
uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
/* Sanity check the guest binary. */
if (reserved_va) {
if (guest_hiaddr > reserved_va) {
error_report("%s: requires more than reserved virtual "
"address space (0x%" PRIx64 " > 0x%lx)",
image_name, (uint64_t)guest_hiaddr, reserved_va);
exit(EXIT_FAILURE);
}
} else {
if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
error_report("%s: requires more virtual address space "
"than the host can provide (0x%" PRIx64 ")",
image_name, (uint64_t)guest_hiaddr + 1);
exit(EXIT_FAILURE);
}
}
if (have_guest_base) {
pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
} else {
pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
}
/* Reserve and initialize the commpage. */
if (!init_guest_commpage()) {
/* We have already probed for the commpage being free. */
g_assert_not_reached();
}
assert(QEMU_IS_ALIGNED(guest_base, align));
qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
"@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
}
enum {
/* The string "GNU\0" as a magic number. */
GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
NOTE_DATA_SZ = 1 * KiB,
NOTE_NAME_SZ = 4,
ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
};
/*
* Process a single gnu_property entry.
* Return false for error.
*/
static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
struct image_info *info, bool have_prev_type,
uint32_t *prev_type, Error **errp)
{
uint32_t pr_type, pr_datasz, step;
if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
goto error_data;
}
datasz -= *off;
data += *off / sizeof(uint32_t);
if (datasz < 2 * sizeof(uint32_t)) {
goto error_data;
}
pr_type = data[0];
pr_datasz = data[1];
data += 2;
datasz -= 2 * sizeof(uint32_t);
step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
if (step > datasz) {
goto error_data;
}
/* Properties are supposed to be unique and sorted on pr_type. */
if (have_prev_type && pr_type <= *prev_type) {
if (pr_type == *prev_type) {
error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
} else {
error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
}
return false;
}
*prev_type = pr_type;
if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
return false;
}
*off += 2 * sizeof(uint32_t) + step;
return true;
error_data:
error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
return false;
}
/* Process NT_GNU_PROPERTY_TYPE_0. */
static bool parse_elf_properties(const ImageSource *src,
struct image_info *info,
const struct elf_phdr *phdr,
Error **errp)
{
union {
struct elf_note nhdr;
uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
} note;
int n, off, datasz;
bool have_prev_type;
uint32_t prev_type;
/* Unless the arch requires properties, ignore them. */
if (!ARCH_USE_GNU_PROPERTY) {
return true;
}
/* If the properties are crazy large, that's too bad. */
n = phdr->p_filesz;
if (n > sizeof(note)) {
error_setg(errp, "PT_GNU_PROPERTY too large");
return false;
}
if (n < sizeof(note.nhdr)) {
error_setg(errp, "PT_GNU_PROPERTY too small");
return false;
}
if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
return false;
}
/*
* The contents of a valid PT_GNU_PROPERTY is a sequence
* of uint32_t -- swap them all now.
*/
#ifdef BSWAP_NEEDED
for (int i = 0; i < n / 4; i++) {
bswap32s(note.data + i);
}
#endif
/*
* Note that nhdr is 3 words, and that the "name" described by namesz
* immediately follows nhdr and is thus at the 4th word. Further, all
* of the inputs to the kernel's round_up are multiples of 4.
*/
if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
note.nhdr.n_namesz != NOTE_NAME_SZ ||
note.data[3] != GNU0_MAGIC) {
error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
return false;
}
off = sizeof(note.nhdr) + NOTE_NAME_SZ;
datasz = note.nhdr.n_descsz + off;
if (datasz > n) {
error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
return false;
}
have_prev_type = false;
prev_type = 0;
while (1) {
if (off == datasz) {
return true; /* end, exit ok */
}
if (!parse_elf_property(note.data, &off, datasz, info,
have_prev_type, &prev_type, errp)) {
return false;
}
have_prev_type = true;
}
}
/**
* load_elf_image: Load an ELF image into the address space.
* @image_name: the filename of the image, to use in error messages.
* @src: the ImageSource from which to read.
* @info: info collected from the loaded image.
* @ehdr: the ELF header, not yet bswapped.
* @pinterp_name: record any PT_INTERP string found.
*
* On return: @info values will be filled in, as necessary or available.
*/
static void load_elf_image(const char *image_name, const ImageSource *src,
struct image_info *info, struct elfhdr *ehdr,
char **pinterp_name)
{
g_autofree struct elf_phdr *phdr = NULL;
abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
int i, prot_exec;
Error *err = NULL;
/*
* First of all, some simple consistency checks.
* Note that we rely on the bswapped ehdr staying in bprm_buf,
* for later use by load_elf_binary and create_elf_tables.
*/
if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
goto exit_errmsg;
}
if (!elf_check_ident(ehdr)) {
error_setg(&err, "Invalid ELF image for this architecture");
goto exit_errmsg;
}
bswap_ehdr(ehdr);
if (!elf_check_ehdr(ehdr)) {
error_setg(&err, "Invalid ELF image for this architecture");
goto exit_errmsg;
}
phdr = imgsrc_read_alloc(ehdr->e_phoff,
ehdr->e_phnum * sizeof(struct elf_phdr),
src, &err);
if (phdr == NULL) {
goto exit_errmsg;
}
bswap_phdr(phdr, ehdr->e_phnum);
info->nsegs = 0;
info->pt_dynamic_addr = 0;
mmap_lock();
/*
* Find the maximum size of the image and allocate an appropriate
* amount of memory to handle that. Locate the interpreter, if any.
*/
loaddr = -1, hiaddr = 0;
info->alignment = 0;
info->exec_stack = EXSTACK_DEFAULT;
for (i = 0; i < ehdr->e_phnum; ++i) {
struct elf_phdr *eppnt = phdr + i;
if (eppnt->p_type == PT_LOAD) {
abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
if (a < loaddr) {
loaddr = a;
}
a = eppnt->p_vaddr + eppnt->p_memsz - 1;
if (a > hiaddr) {
hiaddr = a;
}
++info->nsegs;
info->alignment |= eppnt->p_align;
} else if (eppnt->p_type == PT_INTERP && pinterp_name) {
g_autofree char *interp_name = NULL;
if (*pinterp_name) {
error_setg(&err, "Multiple PT_INTERP entries");
goto exit_errmsg;
}
interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
src, &err);
if (interp_name == NULL) {
goto exit_errmsg;
}
if (interp_name[eppnt->p_filesz - 1] != 0) {
error_setg(&err, "Invalid PT_INTERP entry");
goto exit_errmsg;
}
*pinterp_name = g_steal_pointer(&interp_name);
} else if (eppnt->p_type == PT_GNU_PROPERTY) {
if (!parse_elf_properties(src, info, eppnt, &err)) {
goto exit_errmsg;
}
} else if (eppnt->p_type == PT_GNU_STACK) {
info->exec_stack = eppnt->p_flags & PF_X;
}
}
load_addr = loaddr;
if (pinterp_name != NULL) {
if (ehdr->e_type == ET_EXEC) {
/*
* Make sure that the low address does not conflict with
* MMAP_MIN_ADDR or the QEMU application itself.
*/
probe_guest_base(image_name, loaddr, hiaddr);
} else {
abi_ulong align;
/*
* The binary is dynamic, but we still need to
* select guest_base. In this case we pass a size.
*/
probe_guest_base(image_name, 0, hiaddr - loaddr);
/*
* Avoid collision with the loader by providing a different
* default load address.
*/
load_addr += elf_et_dyn_base;
/*
* TODO: Better support for mmap alignment is desirable.
* Since we do not have complete control over the guest
* address space, we prefer the kernel to choose some address
* rather than force the use of LOAD_ADDR via MAP_FIXED.
* But without MAP_FIXED we cannot guarantee alignment,
* only suggest it.
*/
align = pow2ceil(info->alignment);
if (align) {
load_addr &= -align;
}
}
}
/*
* Reserve address space for all of this.
*
* In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
* exactly the address range that is required. Without reserved_va,
* the guest address space is not isolated. We have attempted to avoid
* conflict with the host program itself via probe_guest_base, but using
* MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
*
* Otherwise this is ET_DYN, and we are searching for a location
* that can hold the memory space required. If the image is
* pre-linked, LOAD_ADDR will be non-zero, and the kernel should
* honor that address if it happens to be free.
*
* In both cases, we will overwrite pages in this range with mappings
* from the executable.
*/
load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
(ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
-1, 0);
if (load_addr == -1) {
goto exit_mmap;
}
load_bias = load_addr - loaddr;
if (elf_is_fdpic(ehdr)) {
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
g_malloc(sizeof(*loadsegs) * info->nsegs);
for (i = 0; i < ehdr->e_phnum; ++i) {
switch (phdr[i].p_type) {
case PT_DYNAMIC:
info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
break;
case PT_LOAD:
loadsegs->addr = phdr[i].p_vaddr + load_bias;
loadsegs->p_vaddr = phdr[i].p_vaddr;
loadsegs->p_memsz = phdr[i].p_memsz;
++loadsegs;
break;
}
}
}
info->load_bias = load_bias;
info->code_offset = load_bias;
info->data_offset = load_bias;
info->load_addr = load_addr;
info->entry = ehdr->e_entry + load_bias;
info->start_code = -1;
info->end_code = 0;
info->start_data = -1;
info->end_data = 0;
/* Usual start for brk is after all sections of the main executable. */
info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
info->elf_flags = ehdr->e_flags;
prot_exec = PROT_EXEC;
#ifdef TARGET_AARCH64
/*
* If the BTI feature is present, this indicates that the executable
* pages of the startup binary should be mapped with PROT_BTI, so that
* branch targets are enforced.
*
* The startup binary is either the interpreter or the static executable.
* The interpreter is responsible for all pages of a dynamic executable.
*
* Elf notes are backward compatible to older cpus.
* Do not enable BTI unless it is supported.
*/
if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
&& (pinterp_name == NULL || *pinterp_name == 0)
&& cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
prot_exec |= TARGET_PROT_BTI;
}
#endif
for (i = 0; i < ehdr->e_phnum; i++) {
struct elf_phdr *eppnt = phdr + i;
if (eppnt->p_type == PT_LOAD) {
abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
int elf_prot = 0;
if (eppnt->p_flags & PF_R) {
elf_prot |= PROT_READ;
}
if (eppnt->p_flags & PF_W) {
elf_prot |= PROT_WRITE;
}
if (eppnt->p_flags & PF_X) {
elf_prot |= prot_exec;
}
vaddr = load_bias + eppnt->p_vaddr;
vaddr_po = vaddr & ~TARGET_PAGE_MASK;
vaddr_ps = vaddr & TARGET_PAGE_MASK;
vaddr_ef = vaddr + eppnt->p_filesz;
vaddr_em = vaddr + eppnt->p_memsz;
/*
* Some segments may be completely empty, with a non-zero p_memsz
* but no backing file segment.
*/
if (eppnt->p_filesz != 0) {
error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
elf_prot, MAP_PRIVATE | MAP_FIXED,
src, eppnt->p_offset - vaddr_po);
if (error == -1) {
goto exit_mmap;
}
}
/* If the load segment requests extra zeros (e.g. bss), map it. */
if (vaddr_ef < vaddr_em &&
!zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
goto exit_errmsg;
}
/* Find the full program boundaries. */
if (elf_prot & PROT_EXEC) {
if (vaddr < info->start_code) {
info->start_code = vaddr;
}
if (vaddr_ef > info->end_code) {
info->end_code = vaddr_ef;
}
}
if (elf_prot & PROT_WRITE) {
if (vaddr < info->start_data) {
info->start_data = vaddr;
}
if (vaddr_ef > info->end_data) {
info->end_data = vaddr_ef;
}
}
#ifdef TARGET_MIPS
} else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
Mips_elf_abiflags_v0 abiflags;
if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
src, &err)) {
goto exit_errmsg;
}
bswap_mips_abiflags(&abiflags);
info->fp_abi = abiflags.fp_abi;
#endif
}
}
if (info->end_data == 0) {
info->start_data = info->end_code;
info->end_data = info->end_code;
}
if (qemu_log_enabled()) {
load_symbols(ehdr, src, load_bias);
}
debuginfo_report_elf(image_name, src->fd, load_bias);
mmap_unlock();
close(src->fd);
return;
exit_mmap:
error_setg_errno(&err, errno, "Error mapping file");
goto exit_errmsg;
exit_errmsg:
error_reportf_err(err, "%s: ", image_name);
exit(-1);
}
static void load_elf_interp(const char *filename, struct image_info *info,
char bprm_buf[BPRM_BUF_SIZE])
{
struct elfhdr ehdr;
ImageSource src;
int fd, retval;
Error *err = NULL;
fd = open(path(filename), O_RDONLY);
if (fd < 0) {
error_setg_file_open(&err, errno, filename);
error_report_err(err);
exit(-1);
}
retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
if (retval < 0) {
error_setg_errno(&err, errno, "Error reading file header");
error_reportf_err(err, "%s: ", filename);
exit(-1);
}
src.fd = fd;
src.cache = bprm_buf;
src.cache_size = retval;
load_elf_image(filename, &src, info, &ehdr, NULL);
}
#ifdef VDSO_HEADER
#include VDSO_HEADER
#define vdso_image_info() &vdso_image_info
#else
#define vdso_image_info() NULL
#endif
static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
{
ImageSource src;
struct elfhdr ehdr;
abi_ulong load_bias, load_addr;
src.fd = -1;
src.cache = vdso->image;
src.cache_size = vdso->image_size;
load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
load_addr = info->load_addr;
load_bias = info->load_bias;
/*
* We need to relocate the VDSO image. The one built into the kernel
* is built for a fixed address. The one built for QEMU is not, since
* that requires close control of the guest address space.
* We pre-processed the image to locate all of the addresses that need
* to be updated.
*/
for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
*addr = tswapal(tswapal(*addr) + load_bias);
}
/* Install signal trampolines, if present. */
if (vdso->sigreturn_ofs) {
default_sigreturn = load_addr + vdso->sigreturn_ofs;
}
if (vdso->rt_sigreturn_ofs) {
default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
}
/* Remove write from VDSO segment. */
target_mprotect(info->start_data, info->end_data - info->start_data,
PROT_READ | PROT_EXEC);
}
static int symfind(const void *s0, const void *s1)
{
struct elf_sym *sym = (struct elf_sym *)s1;
__typeof(sym->st_value) addr = *(uint64_t *)s0;
int result = 0;
if (addr < sym->st_value) {
result = -1;
} else if (addr >= sym->st_value + sym->st_size) {
result = 1;
}
return result;
}
static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
{
#if ELF_CLASS == ELFCLASS32
struct elf_sym *syms = s->disas_symtab.elf32;
#else
struct elf_sym *syms = s->disas_symtab.elf64;
#endif
// binary search
struct elf_sym *sym;
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
if (sym != NULL) {
return s->disas_strtab + sym->st_name;
}
return "";
}
/* FIXME: This should use elf_ops.h */
static int symcmp(const void *s0, const void *s1)
{
struct elf_sym *sym0 = (struct elf_sym *)s0;
struct elf_sym *sym1 = (struct elf_sym *)s1;
return (sym0->st_value < sym1->st_value)
? -1
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
}
/* Best attempt to load symbols from this ELF object. */
static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
abi_ulong load_bias)
{
int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
g_autofree struct elf_shdr *shdr = NULL;
char *strings = NULL;
struct elf_sym *syms = NULL;
struct elf_sym *new_syms;
uint64_t segsz;
shnum = hdr->e_shnum;
shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
src, NULL);
if (shdr == NULL) {
return;
}
bswap_shdr(shdr, shnum);
for (i = 0; i < shnum; ++i) {
if (shdr[i].sh_type == SHT_SYMTAB) {
sym_idx = i;
str_idx = shdr[i].sh_link;
goto found;
}
}
/* There will be no symbol table if the file was stripped. */
return;
found:
/* Now know where the strtab and symtab are. Snarf them. */
segsz = shdr[str_idx].sh_size;
strings = g_try_malloc(segsz);
if (!strings) {
goto give_up;
}
if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
goto give_up;
}
segsz = shdr[sym_idx].sh_size;
if (segsz / sizeof(struct elf_sym) > INT_MAX) {
/*
* Implausibly large symbol table: give up rather than ploughing
* on with the number of symbols calculation overflowing.
*/
goto give_up;
}
nsyms = segsz / sizeof(struct elf_sym);
syms = g_try_malloc(segsz);
if (!syms) {
goto give_up;
}
if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
goto give_up;
}
for (i = 0; i < nsyms; ) {
bswap_sym(syms + i);
/* Throw away entries which we do not need. */
if (syms[i].st_shndx == SHN_UNDEF
|| syms[i].st_shndx >= SHN_LORESERVE
|| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
if (i < --nsyms) {
syms[i] = syms[nsyms];
}
} else {
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
syms[i].st_value &= ~(target_ulong)1;
#endif
syms[i].st_value += load_bias;
i++;
}
}
/* No "useful" symbol. */
if (nsyms == 0) {
goto give_up;
}
/*
* Attempt to free the storage associated with the local symbols
* that we threw away. Whether or not this has any effect on the
* memory allocation depends on the malloc implementation and how
* many symbols we managed to discard.
*/
new_syms = g_try_renew(struct elf_sym, syms, nsyms);
if (new_syms == NULL) {
goto give_up;
}
syms = new_syms;
qsort(syms, nsyms, sizeof(*syms), symcmp);
{
struct syminfo *s = g_new(struct syminfo, 1);
s->disas_strtab = strings;
s->disas_num_syms = nsyms;
#if ELF_CLASS == ELFCLASS32
s->disas_symtab.elf32 = syms;
#else
s->disas_symtab.elf64 = syms;
#endif
s->lookup_symbol = lookup_symbolxx;
s->next = syminfos;
syminfos = s;
}
return;
give_up:
g_free(strings);
g_free(syms);
}
uint32_t get_elf_eflags(int fd)
{
struct elfhdr ehdr;
off_t offset;
int ret;
/* Read ELF header */
offset = lseek(fd, 0, SEEK_SET);
if (offset == (off_t) -1) {
return 0;
}
ret = read(fd, &ehdr, sizeof(ehdr));
if (ret < sizeof(ehdr)) {
return 0;
}
offset = lseek(fd, offset, SEEK_SET);
if (offset == (off_t) -1) {
return 0;
}
/* Check ELF signature */
if (!elf_check_ident(&ehdr)) {
return 0;
}
/* check header */
bswap_ehdr(&ehdr);
if (!elf_check_ehdr(&ehdr)) {
return 0;
}
/* return architecture id */
return ehdr.e_flags;
}
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
{
/*
* We need a copy of the elf header for passing to create_elf_tables.
* We will have overwritten the original when we re-use bprm->buf
* while loading the interpreter. Allocate the storage for this now
* and let elf_load_image do any swapping that may be required.
*/
struct elfhdr ehdr;
struct image_info interp_info, vdso_info;
char *elf_interpreter = NULL;
char *scratch;
memset(&interp_info, 0, sizeof(interp_info));
#ifdef TARGET_MIPS
interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
#endif
load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
/* Do this so that we can load the interpreter, if need be. We will
change some of these later */
bprm->p = setup_arg_pages(bprm, info);
scratch = g_new0(char, TARGET_PAGE_SIZE);
if (STACK_GROWS_DOWN) {
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
bprm->p, info->stack_limit);
info->file_string = bprm->p;
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
bprm->p, info->stack_limit);
info->env_strings = bprm->p;
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
bprm->p, info->stack_limit);
info->arg_strings = bprm->p;
} else {
info->arg_strings = bprm->p;
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
bprm->p, info->stack_limit);
info->env_strings = bprm->p;
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
bprm->p, info->stack_limit);
info->file_string = bprm->p;
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
bprm->p, info->stack_limit);
}
g_free(scratch);
if (!bprm->p) {
fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
exit(-1);
}
if (elf_interpreter) {
load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
/*
* While unusual because of ELF_ET_DYN_BASE, if we are unlucky
* with the mappings the interpreter can be loaded above but
* near the main executable, which can leave very little room
* for the heap.
* If the current brk has less than 16MB, use the end of the
* interpreter.
*/
if (interp_info.brk > info->brk &&
interp_info.load_bias - info->brk < 16 * MiB) {
info->brk = interp_info.brk;
}
/* If the program interpreter is one of these two, then assume
an iBCS2 image. Otherwise assume a native linux image. */
if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
|| strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
info->personality = PER_SVR4;
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
and some applications "depend" upon this behavior. Since
we do not have the power to recompile these, we emulate
the SVr4 behavior. Sigh. */
target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
}
#ifdef TARGET_MIPS
info->interp_fp_abi = interp_info.fp_abi;
#endif
}
/*
* Load a vdso if available, which will amongst other things contain the
* signal trampolines. Otherwise, allocate a separate page for them.
*/
const VdsoImageInfo *vdso = vdso_image_info();
if (vdso) {
load_elf_vdso(&vdso_info, vdso);
info->vdso = vdso_info.load_bias;
} else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
if (tramp_page == -1) {
return -errno;
}
setup_sigtramp(tramp_page);
target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
}
bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
elf_interpreter ? &interp_info : NULL,
vdso ? &vdso_info : NULL);
info->start_stack = bprm->p;
/* If we have an interpreter, set that as the program's entry point.
Copy the load_bias as well, to help PPC64 interpret the entry
point as a function descriptor. Do this after creating elf tables
so that we copy the original program entry point into the AUXV. */
if (elf_interpreter) {
info->load_bias = interp_info.load_bias;
info->entry = interp_info.entry;
g_free(elf_interpreter);
}
#ifdef USE_ELF_CORE_DUMP
bprm->core_dump = &elf_core_dump;
#endif
return 0;
}
#ifdef USE_ELF_CORE_DUMP
/*
* Definitions to generate Intel SVR4-like core files.
* These mostly have the same names as the SVR4 types with "target_elf_"
* tacked on the front to prevent clashes with linux definitions,
* and the typedef forms have been avoided. This is mostly like
* the SVR4 structure, but more Linuxy, with things that Linux does
* not support and which gdb doesn't really use excluded.
*
* Fields we don't dump (their contents is zero) in linux-user qemu
* are marked with XXX.
*
* Core dump code is copied from linux kernel (fs/binfmt_elf.c).
*
* Porting ELF coredump for target is (quite) simple process. First you
* define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
* the target resides):
*
* #define USE_ELF_CORE_DUMP
*
* Next you define type of register set used for dumping. ELF specification
* says that it needs to be array of elf_greg_t that has size of ELF_NREG.
*
* typedef <target_regtype> target_elf_greg_t;
* #define ELF_NREG <number of registers>
* typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
*
* Last step is to implement target specific function that copies registers
* from given cpu into just specified register set. Prototype is:
*
* static void elf_core_copy_regs(taret_elf_gregset_t *regs,
* const CPUArchState *env);
*
* Parameters:
* regs - copy register values into here (allocated and zeroed by caller)
* env - copy registers from here
*
* Example for ARM target is provided in this file.
*/
/* An ELF note in memory */
struct memelfnote {
const char *name;
size_t namesz;
size_t namesz_rounded;
int type;
size_t datasz;
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
size_t datasz_rounded;
void *data;
size_t notesz;
};
struct target_elf_siginfo {
abi_int si_signo; /* signal number */
abi_int si_code; /* extra code */
abi_int si_errno; /* errno */
};
struct target_elf_prstatus {
struct target_elf_siginfo pr_info; /* Info associated with signal */
abi_short pr_cursig; /* Current signal */
abi_ulong pr_sigpend; /* XXX */
abi_ulong pr_sighold; /* XXX */
target_pid_t pr_pid;
target_pid_t pr_ppid;
target_pid_t pr_pgrp;
target_pid_t pr_sid;
struct target_timeval pr_utime; /* XXX User time */
struct target_timeval pr_stime; /* XXX System time */
struct target_timeval pr_cutime; /* XXX Cumulative user time */
struct target_timeval pr_cstime; /* XXX Cumulative system time */
target_elf_gregset_t pr_reg; /* GP registers */
abi_int pr_fpvalid; /* XXX */
};
#define ELF_PRARGSZ (80) /* Number of chars for args */
struct target_elf_prpsinfo {
char pr_state; /* numeric process state */
char pr_sname; /* char for pr_state */
char pr_zomb; /* zombie */
char pr_nice; /* nice val */
abi_ulong pr_flag; /* flags */
target_uid_t pr_uid;
target_gid_t pr_gid;
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
/* Lots missing */
char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
};
/* Here is the structure in which status of each thread is captured. */
struct elf_thread_status {
QTAILQ_ENTRY(elf_thread_status) ets_link;
struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
#if 0
elf_fpregset_t fpu; /* NT_PRFPREG */
struct task_struct *thread;
elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
#endif
struct memelfnote notes[1];
int num_notes;
};
#define NUMNOTES 3
struct elf_note_info {
struct memelfnote notes[NUMNOTES];
struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
struct target_elf_prpsinfo psinfo; /* NT_PRPSINFO */
QTAILQ_HEAD(, elf_thread_status) thread_list;
#if 0
/*
* Current version of ELF coredump doesn't support
* dumping fp regs etc.
*/
elf_fpregset_t *fpu;
elf_fpxregset_t *xfpu;
int thread_status_size;
#endif
int notes_size;
int numnote;
};
struct vm_area_struct {
target_ulong vma_start; /* start vaddr of memory region */
target_ulong vma_end; /* end vaddr of memory region */
abi_ulong vma_flags; /* protection etc. flags for the region */
QTAILQ_ENTRY(vm_area_struct) vma_link;
};
struct mm_struct {
QTAILQ_HEAD(, vm_area_struct) mm_mmap;
int mm_count; /* number of mappings */
};
static void vma_init(struct mm_struct *);
static void vma_delete(struct mm_struct *);
static int vma_add_mapping(struct mm_struct *, target_ulong,
target_ulong, abi_ulong);
static int vma_get_mapping_count(const struct mm_struct *);
static struct vm_area_struct *vma_first(const struct mm_struct *);
static struct vm_area_struct *vma_next(struct vm_area_struct *);
static abi_ulong vma_dump_size(const struct vm_area_struct *);
static int vma_walker(void *priv, target_ulong start, target_ulong end,
unsigned long flags);
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
static void fill_note(struct memelfnote *, const char *, int,
unsigned int, void *);
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
static void fill_auxv_note(struct memelfnote *, const TaskState *);
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
static size_t note_size(const struct memelfnote *);
static void free_note_info(struct elf_note_info *);
static void fill_note_info(struct elf_note_info *, int, const CPUArchState *);
static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
static int dump_write(int, const void *, size_t);
static int write_note(struct memelfnote *, int);
static int write_note_info(struct elf_note_info *, int);
#ifdef BSWAP_NEEDED
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
{
prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
prstatus->pr_pid = tswap32(prstatus->pr_pid);
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
prstatus->pr_sid = tswap32(prstatus->pr_sid);
/* cpu times are not filled, so we skip them */
/* regs should be in correct format already */
prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
}
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
{
psinfo->pr_flag = tswapal(psinfo->pr_flag);
psinfo->pr_uid = tswap16(psinfo->pr_uid);
psinfo->pr_gid = tswap16(psinfo->pr_gid);
psinfo->pr_pid = tswap32(psinfo->pr_pid);
psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
psinfo->pr_sid = tswap32(psinfo->pr_sid);
}
static void bswap_note(struct elf_note *en)
{
bswap32s(&en->n_namesz);
bswap32s(&en->n_descsz);
bswap32s(&en->n_type);
}
#else
static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
static inline void bswap_note(struct elf_note *en) { }
#endif /* BSWAP_NEEDED */
/*
* Minimal support for linux memory regions. These are needed
* when we are finding out what memory exactly belongs to
* emulated process. No locks needed here, as long as
* thread that received the signal is stopped.
*/
static void vma_init(struct mm_struct *mm)
{
mm->mm_count = 0;
QTAILQ_INIT(&mm->mm_mmap);
}
static void vma_delete(struct mm_struct *mm)
{
struct vm_area_struct *vma;
while ((vma = vma_first(mm)) != NULL) {
QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
g_free(vma);
}
}
static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
target_ulong end, abi_ulong flags)
{
struct vm_area_struct *vma;
if ((vma = g_malloc0(sizeof (*vma))) == NULL)
return (-1);
vma->vma_start = start;
vma->vma_end = end;
vma->vma_flags = flags;
QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
mm->mm_count++;
return (0);
}
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
{
return (QTAILQ_FIRST(&mm->mm_mmap));
}
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
{
return (QTAILQ_NEXT(vma, vma_link));
}
static int vma_get_mapping_count(const struct mm_struct *mm)
{
return (mm->mm_count);
}
/*
* Calculate file (dump) size of given memory region.
*/
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
{
/* if we cannot even read the first page, skip it */
if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
return (0);
/*
* Usually we don't dump executable pages as they contain
* non-writable code that debugger can read directly from
* target library etc. However, thread stacks are marked
* also executable so we read in first page of given region
* and check whether it contains elf header. If there is
* no elf header, we dump it.
*/
if (vma->vma_flags & PROT_EXEC) {
char page[TARGET_PAGE_SIZE];
if (copy_from_user(page, vma->vma_start, sizeof (page))) {
return 0;
}
if ((page[EI_MAG0] == ELFMAG0) &&
(page[EI_MAG1] == ELFMAG1) &&
(page[EI_MAG2] == ELFMAG2) &&
(page[EI_MAG3] == ELFMAG3)) {
/*
* Mappings are possibly from ELF binary. Don't dump
* them.
*/
return (0);
}
}
return (vma->vma_end - vma->vma_start);
}
static int vma_walker(void *priv, target_ulong start, target_ulong end,
unsigned long flags)
{
struct mm_struct *mm = (struct mm_struct *)priv;
vma_add_mapping(mm, start, end, flags);
return (0);
}
static void fill_note(struct memelfnote *note, const char *name, int type,
unsigned int sz, void *data)
{
unsigned int namesz;
namesz = strlen(name) + 1;
note->name = name;
note->namesz = namesz;
note->namesz_rounded = roundup(namesz, sizeof (int32_t));
note->type = type;
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
note->datasz = sz;
note->datasz_rounded = roundup(sz, sizeof (int32_t));
note->data = data;
/*
* We calculate rounded up note size here as specified by
* ELF document.
*/
note->notesz = sizeof (struct elf_note) +
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
note->namesz_rounded + note->datasz_rounded;
}
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
uint32_t flags)
{
(void) memset(elf, 0, sizeof(*elf));
(void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
elf->e_ident[EI_CLASS] = ELF_CLASS;
elf->e_ident[EI_DATA] = ELF_DATA;
elf->e_ident[EI_VERSION] = EV_CURRENT;
elf->e_ident[EI_OSABI] = ELF_OSABI;
elf->e_type = ET_CORE;
elf->e_machine = machine;
elf->e_version = EV_CURRENT;
elf->e_phoff = sizeof(struct elfhdr);
elf->e_flags = flags;
elf->e_ehsize = sizeof(struct elfhdr);
elf->e_phentsize = sizeof(struct elf_phdr);
elf->e_phnum = segs;
bswap_ehdr(elf);
}
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
{
phdr->p_type = PT_NOTE;
phdr->p_offset = offset;
phdr->p_vaddr = 0;
phdr->p_paddr = 0;
phdr->p_filesz = sz;
phdr->p_memsz = 0;
phdr->p_flags = 0;
phdr->p_align = 0;
bswap_phdr(phdr, 1);
}
static size_t note_size(const struct memelfnote *note)
{
return (note->notesz);
}
static void fill_prstatus(struct target_elf_prstatus *prstatus,
const TaskState *ts, int signr)
{
(void) memset(prstatus, 0, sizeof (*prstatus));
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
prstatus->pr_pid = ts->ts_tid;
prstatus->pr_ppid = getppid();
prstatus->pr_pgrp = getpgrp();
prstatus->pr_sid = getsid(0);
bswap_prstatus(prstatus);
}
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
{
char *base_filename;
unsigned int i, len;
(void) memset(psinfo, 0, sizeof (*psinfo));
len = ts->info->env_strings - ts->info->arg_strings;
if (len >= ELF_PRARGSZ)
len = ELF_PRARGSZ - 1;
if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
return -EFAULT;
}
for (i = 0; i < len; i++)
if (psinfo->pr_psargs[i] == 0)
psinfo->pr_psargs[i] = ' ';
psinfo->pr_psargs[len] = 0;
psinfo->pr_pid = getpid();
psinfo->pr_ppid = getppid();
psinfo->pr_pgrp = getpgrp();
psinfo->pr_sid = getsid(0);
psinfo->pr_uid = getuid();
psinfo->pr_gid = getgid();
base_filename = g_path_get_basename(ts->bprm->filename);
/*
* Using strncpy here is fine: at max-length,
* this field is not NUL-terminated.
*/
(void) strncpy(psinfo->pr_fname, base_filename,
sizeof(psinfo->pr_fname));
g_free(base_filename);
bswap_psinfo(psinfo);
return (0);
}
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
{
elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
elf_addr_t orig_auxv = auxv;
void *ptr;
int len = ts->info->auxv_len;
/*
* Auxiliary vector is stored in target process stack. It contains
* {type, value} pairs that we need to dump into note. This is not
* strictly necessary but we do it here for sake of completeness.
*/
/* read in whole auxv vector and copy it to memelfnote */
ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
if (ptr != NULL) {
fill_note(note, "CORE", NT_AUXV, len, ptr);
unlock_user(ptr, auxv, len);
}
}
/*
* Constructs name of coredump file. We have following convention
* for the name:
* qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
*
* Returns the filename
*/
static char *core_dump_filename(const TaskState *ts)
{
g_autoptr(GDateTime) now = g_date_time_new_now_local();
g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
return g_strdup_printf("qemu_%s_%s_%d.core",
base_filename, nowstr, (int)getpid());
}
static int dump_write(int fd, const void *ptr, size_t size)
{
const char *bufp = (const char *)ptr;
ssize_t bytes_written, bytes_left;
struct rlimit dumpsize;
off_t pos;
bytes_written = 0;
getrlimit(RLIMIT_CORE, &dumpsize);
if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
if (errno == ESPIPE) { /* not a seekable stream */
bytes_left = size;
} else {
return pos;
}
} else {
if (dumpsize.rlim_cur <= pos) {
return -1;
} else if (dumpsize.rlim_cur == RLIM_INFINITY) {
bytes_left = size;
} else {
size_t limit_left=dumpsize.rlim_cur - pos;
bytes_left = limit_left >= size ? size : limit_left ;
}
}
/*
* In normal conditions, single write(2) should do but
* in case of socket etc. this mechanism is more portable.
*/
do {
bytes_written = write(fd, bufp, bytes_left);
if (bytes_written < 0) {
if (errno == EINTR)
continue;
return (-1);
} else if (bytes_written == 0) { /* eof */
return (-1);
}
bufp += bytes_written;
bytes_left -= bytes_written;
} while (bytes_left > 0);
return (0);
}
static int write_note(struct memelfnote *men, int fd)
{
struct elf_note en;
en.n_namesz = men->namesz;
en.n_type = men->type;
en.n_descsz = men->datasz;
bswap_note(&en);
if (dump_write(fd, &en, sizeof(en)) != 0)
return (-1);
if (dump_write(fd, men->name, men->namesz_rounded) != 0)
return (-1);
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
if (dump_write(fd, men->data, men->datasz_rounded) != 0)
return (-1);
return (0);
}
static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
{
CPUState *cpu = env_cpu((CPUArchState *)env);
TaskState *ts = (TaskState *)cpu->opaque;
struct elf_thread_status *ets;
ets = g_malloc0(sizeof (*ets));
ets->num_notes = 1; /* only prstatus is dumped */
fill_prstatus(&ets->prstatus, ts, 0);
elf_core_copy_regs(&ets->prstatus.pr_reg, env);
fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
&ets->prstatus);
QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
info->notes_size += note_size(&ets->notes[0]);
}
static void fill_note_info(struct elf_note_info *info,
int signr, const CPUArchState *env)
{
CPUState *cpu = env_cpu((CPUArchState *)env);
TaskState *ts = (TaskState *)cpu->opaque;
memset(info, 0, sizeof (*info));
QTAILQ_INIT(&info->thread_list);
/*
* First fill in status (and registers) of current thread
* including process info & aux vector.
*/
fill_prstatus(&info->prstatus, ts, signr);
elf_core_copy_regs(&info->prstatus.pr_reg, env);
fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
sizeof(info->prstatus), &info->prstatus);
fill_psinfo(&info->psinfo, ts);
fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
sizeof(info->psinfo), &info->psinfo);
fill_auxv_note(&info->notes[2], ts);
info->numnote = 3;
info->notes_size = 0;
for (int i = 0; i < info->numnote; i++) {
info->notes_size += note_size(&info->notes[i]);
}
/* read and fill status of all threads */
WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
CPU_FOREACH(cpu) {
if (cpu == thread_cpu) {
continue;
}
fill_thread_info(info, cpu_env(cpu));
}
}
}
static void free_note_info(struct elf_note_info *info)
{
struct elf_thread_status *ets;
while (!QTAILQ_EMPTY(&info->thread_list)) {
ets = QTAILQ_FIRST(&info->thread_list);
QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
g_free(ets);
}
}
static int write_note_info(struct elf_note_info *info, int fd)
{
struct elf_thread_status *ets;
int i, error = 0;
/* write prstatus, psinfo and auxv for current thread */
for (i = 0; i < info->numnote; i++)
if ((error = write_note(&info->notes[i], fd)) != 0)
return (error);
/* write prstatus for each thread */
QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
if ((error = write_note(&ets->notes[0], fd)) != 0)
return (error);
}
return (0);
}
/*
* Write out ELF coredump.
*
* See documentation of ELF object file format in:
* http://www.caldera.com/developers/devspecs/gabi41.pdf
*
* Coredump format in linux is following:
*
* 0 +----------------------+ \
* | ELF header | ET_CORE |
* +----------------------+ |
* | ELF program headers | |--- headers
* | - NOTE section | |
* | - PT_LOAD sections | |
* +----------------------+ /
* | NOTEs: |
* | - NT_PRSTATUS |
* | - NT_PRSINFO |
* | - NT_AUXV |
* +----------------------+ <-- aligned to target page
* | Process memory dump |
* : :
* . .
* : :
* | |
* +----------------------+
*
* NT_PRSTATUS -> struct elf_prstatus (per thread)
* NT_PRSINFO -> struct elf_prpsinfo
* NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
*
* Format follows System V format as close as possible. Current
* version limitations are as follows:
* - no floating point registers are dumped
*
* Function returns 0 in case of success, negative errno otherwise.
*
* TODO: make this work also during runtime: it should be
* possible to force coredump from running process and then
* continue processing. For example qemu could set up SIGUSR2
* handler (provided that target process haven't registered
* handler for that) that does the dump when signal is received.
*/
static int elf_core_dump(int signr, const CPUArchState *env)
{
const CPUState *cpu = env_cpu((CPUArchState *)env);
const TaskState *ts = (const TaskState *)cpu->opaque;
struct vm_area_struct *vma = NULL;
struct elf_note_info info;
struct elfhdr elf;
struct elf_phdr phdr;
struct rlimit dumpsize;
struct mm_struct mm;
off_t offset = 0, data_offset = 0;
int segs = 0;
int fd = -1;
int ret;
if (prctl(PR_GET_DUMPABLE) == 0) {
return 0;
}
if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
return 0;
}
/*
* Walk through target process memory mappings and
* set up structure containing this information. After
* this point vma_xxx functions can be used.
*/
vma_init(&mm);
{
g_autofree char *corefile = core_dump_filename(ts);
fd = open(corefile, O_WRONLY | O_CREAT,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
}
if (fd < 0) {
goto out;
}
walk_memory_regions(&mm, vma_walker);
segs = vma_get_mapping_count(&mm);
/*
* Construct valid coredump ELF header. We also
* add one more segment for notes.
*/
fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
if (dump_write(fd, &elf, sizeof (elf)) != 0)
goto out;
/* fill in the in-memory version of notes */
fill_note_info(&info, signr, env);
offset += sizeof (elf); /* elf header */
offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
/* write out notes program header */
fill_elf_note_phdr(&phdr, info.notes_size, offset);
offset += info.notes_size;
if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
goto out;
/*
* ELF specification wants data to start at page boundary so
* we align it here.
*/
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
/*
* Write program headers for memory regions mapped in
* the target process.
*/
for (vma = vma_first(&mm); vma != NULL; vma = vma_next(vma)) {
(void) memset(&phdr, 0, sizeof (phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = offset;
phdr.p_vaddr = vma->vma_start;
phdr.p_paddr = 0;
phdr.p_filesz = vma_dump_size(vma);
offset += phdr.p_filesz;
phdr.p_memsz = vma->vma_end - vma->vma_start;
phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
if (vma->vma_flags & PROT_WRITE)
phdr.p_flags |= PF_W;
if (vma->vma_flags & PROT_EXEC)
phdr.p_flags |= PF_X;
phdr.p_align = ELF_EXEC_PAGESIZE;
linux-user: correct core dump format This patch allows to really use the core dumped by qemu with guest architecture tools. - it adds a missing bswap_phdr() for the program headers of memory regions. "objdump -x" sample: BEFORE: 0x1000000 off 0x00200000 vaddr 0x00000400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00100000 flags --- 0x1000000 off 0x00200000 vaddr 0x00100400 paddr 0x00000000 align 2**21 filesz 0x00000000 memsz 0x00080000 flags --- 6000000 AFTER: LOAD off 0x00002000 vaddr 0x00040000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00001000 flags --- LOAD off 0x00002000 vaddr 0x00041000 paddr 0x00000000 align 2**13 filesz 0x00000000 memsz 0x00000800 flags rw- - it doesn't pad the note size to sizeof(int32_t). On m68k the NT_PRSTATUS note size is 154 and must not be rounded up to 156, because this value is checked by objdump and gdb. "gdb" symptoms: "warning: Couldn't find general-purpose registers in core file." "objdump -x" sample: BEFORE: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 2 proc1 00100000 00000400 00000000 00200000 2**10 READONLY AFTER: Sections: Idx Name Size VMA LMA File off Algn 0 note0 000001c4 00000000 00000000 000003b4 2**0 CONTENTS, READONLY 1 .reg/19022 00000050 00000000 00000000 0000040e 2**2 CONTENTS 2 .reg 00000050 00000000 00000000 0000040e 2**2 CONTENTS 3 .auxv 00000070 00000000 00000000 00000508 2**2 CONTENTS 4 load1 00000000 00040000 00000000 00002000 2**13 ALLOC, READONLY Signed-off-by: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Riku Voipio <riku.voipio@nokia.com>
2011-02-14 01:37:35 +03:00
bswap_phdr(&phdr, 1);
if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
goto out;
}
}
/*
* Next we write notes just after program headers. No
* alignment needed here.
*/
if (write_note_info(&info, fd) < 0)
goto out;
/* align data to page boundary */
if (lseek(fd, data_offset, SEEK_SET) != data_offset)
goto out;
/*
* Finally we can dump process memory into corefile as well.
*/
for (vma = vma_first(&mm); vma != NULL; vma = vma_next(vma)) {
abi_ulong addr;
abi_ulong end;
end = vma->vma_start + vma_dump_size(vma);
for (addr = vma->vma_start; addr < end;
addr += TARGET_PAGE_SIZE) {
char page[TARGET_PAGE_SIZE];
int error;
/*
* Read in page from target process memory and
* write it to coredump file.
*/
error = copy_from_user(page, addr, sizeof (page));
if (error != 0) {
(void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
addr);
errno = -error;
goto out;
}
if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
goto out;
}
}
errno = 0;
out:
ret = -errno;
free_note_info(&info);
vma_delete(&mm);
close(fd);
return ret;
}
#endif /* USE_ELF_CORE_DUMP */
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
init_thread(regs, infop);
}