qemu/target/arm/op_helper.c

938 lines
27 KiB
C
Raw Normal View History

/*
* ARM helper routines
*
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)
static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = env_cpu(env);
if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
/*
* Redirect NS EL1 exceptions to NS EL2. These are reported with
* their original syndrome register value, with the exception of
* SIMD/FP access traps, which are reported as uncategorized
* (see DDI0478C.a D1.10.4)
*/
target_el = 2;
if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
syndrome = syn_uncategorized();
}
}
assert(!excp_is_internal(excp));
cs->exception_index = excp;
env->exception.syndrome = syndrome;
env->exception.target_el = target_el;
return cs;
}
void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
cpu_loop_exit(cs);
}
void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
uint32_t target_el, uintptr_t ra)
{
CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
cpu_loop_exit_restore(cs, ra);
}
uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
uint32_t maxindex)
{
uint32_t val, shift;
uint64_t *table = vn;
val = 0;
for (shift = 0; shift < 32; shift += 8) {
uint32_t index = (ireg >> shift) & 0xff;
if (index < maxindex) {
uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
val |= tmp << shift;
} else {
val |= def & (0xff << shift);
}
}
return val;
}
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
/*
* Perform the v8M stack limit check for SP updates from translated code,
* raising an exception if the limit is breached.
*/
if (newvalue < v7m_sp_limit(env)) {
CPUState *cs = env_cpu(env);
/*
* Stack limit exceptions are a rare case, so rather than syncing
* PC/condbits before the call, we use cpu_restore_state() to
* get them right before raising the exception.
*/
cpu_restore_state(cs, GETPC(), true);
raise_exception(env, EXCP_STKOF, 0, 1);
}
}
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
env->QF = 1;
return res;
}
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
env->QF = 1;
res = ~0;
}
return res;
}
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
env->QF = 1;
res = 0;
}
return res;
}
/* Signed saturation. */
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
{
int32_t top;
uint32_t mask;
top = val >> shift;
mask = (1u << shift) - 1;
if (top > 0) {
env->QF = 1;
return mask;
} else if (top < -1) {
env->QF = 1;
return ~mask;
}
return val;
}
/* Unsigned saturation. */
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
{
uint32_t max;
max = (1u << shift) - 1;
if (val < 0) {
env->QF = 1;
return 0;
} else if (val > max) {
env->QF = 1;
return max;
}
return val;
}
/* Signed saturate. */
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_ssat(env, x, shift);
}
/* Dual halfword signed saturate. */
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_ssat(env, (int16_t)x, shift);
res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
/* Unsigned saturate. */
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_usat(env, x, shift);
}
/* Dual halfword unsigned saturate. */
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_usat(env, (int16_t)x, shift);
res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
void HELPER(setend)(CPUARMState *env)
{
env->uncached_cpsr ^= CPSR_E;
arm_rebuild_hflags(env);
}
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
* The function returns the target EL (1-3) if the instruction is to be trapped;
* otherwise it returns 0 indicating it is not trapped.
*/
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
int cur_el = arm_current_el(env);
uint64_t mask;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile cores can never trap WFI/WFE. */
return 0;
}
/* If we are currently in EL0 then we need to check if SCTLR is set up for
* WFx instructions being trapped to EL1. These trap bits don't exist in v7.
*/
if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
int target_el;
mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
/* Secure EL0 and Secure PL1 is at EL3 */
target_el = 3;
} else {
target_el = 1;
}
if (!(env->cp15.sctlr_el[target_el] & mask)) {
return target_el;
}
}
/* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
* No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
* bits will be zero indicating no trap.
*/
if (cur_el < 2) {
mask = is_wfe ? HCR_TWE : HCR_TWI;
if (arm_hcr_el2_eff(env) & mask) {
return 2;
}
}
/* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
if (cur_el < 3) {
mask = (is_wfe) ? SCR_TWE : SCR_TWI;
if (env->cp15.scr_el3 & mask) {
return 3;
}
}
return 0;
}
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
CPUState *cs = env_cpu(env);
int target_el = check_wfx_trap(env, false);
if (cpu_has_work(cs)) {
/* Don't bother to go into our "low power state" if
* we would just wake up immediately.
*/
return;
}
if (target_el) {
if (env->aarch64) {
env->pc -= insn_len;
} else {
env->regs[15] -= insn_len;
}
raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
target_el);
}
cs->exception_index = EXCP_HLT;
cs->halted = 1;
cpu_loop_exit(cs);
}
void HELPER(wfe)(CPUARMState *env)
{
/* This is a hint instruction that is semantically different
* from YIELD even though we currently implement it identically.
* Don't actually halt the CPU, just yield back to top
* level loop. This is not going into a "low power state"
* (ie halting until some event occurs), so we never take
* a configurable trap to a different exception level.
*/
HELPER(yield)(env);
}
void HELPER(yield)(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
* top level loop so that a more deserving VCPU has a chance to run.
*/
cs->exception_index = EXCP_YIELD;
cpu_loop_exit(cs);
}
/* Raise an internal-to-QEMU exception. This is limited to only
* those EXCP values which are special cases for QEMU to interrupt
* execution and not to be used for exceptions which are passed to
* the guest (those must all have syndrome information and thus should
* use exception_with_syndrome).
*/
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
CPUState *cs = env_cpu(env);
assert(excp_is_internal(excp));
cs->exception_index = excp;
cpu_loop_exit(cs);
}
/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
raise_exception(env, excp, syndrome, target_el);
}
/* Raise an EXCP_BKPT with the specified syndrome register value,
* targeting the correct exception level for debug exceptions.
*/
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
{
int debug_el = arm_debug_target_el(env);
int cur_el = arm_current_el(env);
/* FSR will only be used if the debug target EL is AArch32. */
env->exception.fsr = arm_debug_exception_fsr(env);
/* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
* values to the guest that it shouldn't be able to see at its
* exception/security level.
*/
env->exception.vaddress = 0;
/*
* Other kinds of architectural debug exception are ignored if
* they target an exception level below the current one (in QEMU
* this is checked by arm_generate_debug_exceptions()). Breakpoint
* instructions are special because they always generate an exception
* to somewhere: if they can't go to the configured debug exception
* level they are taken to the current exception level.
*/
if (debug_el < cur_el) {
debug_el = cur_el;
}
raise_exception(env, EXCP_BKPT, syndrome, debug_el);
}
uint32_t HELPER(cpsr_read)(CPUARMState *env)
{
/*
* We store the ARMv8 PSTATE.SS bit in env->uncached_cpsr.
* This is convenient for populating SPSR_ELx, but must be
* hidden from aarch32 mode, where it is not visible.
*
* TODO: ARMv8.4-DIT -- need to move SS somewhere else.
*/
return cpsr_read(env) & ~(CPSR_EXEC | PSTATE_SS);
}
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
{
cpsr_write(env, val, mask, CPSRWriteByInstr);
/* TODO: Not all cpsr bits are relevant to hflags. */
arm_rebuild_hflags(env);
}
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
uint32_t mask;
qemu_mutex_lock_iothread();
arm_call_pre_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
/* Generated code has already stored the new PC value, but
* without masking out its low bits, because which bits need
* masking depends on whether we're returning to Thumb or ARM
* state. Do the masking now.
*/
env->regs[15] &= (env->thumb ? ~1 : ~3);
arm_rebuild_hflags(env);
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
qemu_mutex_lock_iothread();
arm_call_el_change_hook(env_archcpu(env));
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
qemu_mutex_unlock_iothread();
}
/* Access to user mode registers from privileged modes. */
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
{
uint32_t val;
if (regno == 13) {
val = env->banked_r13[BANK_USRSYS];
} else if (regno == 14) {
val = env->banked_r14[BANK_USRSYS];
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
val = env->usr_regs[regno - 8];
} else {
val = env->regs[regno];
}
return val;
}
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
{
if (regno == 13) {
env->banked_r13[BANK_USRSYS] = val;
} else if (regno == 14) {
env->banked_r14[BANK_USRSYS] = val;
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = val;
} else {
env->regs[regno] = val;
}
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
/* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
* Other UNPREDICTABLE and UNDEF cases were caught at translate time.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
uint32_t regno)
{
/* Raise an exception if the requested access is one of the UNPREDICTABLE
* cases; otherwise return. This broadly corresponds to the pseudocode
* BankedRegisterAccessValid() and SPSRAccessValid(),
* except that we have already handled some cases at translate time.
*/
int curmode = env->uncached_cpsr & CPSR_M;
if (regno == 17) {
/* ELR_Hyp: a special case because access from tgtmode is OK */
if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
goto undef;
}
return;
}
if (curmode == tgtmode) {
goto undef;
}
if (tgtmode == ARM_CPU_MODE_USR) {
switch (regno) {
case 8 ... 12:
if (curmode != ARM_CPU_MODE_FIQ) {
goto undef;
}
break;
case 13:
if (curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
case 14:
if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
default:
break;
}
}
if (tgtmode == ARM_CPU_MODE_HYP) {
/* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
if (curmode != ARM_CPU_MODE_MON) {
goto undef;
}
}
return;
undef:
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
env->banked_spsr[bank_number(tgtmode)] = value;
break;
case 17: /* ELR_Hyp */
env->elr_el[2] = value;
break;
case 13:
env->banked_r13[bank_number(tgtmode)] = value;
break;
case 14:
env->banked_r14[r14_bank_number(tgtmode)] = value;
break;
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
env->usr_regs[regno - 8] = value;
break;
case ARM_CPU_MODE_FIQ:
env->fiq_regs[regno - 8] = value;
break;
default:
g_assert_not_reached();
}
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
return env->banked_spsr[bank_number(tgtmode)];
case 17: /* ELR_Hyp */
return env->elr_el[2];
case 13:
return env->banked_r13[bank_number(tgtmode)];
case 14:
return env->banked_r14[r14_bank_number(tgtmode)];
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
return env->usr_regs[regno - 8];
case ARM_CPU_MODE_FIQ:
return env->fiq_regs[regno - 8];
default:
g_assert_not_reached();
}
default:
g_assert_not_reached();
}
}
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
uint32_t isread)
{
const ARMCPRegInfo *ri = rip;
int target_el;
if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
&& extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
}
/*
* Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
* to sysregs non accessible at EL0 to have UNDEF-ed already.
*/
if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
uint32_t mask = 1 << ri->crn;
if (ri->type & ARM_CP_64BIT) {
mask = 1 << ri->crm;
}
/* T4 and T14 are RES0 */
mask &= ~((1 << 4) | (1 << 14));
if (env->cp15.hstr_el2 & mask) {
target_el = 2;
goto exept;
}
}
if (!ri->accessfn) {
return;
}
switch (ri->accessfn(env, ri, isread)) {
case CP_ACCESS_OK:
return;
case CP_ACCESS_TRAP:
target_el = exception_target_el(env);
break;
case CP_ACCESS_TRAP_EL2:
/* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
* a bug in the access function.
*/
assert(!arm_is_secure(env) && arm_current_el(env) != 3);
target_el = 2;
break;
case CP_ACCESS_TRAP_EL3:
target_el = 3;
break;
case CP_ACCESS_TRAP_UNCATEGORIZED:
target_el = exception_target_el(env);
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
target_el = 2;
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
target_el = 3;
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_FP_EL2:
target_el = 2;
/* Since we are an implementation that takes exceptions on a trapped
* conditional insn only if the insn has passed its condition code
* check, we take the IMPDEF choice to always report CV=1 COND=0xe
* (which is also the required value for AArch64 traps).
*/
syndrome = syn_fp_access_trap(1, 0xe, false);
break;
case CP_ACCESS_TRAP_FP_EL3:
target_el = 3;
syndrome = syn_fp_access_trap(1, 0xe, false);
break;
default:
g_assert_not_reached();
}
exept:
raise_exception(env, EXCP_UDEF, syndrome, target_el);
}
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
const ARMCPRegInfo *ri = rip;
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
uint32_t res;
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
const ARMCPRegInfo *ri = rip;
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
uint64_t res;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
tcg: drop global lock during TCG code execution This finally allows TCG to benefit from the iothread introduction: Drop the global mutex while running pure TCG CPU code. Reacquire the lock when entering MMIO or PIO emulation, or when leaving the TCG loop. We have to revert a few optimization for the current TCG threading model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not kicking it in qemu_cpu_kick. We also need to disable RAM block reordering until we have a more efficient locking mechanism at hand. Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here. These numbers demonstrate where we gain something: 20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm 20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm The guest CPU was fully loaded, but the iothread could still run mostly independent on a second core. Without the patch we don't get beyond 32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm 32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm We don't benefit significantly, though, when the guest is not fully loading a host CPU. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com> [FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex] Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com> [EGC: fixed iothread lock for cpu-exec IRQ handling] Signed-off-by: Emilio G. Cota <cota@braap.org> [AJB: -smp single-threaded fix, clean commit msg, BQL fixes] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com> [PM: target-arm changes] Acked-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-23 21:29:11 +03:00
return res;
}
void HELPER(pre_hvc)(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
bool undef;
if (arm_is_psci_call(cpu, EXCP_HVC)) {
/* If PSCI is enabled and this looks like a valid PSCI call then
* that overrides the architecturally mandated HVC behaviour.
*/
return;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* If EL2 doesn't exist, HVC always UNDEFs */
undef = true;
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* EL3.HCE has priority over EL2.HCD. */
undef = !(env->cp15.scr_el3 & SCR_HCE);
} else {
undef = env->cp15.hcr_el2 & HCR_HCD;
}
/* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
* For ARMv8/AArch64, HVC is allowed in EL3.
* Note that we've already trapped HVC from EL0 at translation
* time.
*/
if (secure && (!is_a64(env) || cur_el == 1)) {
undef = true;
}
if (undef) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
/*
* SMC behaviour is summarized in the following table.
* This helper handles the "Trap to EL2" and "Undef insn" cases.
* The "Trap to EL3" and "PSCI call" cases are handled in the exception
* helper.
*
* -> ARM_FEATURE_EL3 and !SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Trap to EL3
* Conduit not SMC Trap to EL2 Trap to EL3
*
*
* -> ARM_FEATURE_EL3 and SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Trap to EL2 Undef insn
*
*
* -> !ARM_FEATURE_EL3
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Undef insn Undef insn
*/
/* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
* On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
* extensions, SMD only applies to NS state.
* On ARMv7 without the Virtualization extensions, the SMD bit
* doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
* so we need not special case this here.
*/
bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
: smd_flag && !secure;
if (!arm_feature(env, ARM_FEATURE_EL3) &&
cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
/* If we have no EL3 then SMC always UNDEFs and can't be
* trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
* firmware within QEMU, and we want an EL2 guest to be able
* to forbid its EL1 from making PSCI calls into QEMU's
* "firmware" via HCR.TSC, so for these purposes treat
* PSCI-via-SMC as implying an EL3.
* This handles the very last line of the previous table.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
/* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
* We also want an EL2 guest to be able to forbid its EL1 from
* making PSCI calls into QEMU's "firmware" via HCR.TSC.
* This handles all the "Trap to EL2" cases of the previous table.
*/
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
}
/* Catch the two remaining "Undef insn" cases of the previous table:
* - PSCI conduit is SMC but we don't have a valid PCSI call,
* - We don't have EL3 or SMD is set.
*/
if (!arm_is_psci_call(cpu, EXCP_SMC) &&
(smd || !arm_feature(env, ARM_FEATURE_EL3))) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
The only way to do that in TCG is a conditional branch, which clobbers
all our temporaries. For now implement these as helper functions. */
/* Similarly for variable shift instructions. */
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = x & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (32 - shift)) & 1;
return x << shift;
}
return x;
}
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (x >> 31) & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return x >> shift;
}
return x;
}
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
env->CF = (x >> 31) & 1;
return (int32_t)x >> 31;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return (int32_t)x >> shift;
}
return x;
}
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift1, shift;
shift1 = i & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (x >> 31) & 1;
return x;
} else {
env->CF = (x >> (shift - 1)) & 1;
return ((uint32_t)x >> shift) | (x << (32 - shift));
}
}