qemu/hw/apic.c

454 lines
11 KiB
C
Raw Normal View History

/*
* APIC support
*
* Copyright (c) 2004-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "vl.h"
//#define DEBUG_APIC
/* APIC Local Vector Table */
#define APIC_LVT_TIMER 0
#define APIC_LVT_THERMAL 1
#define APIC_LVT_PERFORM 2
#define APIC_LVT_LINT0 3
#define APIC_LVT_LINT1 4
#define APIC_LVT_ERROR 5
#define APIC_LVT_NB 6
/* APIC delivery modes */
#define APIC_DM_FIXED 0
#define APIC_DM_LOWPRI 1
#define APIC_DM_SMI 2
#define APIC_DM_NMI 4
#define APIC_DM_INIT 5
#define APIC_DM_SIPI 6
#define APIC_DM_EXTINT 7
#define APIC_TRIGGER_EDGE 0
#define APIC_TRIGGER_LEVEL 1
#define APIC_LVT_TIMER_PERIODIC (1<<17)
#define APIC_LVT_MASKED (1<<16)
#define APIC_LVT_LEVEL_TRIGGER (1<<15)
#define APIC_LVT_REMOTE_IRR (1<<14)
#define APIC_INPUT_POLARITY (1<<13)
#define APIC_SEND_PENDING (1<<12)
#define ESR_ILLEGAL_ADDRESS (1 << 7)
#define APIC_SV_ENABLE (1 << 8)
typedef struct APICState {
CPUState *cpu_env;
uint32_t apicbase;
uint8_t id;
uint8_t tpr;
uint32_t spurious_vec;
uint32_t isr[8]; /* in service register */
uint32_t tmr[8]; /* trigger mode register */
uint32_t irr[8]; /* interrupt request register */
uint32_t lvt[APIC_LVT_NB];
uint32_t esr; /* error register */
uint32_t icr[2];
uint32_t divide_conf;
int count_shift;
uint32_t initial_count;
int64_t initial_count_load_time, next_time;
QEMUTimer *timer;
} APICState;
static int apic_io_memory;
void cpu_set_apic_base(CPUState *env, uint64_t val)
{
APICState *s = env->apic_state;
#ifdef DEBUG_APIC
printf("cpu_set_apic_base: %016llx\n", val);
#endif
s->apicbase = (val & 0xfffff000) |
(s->apicbase & (MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE));
/* if disabled, cannot be enabled again */
if (!(val & MSR_IA32_APICBASE_ENABLE)) {
s->apicbase &= ~MSR_IA32_APICBASE_ENABLE;
env->cpuid_features &= ~CPUID_APIC;
s->spurious_vec &= ~APIC_SV_ENABLE;
}
}
uint64_t cpu_get_apic_base(CPUState *env)
{
APICState *s = env->apic_state;
#ifdef DEBUG_APIC
printf("cpu_get_apic_base: %016llx\n", (uint64_t)s->apicbase);
#endif
return s->apicbase;
}
void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
{
APICState *s = env->apic_state;
s->tpr = (val & 0x0f) << 4;
}
uint8_t cpu_get_apic_tpr(CPUX86State *env)
{
APICState *s = env->apic_state;
return s->tpr >> 4;
}
/* return -1 if no bit is set */
static int get_highest_priority_int(uint32_t *tab)
{
int i;
for(i = 0;i < 8; i++) {
if (tab[i] != 0) {
return i * 32 + ffs(tab[i]) - 1;
}
}
return -1;
}
static inline void set_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
tab[i] |= mask;
}
static inline void reset_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
tab[i] &= ~mask;
}
static int apic_get_ppr(APICState *s)
{
int tpr, isrv, ppr;
tpr = (s->tpr >> 4);
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
isrv = 0;
isrv >>= 4;
if (tpr >= isrv)
ppr = s->tpr;
else
ppr = isrv << 4;
return ppr;
}
/* signal the CPU if an irq is pending */
static void apic_update_irq(APICState *s)
{
int irrv, isrv;
irrv = get_highest_priority_int(s->irr);
if (irrv < 0)
return;
isrv = get_highest_priority_int(s->isr);
/* if the pending irq has less priority, we do not make a new request */
if (isrv >= 0 && irrv >= isrv)
return;
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
}
static void apic_set_irq(APICState *s, int vector_num, int trigger_mode)
{
set_bit(s->irr, vector_num);
if (trigger_mode)
set_bit(s->tmr, vector_num);
else
reset_bit(s->tmr, vector_num);
apic_update_irq(s);
}
static void apic_eoi(APICState *s)
{
int isrv;
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
return;
reset_bit(s->isr, isrv);
apic_update_irq(s);
}
int apic_get_interrupt(CPUState *env)
{
APICState *s = env->apic_state;
int intno;
/* if the APIC is installed or enabled, we let the 8259 handle the
IRQs */
if (!s)
return -1;
if (!(s->spurious_vec & APIC_SV_ENABLE))
return -1;
/* XXX: spurious IRQ handling */
intno = get_highest_priority_int(s->irr);
if (intno < 0)
return -1;
reset_bit(s->irr, intno);
set_bit(s->isr, intno);
apic_update_irq(s);
return intno;
}
static uint32_t apic_get_current_count(APICState *s)
{
int64_t d;
uint32_t val;
d = (qemu_get_clock(vm_clock) - s->initial_count_load_time) >>
s->count_shift;
if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) {
/* periodic */
val = s->initial_count - (d % (s->initial_count + 1));
} else {
if (d >= s->initial_count)
val = 0;
else
val = s->initial_count - d;
}
return val;
}
static void apic_timer_update(APICState *s, int64_t current_time)
{
int64_t next_time, d;
if (!(s->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) {
d = (current_time - s->initial_count_load_time) >>
s->count_shift;
if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) {
d = ((d / (s->initial_count + 1)) + 1) * (s->initial_count + 1);
} else {
if (d >= s->initial_count)
goto no_timer;
d = s->initial_count + 1;
}
next_time = s->initial_count_load_time + (d << s->count_shift);
qemu_mod_timer(s->timer, next_time);
s->next_time = next_time;
} else {
no_timer:
qemu_del_timer(s->timer);
}
}
static void apic_timer(void *opaque)
{
APICState *s = opaque;
if (!(s->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) {
apic_set_irq(s, s->lvt[APIC_LVT_TIMER] & 0xff, APIC_TRIGGER_EDGE);
}
apic_timer_update(s, s->next_time);
}
static uint32_t apic_mem_readb(void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t apic_mem_readw(void *opaque, target_phys_addr_t addr)
{
return 0;
}
static void apic_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static void apic_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static uint32_t apic_mem_readl(void *opaque, target_phys_addr_t addr)
{
CPUState *env;
APICState *s;
uint32_t val;
int index;
env = cpu_single_env;
if (!env)
return 0;
s = env->apic_state;
index = (addr >> 4) & 0xff;
switch(index) {
case 0x02: /* id */
val = s->id << 24;
break;
case 0x03: /* version */
val = 0x11 | ((APIC_LVT_NB - 1) << 16); /* version 0x11 */
break;
case 0x08:
val = s->tpr;
break;
case 0x0a:
/* ppr */
val = apic_get_ppr(s);
break;
case 0x0f:
val = s->spurious_vec;
break;
case 0x10 ... 0x17:
val = s->isr[index & 7];
break;
case 0x18 ... 0x1f:
val = s->tmr[index & 7];
break;
case 0x20 ... 0x27:
val = s->irr[index & 7];
break;
case 0x28:
val = s->esr;
break;
case 0x32 ... 0x37:
val = s->lvt[index - 0x32];
break;
case 0x30:
case 0x31:
val = s->icr[index & 1];
break;
case 0x38:
val = s->initial_count;
break;
case 0x39:
val = apic_get_current_count(s);
break;
case 0x3e:
val = s->divide_conf;
break;
default:
s->esr |= ESR_ILLEGAL_ADDRESS;
val = 0;
break;
}
#ifdef DEBUG_APIC
printf("APIC read: %08x = %08x\n", (uint32_t)addr, val);
#endif
return val;
}
static void apic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
CPUState *env;
APICState *s;
int index;
env = cpu_single_env;
if (!env)
return;
s = env->apic_state;
#ifdef DEBUG_APIC
printf("APIC write: %08x = %08x\n", (uint32_t)addr, val);
#endif
index = (addr >> 4) & 0xff;
switch(index) {
case 0x02:
s->id = (val >> 24);
break;
case 0x08:
s->tpr = val;
break;
case 0x0b: /* EOI */
apic_eoi(s);
break;
case 0x0f:
s->spurious_vec = val & 0x1ff;
break;
case 0x30:
case 0x31:
s->icr[index & 1] = val;
break;
case 0x32 ... 0x37:
{
int n = index - 0x32;
s->lvt[n] = val;
if (n == APIC_LVT_TIMER)
apic_timer_update(s, qemu_get_clock(vm_clock));
}
break;
case 0x38:
s->initial_count = val;
s->initial_count_load_time = qemu_get_clock(vm_clock);
apic_timer_update(s, s->initial_count_load_time);
break;
case 0x3e:
{
int v;
s->divide_conf = val & 0xb;
v = (s->divide_conf & 3) | ((s->divide_conf >> 1) & 4);
s->count_shift = (v + 1) & 7;
}
break;
default:
s->esr |= ESR_ILLEGAL_ADDRESS;
break;
}
}
static CPUReadMemoryFunc *apic_mem_read[3] = {
apic_mem_readb,
apic_mem_readw,
apic_mem_readl,
};
static CPUWriteMemoryFunc *apic_mem_write[3] = {
apic_mem_writeb,
apic_mem_writew,
apic_mem_writel,
};
int apic_init(CPUState *env)
{
APICState *s;
int i;
s = malloc(sizeof(APICState));
if (!s)
return -1;
memset(s, 0, sizeof(*s));
env->apic_state = s;
s->cpu_env = env;
s->apicbase = 0xfee00000 |
MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE;
for(i = 0; i < APIC_LVT_NB; i++)
s->lvt[i] = 1 << 16; /* mask LVT */
s->spurious_vec = 0xff;
if (apic_io_memory == 0) {
/* NOTE: the APIC is directly connected to the CPU - it is not
on the global memory bus. */
apic_io_memory = cpu_register_io_memory(0, apic_mem_read,
apic_mem_write, NULL);
cpu_register_physical_memory(s->apicbase & ~0xfff, 0x1000, apic_io_memory);
}
s->timer = qemu_new_timer(vm_clock, apic_timer, s);
return 0;
}