qemu/hw/audio/fmopl.c

1211 lines
30 KiB
C
Raw Normal View History

/*
**
** File: fmopl.c -- software implementation of FM sound generator
**
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
**
** Version 0.37a
**
*/
/*
preliminary :
Problem :
note:
*/
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <math.h>
//#include "driver.h" /* use M.A.M.E. */
#include "fmopl.h"
#include "qemu/osdep.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
/* -------------------- for debug --------------------- */
/* #define OPL_OUTPUT_LOG */
#ifdef OPL_OUTPUT_LOG
static FILE *opl_dbg_fp = NULL;
static FM_OPL *opl_dbg_opl[16];
static int opl_dbg_maxchip,opl_dbg_chip;
#endif
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
#define FREQ_BITS 24 /* frequency turn */
/* counter bits = 20 , octerve 7 */
#define FREQ_RATE (1<<(FREQ_BITS-20))
#define TL_BITS (FREQ_BITS+2)
/* final output shift , limit minimum and maximum */
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
/* -------------------- quality selection --------------------- */
/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#define SIN_ENT 2048
/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
#define ENV_BITS 16
/* envelope output entries */
#define EG_ENT 4096
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static memory = EG_ENT*4 (byte) */
#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
#define EG_DED EG_OFF
#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
#define EG_AED EG_DST
#define EG_AST 0 /* ATTACK START */
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)
#define VIB_RATE 256
/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* envelope phase */
#define ENV_MOD_RR 0x00
#define ENV_MOD_DR 0x01
#define ENV_MOD_AR 0x02
/* -------------------- tables --------------------- */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
#define DV (EG_STEP/2)
static const uint32_t KSL_TABLE[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* sustain lebel table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
static const int32_t SL_TABLE[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static int32_t *TL_TABLE;
/* pointers to TL_TABLE with sinwave output offset */
static int32_t **SIN_TABLE;
/* LFO table */
static int32_t *AMS_TABLE;
static int32_t *VIB_TABLE;
/* envelope output curve table */
/* attack + decay + OFF */
static int32_t ENV_CURVE[2*EG_ENT+1];
/* multiple table */
#define ML 2
static const uint32_t MUL_TABLE[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
};
#undef ML
/* dummy attack / decay rate ( when rate == 0 ) */
static int32_t RATE_0[16]=
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static OPLSAMPLE *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static int32_t outd[1];
static int32_t ams;
static int32_t vib;
static int32_t *ams_table;
static int32_t *vib_table;
static int32_t amsIncr;
static int32_t vibIncr;
static int32_t feedback2; /* connect for SLOT 2 */
/* log output level */
#define LOG_ERR 3 /* ERROR */
#define LOG_WAR 2 /* WARNING */
#define LOG_INF 1 /* INFORMATION */
//#define LOG_LEVEL LOG_INF
#define LOG_LEVEL LOG_ERR
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
#define LOG(n,x)
/* --------------------- subroutines --------------------- */
static inline int Limit( int val, int max, int min ) {
if ( val > max )
val = max;
else if ( val < min )
val = min;
return val;
}
/* status set and IRQ handling */
static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
{
/* set status flag */
OPL->status |= flag;
if(!(OPL->status & 0x80))
{
if(OPL->status & OPL->statusmask)
{ /* IRQ on */
OPL->status |= 0x80;
}
}
}
/* status reset and IRQ handling */
static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
{
/* reset status flag */
OPL->status &=~flag;
if((OPL->status & 0x80))
{
if (!(OPL->status & OPL->statusmask) )
{
OPL->status &= 0x7f;
}
}
}
/* IRQ mask set */
static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
{
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
/* ----- key on ----- */
static inline void OPL_KEYON(OPL_SLOT *SLOT)
{
/* sin wave restart */
SLOT->Cnt = 0;
/* set attack */
SLOT->evm = ENV_MOD_AR;
SLOT->evs = SLOT->evsa;
SLOT->evc = EG_AST;
SLOT->eve = EG_AED;
}
/* ----- key off ----- */
static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
{
if( SLOT->evm > ENV_MOD_RR)
{
/* set envelope counter from envleope output */
SLOT->evm = ENV_MOD_RR;
if( !(SLOT->evc&EG_DST) )
//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
SLOT->evc = EG_DST;
SLOT->eve = EG_DED;
SLOT->evs = SLOT->evsr;
}
}
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
{
/* calcrate envelope generator */
if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
{
switch( SLOT->evm ){
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
/* next DR */
SLOT->evm = ENV_MOD_DR;
SLOT->evc = EG_DST;
SLOT->eve = SLOT->SL;
SLOT->evs = SLOT->evsd;
break;
case ENV_MOD_DR: /* DECAY -> SL or RR */
SLOT->evc = SLOT->SL;
SLOT->eve = EG_DED;
if(SLOT->eg_typ)
{
SLOT->evs = 0;
}
else
{
SLOT->evm = ENV_MOD_RR;
SLOT->evs = SLOT->evsr;
}
break;
case ENV_MOD_RR: /* RR -> OFF */
SLOT->evc = EG_OFF;
SLOT->eve = EG_OFF+1;
SLOT->evs = 0;
break;
}
}
/* calcrate envelope */
return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
}
/* set algorithm connection */
static void set_algorithm( OPL_CH *CH)
{
int32_t *carrier = &outd[0];
CH->connect1 = CH->CON ? carrier : &feedback2;
CH->connect2 = carrier;
}
/* ---------- frequency counter for operater update ---------- */
static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
{
int ksr;
/* frequency step counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* attack , decay rate recalcration */
SLOT->evsa = SLOT->AR[ksr];
SLOT->evsd = SLOT->DR[ksr];
SLOT->evsr = SLOT->RR[ksr];
}
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set multi,am,vib,EG-TYP,KSR,mul */
static inline void set_mul(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = MUL_TABLE[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_typ = (v&0x20)>>5;
SLOT->vib = (v&0x40);
SLOT->ams = (v&0x80);
CALC_FCSLOT(CH,SLOT);
}
/* set ksl & tl */
static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
if( !(OPL->mode&0x80) )
{ /* not CSM latch total level */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
}
/* set attack rate & decay rate */
static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ar = v>>4;
int dr = v&0x0f;
SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
SLOT->evsa = SLOT->AR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
SLOT->evsd = SLOT->DR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
}
/* set sustain level & release rate */
static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int sl = v>>4;
int rr = v & 0x0f;
SLOT->SL = SL_TABLE[sl];
if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
SLOT->RR = &OPL->DR_TABLE[rr<<2];
SLOT->evsr = SLOT->RR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
}
/* operator output calcrator */
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
static inline void OPL_CALC_CH( OPL_CH *CH )
{
uint32_t env_out;
OPL_SLOT *SLOT;
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
if(CH->FB)
{
int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
CH->op1_out[1] = CH->op1_out[0];
*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
*CH->connect1 += OP_OUT(SLOT,env_out,0);
}
}else
{
CH->op1_out[1] = CH->op1_out[0];
CH->op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH->SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2);
}
}
/* ---------- calcrate rhythm block ---------- */
#define WHITE_NOISE_db 6.0
static inline void OPL_CALC_RH( OPL_CH *CH )
{
uint32_t env_tam,env_sd,env_top,env_hh;
int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
int32_t tone8;
OPL_SLOT *SLOT;
int env_out;
/* BD : same as FM serial mode and output level is large */
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
if(CH[6].FB)
{
int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
CH[6].op1_out[1] = CH[6].op1_out[0];
feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
feedback2 = OP_OUT(SLOT,env_out,0);
}
}else
{
feedback2 = 0;
CH[6].op1_out[1] = CH[6].op1_out[0];
CH[6].op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH[6].SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
}
// SD (17) = mul14[fnum7] + white noise
// TAM (15) = mul15[fnum8]
// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
// HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
env_tam=OPL_CALC_SLOT(SLOT8_1);
env_top=OPL_CALC_SLOT(SLOT8_2);
env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
/* PG */
if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
else SLOT7_2->Cnt += (CH[7].fc*8);
if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
else SLOT8_1->Cnt += SLOT8_1->Incr;
if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
else SLOT8_2->Cnt += (CH[8].fc*48);
tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
/* SD */
if( env_sd < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
/* TAM */
if( env_tam < EG_ENT-1 )
outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
/* TOP-CY */
if( env_top < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
/* HH */
if( env_hh < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
}
/* ----------- initialize time tabls ----------- */
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
{
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4;i <= 60;i++){
rate = OPL->freqbase; /* frequency rate */
if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
rate *= (double)(EG_ENT<<ENV_BITS);
OPL->AR_TABLE[i] = rate / ARRATE;
OPL->DR_TABLE[i] = rate / DRRATE;
}
for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
{
OPL->AR_TABLE[i] = EG_AED-1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
#if 0
for (i = 0;i < 64 ;i++){ /* make for overflow area */
LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
}
#endif
}
/* ---------- generic table initialize ---------- */
static int OPLOpenTable( void )
{
int s,t;
double rate;
int i,j;
double pom;
/* allocate dynamic tables */
if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
return 0;
if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
{
free(TL_TABLE);
return 0;
}
if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
return 0;
}
if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
return 0;
}
/* make total level table */
for (t = 0;t < EG_ENT-1 ;t++){
rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
TL_TABLE[ t] = (int)rate;
TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
}
/* fill volume off area */
for ( t = EG_ENT-1; t < TL_MAX ;t++){
TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
}
/* make sinwave table (total level offet) */
/* degree 0 = degree 180 = off */
SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
for (s = 1;s <= SIN_ENT/4;s++){
pom = sin(2*PI*s/SIN_ENT); /* sin */
pom = 20*log10(1/pom); /* decibel */
j = pom / EG_STEP; /* TL_TABLE steps */
/* degree 0 - 90 , degree 180 - 90 : plus section */
SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
/* degree 180 - 270 , degree 360 - 270 : minus section */
SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
}
for (s = 0;s < SIN_ENT;s++)
{
SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
}
/* envelope counter -> envelope output table */
for (i=0; i<EG_ENT; i++)
{
/* ATTACK curve */
pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
ENV_CURVE[i] = (int)pom;
/* DECAY ,RELEASE curve */
ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
}
/* off */
ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
/* make LFO ams table */
for (i=0; i<AMS_ENT; i++)
{
pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
}
/* make LFO vibrate table */
for (i=0; i<VIB_ENT; i++)
{
/* 100cent = 1seminote = 6% ?? */
pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
}
return 1;
}
static void OPLCloseTable( void )
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
free(VIB_TABLE);
}
/* CSM Key Control */
static inline void CSMKeyControll(OPL_CH *CH)
{
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
/* all key off */
OPL_KEYOFF(slot1);
OPL_KEYOFF(slot2);
/* total level latch */
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
/* key on */
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(slot1);
OPL_KEYON(slot2);
}
/* ---------- opl initialize ---------- */
static void OPL_initialize(FM_OPL *OPL)
{
int fn;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
/* Timer base time */
OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
/* make time tables */
init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
/* make fnumber -> increment counter table */
for( fn=0 ; fn < 1024 ; fn++ )
{
OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
}
/* LFO freq.table */
OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
}
/* ---------- write a OPL registers ---------- */
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{
OPL_CH *CH;
int slot;
int block_fnum;
switch(r&0xe0)
{
case 0x00: /* 00-1f:control */
switch(r&0x1f)
{
case 0x01:
/* wave selector enable */
OPL->wavesel = v&0x20;
if(!OPL->wavesel)
{
/* preset compatible mode */
int c;
for(c=0;c<OPL->max_ch;c++)
{
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
}
}
return;
case 0x02: /* Timer 1 */
OPL->T[0] = (256-v)*4;
break;
case 0x03: /* Timer 2 */
OPL->T[1] = (256-v)*16;
return;
case 0x04: /* IRQ clear / mask and Timer enable */
if(v&0x80)
{ /* IRQ flag clear */
OPL_STATUS_RESET(OPL,0x7f);
}
else
{ /* set IRQ mask ,timer enable*/
uint8_t st1 = v&1;
uint8_t st2 = (v>>1)&1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET(OPL,v&0x78);
OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
/* timer 2 */
if(OPL->st[1] != st2)
{
double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
OPL->st[1] = st2;
if (OPL->TimerHandler) {
(OPL->TimerHandler)(OPL->TimerParam, 1, interval);
}
}
/* timer 1 */
if(OPL->st[0] != st1)
{
double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
OPL->st[0] = st1;
if (OPL->TimerHandler) {
(OPL->TimerHandler)(OPL->TimerParam, 0, interval);
}
}
}
return;
}
break;
case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_mul(OPL,slot,v);
return;
case 0x40:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ksl_tl(OPL,slot,v);
return;
case 0x60:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ar_dr(OPL,slot,v);
return;
case 0x80:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_sl_rr(OPL,slot,v);
return;
case 0xa0:
switch(r)
{
case 0xbd:
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
uint8_t rkey = OPL->rhythm^v;
OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
OPL->rhythm = v&0x3f;
if(OPL->rhythm&0x20)
{
#if 0
usrintf_showmessage("OPL Rhythm mode select");
#endif
/* BD key on/off */
if(rkey&0x10)
{
if(v&0x10)
{
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
}
}
/* SD key on/off */
if(rkey&0x08)
{
if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
}/* TAM key on/off */
if(rkey&0x04)
{
if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
}
/* TOP-CY key on/off */
if(rkey&0x02)
{
if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
}
/* HH key on/off */
if(rkey&0x01)
{
if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
}
}
}
return;
}
/* keyon,block,fnum */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
if(!(r&0x10))
{ /* a0-a8 */
block_fnum = (CH->block_fnum&0x1f00) | v;
}
else
{ /* b0-b8 */
int keyon = (v>>5)&1;
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if(CH->keyon != keyon)
{
if( (CH->keyon=keyon) )
{
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(&CH->SLOT[SLOT1]);
OPL_KEYON(&CH->SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&CH->SLOT[SLOT1]);
OPL_KEYOFF(&CH->SLOT[SLOT2]);
}
}
}
/* update */
if(CH->block_fnum != block_fnum)
{
int blockRv = 7-(block_fnum>>10);
int fnum = block_fnum&0x3ff;
CH->block_fnum = block_fnum;
CH->ksl_base = KSL_TABLE[block_fnum>>6];
CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
CH->kcode = CH->block_fnum>>9;
if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
return;
case 0xc0:
/* FB,C */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
{
int feedback = (v>>1)&7;
CH->FB = feedback ? (8+1) - feedback : 0;
CH->CON = v&1;
set_algorithm(CH);
}
return;
case 0xe0: /* wave type */
slot = slot_array[r&0x1f];
if(slot == -1) return;
CH = &OPL->P_CH[slot/2];
if(OPL->wavesel)
{
/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
}
return;
}
}
/* lock/unlock for common table */
static int OPL_LockTable(void)
{
num_lock++;
if(num_lock>1) return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if( !OPLOpenTable() )
{
num_lock--;
return -1;
}
return 0;
}
static void OPL_UnLockTable(void)
{
if(num_lock) num_lock--;
if(num_lock) return;
/* last time */
cur_chip = NULL;
OPLCloseTable();
}
/*******************************************************************************/
/* YM3812 local section */
/*******************************************************************************/
/* ---------- update one of chip ----------- */
void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
{
int i;
int data;
int16_t *buf = buffer;
uint32_t amsCnt = OPL->amsCnt;
uint32_t vibCnt = OPL->vibCnt;
uint8_t rhythm = OPL->rhythm&0x20;
OPL_CH *CH,*R_CH;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rhythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rhythm ? &S_CH[6] : E_CH;
for( i=0; i < length ; i++ )
{
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
outd[0] = 0;
/* FM part */
for(CH=S_CH ; CH < R_CH ; CH++)
OPL_CALC_CH(CH);
/* Rythn part */
if(rhythm)
OPL_CALC_RH(S_CH);
/* limit check */
data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
}
#endif
}
/* ---------- reset one of chip ---------- */
static void OPLResetChip(FM_OPL *OPL)
{
int c,s;
int i;
/* reset chip */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET(OPL,0x7f);
/* reset with register write */
OPLWriteReg(OPL,0x01,0); /* wabesel disable */
OPLWriteReg(OPL,0x02,0); /* Timer1 */
OPLWriteReg(OPL,0x03,0); /* Timer2 */
OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
/* reset operator parameter */
for( c = 0 ; c < OPL->max_ch ; c++ )
{
OPL_CH *CH = &OPL->P_CH[c];
/* OPL->P_CH[c].PAN = OPN_CENTER; */
for(s = 0 ; s < 2 ; s++ )
{
/* wave table */
CH->SLOT[s].wavetable = &SIN_TABLE[0];
/* CH->SLOT[s].evm = ENV_MOD_RR; */
CH->SLOT[s].evc = EG_OFF;
CH->SLOT[s].eve = EG_OFF+1;
CH->SLOT[s].evs = 0;
}
}
}
/* ---------- Create one of vietual YM3812 ---------- */
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
FM_OPL *OPLCreate(int clock, int rate)
{
char *ptr;
FM_OPL *OPL;
int state_size;
int max_ch = 9; /* normaly 9 channels */
if( OPL_LockTable() ==-1) return NULL;
/* allocate OPL state space */
state_size = sizeof(FM_OPL);
state_size += sizeof(OPL_CH)*max_ch;
/* allocate memory block */
ptr = malloc(state_size);
if(ptr==NULL) return NULL;
/* clear */
memset(ptr,0,state_size);
OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
/* set channel state pointer */
OPL->clock = clock;
OPL->rate = rate;
OPL->max_ch = max_ch;
/* init grobal tables */
OPL_initialize(OPL);
/* reset chip */
OPLResetChip(OPL);
#ifdef OPL_OUTPUT_LOG
if(!opl_dbg_fp)
{
opl_dbg_fp = fopen("opllog.opl","wb");
opl_dbg_maxchip = 0;
}
if(opl_dbg_fp)
{
opl_dbg_opl[opl_dbg_maxchip] = OPL;
fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
type,
clock&0xff,
(clock/0x100)&0xff,
(clock/0x10000)&0xff,
(clock/0x1000000)&0xff);
opl_dbg_maxchip++;
}
#endif
return OPL;
}
/* ---------- Destroy one of vietual YM3812 ---------- */
void OPLDestroy(FM_OPL *OPL)
{
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
fclose(opl_dbg_fp);
opl_dbg_fp = NULL;
}
#endif
OPL_UnLockTable();
free(OPL);
}
/* ---------- Option handlers ---------- */
void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
void *param)
{
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = param;
}
/* ---------- YM3812 I/O interface ---------- */
int OPLWrite(FM_OPL *OPL,int a,int v)
{
if( !(a&1) )
{ /* address port */
OPL->address = v & 0xff;
}
else
{ /* data port */
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
}
#endif
OPLWriteReg(OPL,OPL->address,v);
}
return OPL->status>>7;
}
unsigned char OPLRead(FM_OPL *OPL,int a)
{
if( !(a&1) )
{ /* status port */
return OPL->status & (OPL->statusmask|0x80);
}
/* data port */
switch(OPL->address)
{
case 0x05: /* KeyBoard IN */
return 0;
#if 0
case 0x0f: /* ADPCM-DATA */
return 0;
#endif
case 0x19: /* I/O DATA */
return 0;
case 0x1a: /* PCM-DATA */
return 0;
}
return 0;
}
int OPLTimerOver(FM_OPL *OPL,int c)
{
if( c )
{ /* Timer B */
OPL_STATUS_SET(OPL,0x20);
}
else
{ /* Timer A */
OPL_STATUS_SET(OPL,0x40);
/* CSM mode key,TL control */
if( OPL->mode & 0x80 )
{ /* CSM mode total level latch and auto key on */
int ch;
for(ch=0;ch<9;ch++)
CSMKeyControll( &OPL->P_CH[ch] );
}
}
/* reload timer */
if (OPL->TimerHandler) {
(OPL->TimerHandler)(OPL->TimerParam, c,
(double)OPL->T[c] * OPL->TimerBase);
}
return OPL->status>>7;
}