qemu/hw/misc/mac_via.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1446 lines
49 KiB
C
Raw Permalink Normal View History

/*
* QEMU m68k Macintosh VIA device support
*
* Copyright (c) 2011-2018 Laurent Vivier
* Copyright (c) 2018 Mark Cave-Ayland
*
* Some parts from hw/misc/macio/cuda.c
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
*
* some parts from linux-2.6.29, arch/m68k/include/asm/mac_via.h
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "exec/address-spaces.h"
#include "migration/vmstate.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "qemu/timer.h"
#include "hw/misc/mac_via.h"
#include "hw/misc/mos6522.h"
#include "hw/input/adb.h"
#include "sysemu/runstate.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "sysemu/block-backend.h"
#include "sysemu/rtc.h"
#include "trace.h"
#include "qemu/log.h"
/*
* VIAs: There are two in every machine
*/
/*
* Not all of these are true post MacII I think.
* CSA: probably the ones CHRP marks as 'unused' change purposes
* when the IWM becomes the SWIM.
* http://www.rs6000.ibm.com/resource/technology/chrpio/via5.mak.html
* ftp://ftp.austin.ibm.com/pub/technology/spec/chrp/inwork/CHRP_IORef_1.0.pdf
*
* also, http://developer.apple.com/technotes/hw/hw_09.html claims the
* following changes for IIfx:
* VIA1A_vSccWrReq not available and that VIA1A_vSync has moved to an IOP.
* Also, "All of the functionality of VIA2 has been moved to other chips".
*/
#define VIA1A_vSccWrReq 0x80 /*
* SCC write. (input)
* [CHRP] SCC WREQ: Reflects the state of the
* Wait/Request pins from the SCC.
* [Macintosh Family Hardware]
* as CHRP on SE/30,II,IIx,IIcx,IIci.
* on IIfx, "0 means an active request"
*/
#define VIA1A_vRev8 0x40 /*
* Revision 8 board ???
* [CHRP] En WaitReqB: Lets the WaitReq_L
* signal from port B of the SCC appear on
* the PA7 input pin. Output.
* [Macintosh Family] On the SE/30, this
* is the bit to flip screen buffers.
* 0=alternate, 1=main.
* on II,IIx,IIcx,IIci,IIfx this is a bit
* for Rev ID. 0=II,IIx, 1=IIcx,IIci,IIfx
*/
#define VIA1A_vHeadSel 0x20 /*
* Head select for IWM.
* [CHRP] unused.
* [Macintosh Family] "Floppy disk
* state-control line SEL" on all but IIfx
*/
#define VIA1A_vOverlay 0x10 /*
* [Macintosh Family] On SE/30,II,IIx,IIcx
* this bit enables the "Overlay" address
* map in the address decoders as it is on
* reset for mapping the ROM over the reset
* vector. 1=use overlay map.
* On the IIci,IIfx it is another bit of the
* CPU ID: 0=normal IIci, 1=IIci with parity
* feature or IIfx.
* [CHRP] En WaitReqA: Lets the WaitReq_L
* signal from port A of the SCC appear
* on the PA7 input pin (CHRP). Output.
* [MkLinux] "Drive Select"
* (with 0x20 being 'disk head select')
*/
#define VIA1A_vSync 0x08 /*
* [CHRP] Sync Modem: modem clock select:
* 1: select the external serial clock to
* drive the SCC's /RTxCA pin.
* 0: Select the 3.6864MHz clock to drive
* the SCC cell.
* [Macintosh Family] Correct on all but IIfx
*/
/*
* Macintosh Family Hardware sez: bits 0-2 of VIA1A are volume control
* on Macs which had the PWM sound hardware. Reserved on newer models.
* On IIci,IIfx, bits 1-2 are the rest of the CPU ID:
* bit 2: 1=IIci, 0=IIfx
* bit 1: 1 on both IIci and IIfx.
* MkLinux sez bit 0 is 'burnin flag' in this case.
* CHRP sez: VIA1A bits 0-2 and 5 are 'unused': if programmed as
* inputs, these bits will read 0.
*/
#define VIA1A_vVolume 0x07 /* Audio volume mask for PWM */
#define VIA1A_CPUID0 0x02 /* CPU id bit 0 on RBV, others */
#define VIA1A_CPUID1 0x04 /* CPU id bit 0 on RBV, others */
#define VIA1A_CPUID2 0x10 /* CPU id bit 0 on RBV, others */
#define VIA1A_CPUID3 0x40 /* CPU id bit 0 on RBV, others */
#define VIA1A_CPUID_MASK (VIA1A_CPUID0 | VIA1A_CPUID1 | \
VIA1A_CPUID2 | VIA1A_CPUID3)
#define VIA1A_CPUID_Q800 (VIA1A_CPUID0 | VIA1A_CPUID2)
/*
* Info on VIA1B is from Macintosh Family Hardware & MkLinux.
* CHRP offers no info.
*/
#define VIA1B_vSound 0x80 /*
* Sound enable (for compatibility with
* PWM hardware) 0=enabled.
* Also, on IIci w/parity, shows parity error
* 0=error, 1=OK.
*/
#define VIA1B_vMystery 0x40 /*
* On IIci, parity enable. 0=enabled,1=disabled
* On SE/30, vertical sync interrupt enable.
* 0=enabled. This vSync interrupt shows up
* as a slot $E interrupt.
* On Quadra 800 this bit toggles A/UX mode which
* configures the glue logic to deliver some IRQs
* at different levels compared to a classic
* Mac.
*/
#define VIA1B_vADBS2 0x20 /* ADB state input bit 1 (unused on IIfx) */
#define VIA1B_vADBS1 0x10 /* ADB state input bit 0 (unused on IIfx) */
#define VIA1B_vADBInt 0x08 /* ADB interrupt 0=interrupt (unused on IIfx)*/
#define VIA1B_vRTCEnb 0x04 /* Enable Real time clock. 0=enabled. */
#define VIA1B_vRTCClk 0x02 /* Real time clock serial-clock line. */
#define VIA1B_vRTCData 0x01 /* Real time clock serial-data line. */
/*
* VIA2 A register is the interrupt lines raised off the nubus
* slots.
* The below info is from 'Macintosh Family Hardware.'
* MkLinux calls the 'IIci internal video IRQ' below the 'RBV slot 0 irq.'
* It also notes that the slot $9 IRQ is the 'Ethernet IRQ' and
* defines the 'Video IRQ' as 0x40 for the 'EVR' VIA work-alike.
* Perhaps OSS uses vRAM1 and vRAM2 for ADB.
*/
#define VIA2A_vRAM1 0x80 /* RAM size bit 1 (IIci: reserved) */
#define VIA2A_vRAM0 0x40 /* RAM size bit 0 (IIci: internal video IRQ) */
#define VIA2A_vIRQE 0x20 /* IRQ from slot $E */
#define VIA2A_vIRQD 0x10 /* IRQ from slot $D */
#define VIA2A_vIRQC 0x08 /* IRQ from slot $C */
#define VIA2A_vIRQB 0x04 /* IRQ from slot $B */
#define VIA2A_vIRQA 0x02 /* IRQ from slot $A */
#define VIA2A_vIRQ9 0x01 /* IRQ from slot $9 */
/*
* RAM size bits decoded as follows:
* bit1 bit0 size of ICs in bank A
* 0 0 256 kbit
* 0 1 1 Mbit
* 1 0 4 Mbit
* 1 1 16 Mbit
*/
/*
* Register B has the fun stuff in it
*/
#define VIA2B_vVBL 0x80 /*
* VBL output to VIA1 (60.15Hz) driven by
* timer T1.
* on IIci, parity test: 0=test mode.
* [MkLinux] RBV_PARODD: 1=odd,0=even.
*/
#define VIA2B_vSndJck 0x40 /*
* External sound jack status.
* 0=plug is inserted. On SE/30, always 0
*/
#define VIA2B_vTfr0 0x20 /* Transfer mode bit 0 ack from NuBus */
#define VIA2B_vTfr1 0x10 /* Transfer mode bit 1 ack from NuBus */
#define VIA2B_vMode32 0x08 /*
* 24/32bit switch - doubles as cache flush
* on II, AMU/PMMU control.
* if AMU, 0=24bit to 32bit translation
* if PMMU, 1=PMMU is accessing page table.
* on SE/30 tied low.
* on IIx,IIcx,IIfx, unused.
* on IIci/RBV, cache control. 0=flush cache.
*/
#define VIA2B_vPower 0x04 /*
* Power off, 0=shut off power.
* on SE/30 this signal sent to PDS card.
*/
#define VIA2B_vBusLk 0x02 /*
* Lock NuBus transactions, 0=locked.
* on SE/30 sent to PDS card.
*/
#define VIA2B_vCDis 0x01 /*
* Cache control. On IIci, 1=disable cache card
* on others, 0=disable processor's instruction
* and data caches.
*/
/* interrupt flags */
#define IRQ_SET 0x80
/* common */
#define VIA_IRQ_TIMER1 0x40
#define VIA_IRQ_TIMER2 0x20
/*
* Apple sez: http://developer.apple.com/technotes/ov/ov_04.html
* Another example of a valid function that has no ROM support is the use
* of the alternate video page for page-flipping animation. Since there
* is no ROM call to flip pages, it is necessary to go play with the
* right bit in the VIA chip (6522 Versatile Interface Adapter).
* [CSA: don't know which one this is, but it's one of 'em!]
*/
/*
* 6522 registers - see databook.
* CSA: Assignments for VIA1 confirmed from CHRP spec.
*/
/* partial address decode. 0xYYXX : XX part for RBV, YY part for VIA */
/* Note: 15 VIA regs, 8 RBV regs */
#define vBufB 0x0000 /* [VIA/RBV] Register B */
#define vBufAH 0x0200 /* [VIA only] Buffer A, with handshake. DON'T USE! */
#define vDirB 0x0400 /* [VIA only] Data Direction Register B. */
#define vDirA 0x0600 /* [VIA only] Data Direction Register A. */
#define vT1CL 0x0800 /* [VIA only] Timer one counter low. */
#define vT1CH 0x0a00 /* [VIA only] Timer one counter high. */
#define vT1LL 0x0c00 /* [VIA only] Timer one latches low. */
#define vT1LH 0x0e00 /* [VIA only] Timer one latches high. */
#define vT2CL 0x1000 /* [VIA only] Timer two counter low. */
#define vT2CH 0x1200 /* [VIA only] Timer two counter high. */
#define vSR 0x1400 /* [VIA only] Shift register. */
#define vACR 0x1600 /* [VIA only] Auxiliary control register. */
#define vPCR 0x1800 /* [VIA only] Peripheral control register. */
/*
* CHRP sez never ever to *write* this.
* Mac family says never to *change* this.
* In fact we need to initialize it once at start.
*/
#define vIFR 0x1a00 /* [VIA/RBV] Interrupt flag register. */
#define vIER 0x1c00 /* [VIA/RBV] Interrupt enable register. */
#define vBufA 0x1e00 /* [VIA/RBV] register A (no handshake) */
/* from linux 2.6 drivers/macintosh/via-macii.c */
/* Bits in ACR */
#define VIA1ACR_vShiftCtrl 0x1c /* Shift register control bits */
#define VIA1ACR_vShiftExtClk 0x0c /* Shift on external clock */
#define VIA1ACR_vShiftOut 0x10 /* Shift out if 1 */
/*
* Apple Macintosh Family Hardware Refenece
* Table 19-10 ADB transaction states
*/
#define ADB_STATE_NEW 0
#define ADB_STATE_EVEN 1
#define ADB_STATE_ODD 2
#define ADB_STATE_IDLE 3
#define VIA1B_vADB_StateMask (VIA1B_vADBS1 | VIA1B_vADBS2)
#define VIA1B_vADB_StateShift 4
#define VIA_TIMER_FREQ (783360)
#define VIA_ADB_POLL_FREQ 50 /* XXX: not real */
/*
* Guide to the Macintosh Family Hardware ch. 12 "Displays" p. 401 gives the
* precise 60Hz interrupt frequency as ~60.15Hz with a period of 16625.8 us
*/
#define VIA_60HZ_TIMER_PERIOD_NS 16625800
/* VIA returns time offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET 2082844800
enum {
REG_0,
REG_1,
REG_2,
REG_3,
REG_TEST,
REG_WPROTECT,
REG_PRAM_ADDR,
REG_PRAM_ADDR_LAST = REG_PRAM_ADDR + 19,
REG_PRAM_SECT,
REG_PRAM_SECT_LAST = REG_PRAM_SECT + 7,
REG_INVALID,
REG_EMPTY = 0xff,
};
static void via1_sixty_hz_update(MOS6522Q800VIA1State *v1s)
{
/* 60 Hz irq */
v1s->next_sixty_hz = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
VIA_60HZ_TIMER_PERIOD_NS) /
VIA_60HZ_TIMER_PERIOD_NS * VIA_60HZ_TIMER_PERIOD_NS;
timer_mod(v1s->sixty_hz_timer, v1s->next_sixty_hz);
}
static void via1_one_second_update(MOS6522Q800VIA1State *v1s)
{
v1s->next_second = (qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000) /
1000 * 1000;
timer_mod(v1s->one_second_timer, v1s->next_second);
}
static void via1_sixty_hz(void *opaque)
{
MOS6522Q800VIA1State *v1s = opaque;
MOS6522State *s = MOS6522(v1s);
qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_60HZ_BIT);
/* Negative edge trigger */
qemu_irq_lower(irq);
qemu_irq_raise(irq);
via1_sixty_hz_update(v1s);
}
static void via1_one_second(void *opaque)
{
MOS6522Q800VIA1State *v1s = opaque;
MOS6522State *s = MOS6522(v1s);
qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_ONE_SECOND_BIT);
/* Negative edge trigger */
qemu_irq_lower(irq);
qemu_irq_raise(irq);
via1_one_second_update(v1s);
}
static void pram_update(MOS6522Q800VIA1State *v1s)
{
if (v1s->blk) {
if (blk_pwrite(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0) < 0) {
qemu_log("pram_update: cannot write to file\n");
}
}
}
/*
* RTC Commands
*
* Command byte Register addressed by the command
*
* z00x0001 Seconds register 0 (lowest-order byte)
* z00x0101 Seconds register 1
* z00x1001 Seconds register 2
* z00x1101 Seconds register 3 (highest-order byte)
* 00110001 Test register (write-only)
* 00110101 Write-Protect Register (write-only)
* z010aa01 RAM address 100aa ($10-$13) (first 20 bytes only)
* z1aaaa01 RAM address 0aaaa ($00-$0F) (first 20 bytes only)
* z0111aaa Extended memory designator and sector number
*
* For a read request, z=1, for a write z=0
* The letter x indicates don't care
* The letter a indicates bits whose value depend on what parameter
* RAM byte you want to address
*/
static int via1_rtc_compact_cmd(uint8_t value)
{
uint8_t read = value & 0x80;
value &= 0x7f;
/* the last 2 bits of a command byte must always be 0b01 ... */
if ((value & 0x78) == 0x38) {
/* except for the extended memory designator */
return read | (REG_PRAM_SECT + (value & 0x07));
}
if ((value & 0x03) == 0x01) {
value >>= 2;
if ((value & 0x18) == 0) {
/* seconds registers */
return read | (REG_0 + (value & 0x03));
} else if ((value == 0x0c) && !read) {
return REG_TEST;
} else if ((value == 0x0d) && !read) {
return REG_WPROTECT;
} else if ((value & 0x1c) == 0x08) {
/* RAM address 0x10 to 0x13 */
return read | (REG_PRAM_ADDR + 0x10 + (value & 0x03));
} else if ((value & 0x10) == 0x10) {
/* RAM address 0x00 to 0x0f */
return read | (REG_PRAM_ADDR + (value & 0x0f));
}
}
return REG_INVALID;
}
static void via1_rtc_update(MOS6522Q800VIA1State *v1s)
{
MOS6522State *s = MOS6522(v1s);
int cmd, sector, addr;
uint32_t time;
if (s->b & VIA1B_vRTCEnb) {
return;
}
if (s->dirb & VIA1B_vRTCData) {
/* send bits to the RTC */
if (!(v1s->last_b & VIA1B_vRTCClk) && (s->b & VIA1B_vRTCClk)) {
v1s->data_out <<= 1;
v1s->data_out |= s->b & VIA1B_vRTCData;
v1s->data_out_cnt++;
}
trace_via1_rtc_update_data_out(v1s->data_out_cnt, v1s->data_out);
} else {
trace_via1_rtc_update_data_in(v1s->data_in_cnt, v1s->data_in);
/* receive bits from the RTC */
if ((v1s->last_b & VIA1B_vRTCClk) &&
!(s->b & VIA1B_vRTCClk) &&
v1s->data_in_cnt) {
s->b = (s->b & ~VIA1B_vRTCData) |
((v1s->data_in >> 7) & VIA1B_vRTCData);
v1s->data_in <<= 1;
v1s->data_in_cnt--;
}
return;
}
if (v1s->data_out_cnt != 8) {
return;
}
v1s->data_out_cnt = 0;
trace_via1_rtc_internal_status(v1s->cmd, v1s->alt, v1s->data_out);
/* first byte: it's a command */
if (v1s->cmd == REG_EMPTY) {
cmd = via1_rtc_compact_cmd(v1s->data_out);
trace_via1_rtc_internal_cmd(cmd);
if (cmd == REG_INVALID) {
trace_via1_rtc_cmd_invalid(v1s->data_out);
return;
}
if (cmd & 0x80) { /* this is a read command */
switch (cmd & 0x7f) {
case REG_0...REG_3: /* seconds registers */
/*
* register 0 is lowest-order byte
* register 3 is highest-order byte
*/
time = v1s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ NANOSECONDS_PER_SECOND);
trace_via1_rtc_internal_time(time);
v1s->data_in = (time >> ((cmd & 0x03) << 3)) & 0xff;
v1s->data_in_cnt = 8;
trace_via1_rtc_cmd_seconds_read((cmd & 0x7f) - REG_0,
v1s->data_in);
break;
case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST:
/* PRAM address 0x00 -> 0x13 */
v1s->data_in = v1s->PRAM[(cmd & 0x7f) - REG_PRAM_ADDR];
v1s->data_in_cnt = 8;
trace_via1_rtc_cmd_pram_read((cmd & 0x7f) - REG_PRAM_ADDR,
v1s->data_in);
break;
case REG_PRAM_SECT...REG_PRAM_SECT_LAST:
/*
* extended memory designator and sector number
* the only two-byte read command
*/
trace_via1_rtc_internal_set_cmd(cmd);
v1s->cmd = cmd;
break;
default:
g_assert_not_reached();
}
return;
}
/* this is a write command, needs a parameter */
if (cmd == REG_WPROTECT || !v1s->wprotect) {
trace_via1_rtc_internal_set_cmd(cmd);
v1s->cmd = cmd;
} else {
trace_via1_rtc_internal_ignore_cmd(cmd);
}
return;
}
/* second byte: it's a parameter */
if (v1s->alt == REG_EMPTY) {
switch (v1s->cmd & 0x7f) {
case REG_0...REG_3: /* seconds register */
/* FIXME */
trace_via1_rtc_cmd_seconds_write(v1s->cmd - REG_0, v1s->data_out);
v1s->cmd = REG_EMPTY;
break;
case REG_TEST:
/* device control: nothing to do */
trace_via1_rtc_cmd_test_write(v1s->data_out);
v1s->cmd = REG_EMPTY;
break;
case REG_WPROTECT:
/* Write Protect register */
trace_via1_rtc_cmd_wprotect_write(v1s->data_out);
v1s->wprotect = !!(v1s->data_out & 0x80);
v1s->cmd = REG_EMPTY;
break;
case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST:
/* PRAM address 0x00 -> 0x13 */
trace_via1_rtc_cmd_pram_write(v1s->cmd - REG_PRAM_ADDR,
v1s->data_out);
v1s->PRAM[v1s->cmd - REG_PRAM_ADDR] = v1s->data_out;
pram_update(v1s);
v1s->cmd = REG_EMPTY;
break;
case REG_PRAM_SECT...REG_PRAM_SECT_LAST:
addr = (v1s->data_out >> 2) & 0x1f;
sector = (v1s->cmd & 0x7f) - REG_PRAM_SECT;
if (v1s->cmd & 0x80) {
/* it's a read */
v1s->data_in = v1s->PRAM[sector * 32 + addr];
v1s->data_in_cnt = 8;
trace_via1_rtc_cmd_pram_sect_read(sector, addr,
sector * 32 + addr,
v1s->data_in);
v1s->cmd = REG_EMPTY;
} else {
/* it's a write, we need one more parameter */
trace_via1_rtc_internal_set_alt(addr, sector, addr);
v1s->alt = addr;
}
break;
default:
g_assert_not_reached();
}
return;
}
/* third byte: it's the data of a REG_PRAM_SECT write */
g_assert(REG_PRAM_SECT <= v1s->cmd && v1s->cmd <= REG_PRAM_SECT_LAST);
sector = v1s->cmd - REG_PRAM_SECT;
v1s->PRAM[sector * 32 + v1s->alt] = v1s->data_out;
pram_update(v1s);
trace_via1_rtc_cmd_pram_sect_write(sector, v1s->alt, sector * 32 + v1s->alt,
v1s->data_out);
v1s->alt = REG_EMPTY;
v1s->cmd = REG_EMPTY;
}
static void adb_via_poll(void *opaque)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque);
MOS6522State *s = MOS6522(v1s);
ADBBusState *adb_bus = &v1s->adb_bus;
uint8_t obuf[9];
uint8_t *data = &s->sr;
int olen;
/*
* Setting vADBInt below indicates that an autopoll reply has been
* received, however we must block autopoll until the point where
* the entire reply has been read back to the host
*/
adb_autopoll_block(adb_bus);
if (v1s->adb_data_in_size > 0 && v1s->adb_data_in_index == 0) {
/*
* For older Linux kernels that switch to IDLE mode after sending the
* ADB command, detect if there is an existing response and return that
* as a "fake" autopoll reply or bus timeout accordingly
*/
*data = v1s->adb_data_out[0];
olen = v1s->adb_data_in_size;
s->b &= ~VIA1B_vADBInt;
qemu_irq_raise(v1s->adb_data_ready);
} else {
/*
* Otherwise poll as normal
*/
v1s->adb_data_in_index = 0;
v1s->adb_data_out_index = 0;
olen = adb_poll(adb_bus, obuf, adb_bus->autopoll_mask);
if (olen > 0) {
/* Autopoll response */
*data = obuf[0];
olen--;
memcpy(v1s->adb_data_in, &obuf[1], olen);
v1s->adb_data_in_size = olen;
s->b &= ~VIA1B_vADBInt;
qemu_irq_raise(v1s->adb_data_ready);
} else {
*data = v1s->adb_autopoll_cmd;
obuf[0] = 0xff;
obuf[1] = 0xff;
olen = 2;
memcpy(v1s->adb_data_in, obuf, olen);
v1s->adb_data_in_size = olen;
s->b &= ~VIA1B_vADBInt;
qemu_irq_raise(v1s->adb_data_ready);
}
}
trace_via1_adb_poll(*data, (s->b & VIA1B_vADBInt) ? "+" : "-",
adb_bus->status, v1s->adb_data_in_index, olen);
}
static int adb_via_send_len(uint8_t data)
{
/* Determine the send length from the given ADB command */
uint8_t cmd = data & 0xc;
uint8_t reg = data & 0x3;
switch (cmd) {
case 0x8:
/* Listen command */
switch (reg) {
case 2:
/* Register 2 is only used for the keyboard */
return 3;
case 3:
/*
* Fortunately our devices only implement writes
* to register 3 which is fixed at 2 bytes
*/
return 3;
default:
qemu_log_mask(LOG_UNIMP, "ADB unknown length for register %d\n",
reg);
return 1;
}
default:
/* Talk, BusReset */
return 1;
}
}
static void adb_via_send(MOS6522Q800VIA1State *v1s, int state, uint8_t data)
{
MOS6522State *ms = MOS6522(v1s);
ADBBusState *adb_bus = &v1s->adb_bus;
uint16_t autopoll_mask;
switch (state) {
case ADB_STATE_NEW:
/*
* Command byte: vADBInt tells host autopoll data already present
* in VIA shift register and ADB transceiver
*/
adb_autopoll_block(adb_bus);
if (adb_bus->status & ADB_STATUS_POLLREPLY) {
/* Tell the host the existing data is from autopoll */
ms->b &= ~VIA1B_vADBInt;
} else {
ms->b |= VIA1B_vADBInt;
v1s->adb_data_out_index = 0;
v1s->adb_data_out[v1s->adb_data_out_index++] = data;
}
trace_via1_adb_send(" NEW", data, (ms->b & VIA1B_vADBInt) ? "+" : "-");
qemu_irq_raise(v1s->adb_data_ready);
break;
case ADB_STATE_EVEN:
case ADB_STATE_ODD:
ms->b |= VIA1B_vADBInt;
v1s->adb_data_out[v1s->adb_data_out_index++] = data;
trace_via1_adb_send(state == ADB_STATE_EVEN ? "EVEN" : " ODD",
data, (ms->b & VIA1B_vADBInt) ? "+" : "-");
qemu_irq_raise(v1s->adb_data_ready);
break;
case ADB_STATE_IDLE:
ms->b |= VIA1B_vADBInt;
adb_autopoll_unblock(adb_bus);
trace_via1_adb_send("IDLE", data,
(ms->b & VIA1B_vADBInt) ? "+" : "-");
return;
}
/* If the command is complete, execute it */
if (v1s->adb_data_out_index == adb_via_send_len(v1s->adb_data_out[0])) {
v1s->adb_data_in_size = adb_request(adb_bus, v1s->adb_data_in,
v1s->adb_data_out,
v1s->adb_data_out_index);
v1s->adb_data_in_index = 0;
if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) {
/*
* Bus timeout (but allow first EVEN and ODD byte to indicate
* timeout via vADBInt and SRQ status)
*/
v1s->adb_data_in[0] = 0xff;
v1s->adb_data_in[1] = 0xff;
v1s->adb_data_in_size = 2;
}
/*
* If last command is TALK, store it for use by autopoll and adjust
* the autopoll mask accordingly
*/
if ((v1s->adb_data_out[0] & 0xc) == 0xc) {
v1s->adb_autopoll_cmd = v1s->adb_data_out[0];
autopoll_mask = 1 << (v1s->adb_autopoll_cmd >> 4);
adb_set_autopoll_mask(adb_bus, autopoll_mask);
}
}
}
static void adb_via_receive(MOS6522Q800VIA1State *v1s, int state, uint8_t *data)
{
MOS6522State *ms = MOS6522(v1s);
ADBBusState *adb_bus = &v1s->adb_bus;
uint16_t pending;
switch (state) {
case ADB_STATE_NEW:
ms->b |= VIA1B_vADBInt;
return;
case ADB_STATE_IDLE:
ms->b |= VIA1B_vADBInt;
adb_autopoll_unblock(adb_bus);
trace_via1_adb_receive("IDLE", *data,
(ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status,
v1s->adb_data_in_index, v1s->adb_data_in_size);
break;
case ADB_STATE_EVEN:
case ADB_STATE_ODD:
switch (v1s->adb_data_in_index) {
case 0:
/* First EVEN byte: vADBInt indicates bus timeout */
*data = v1s->adb_data_in[v1s->adb_data_in_index];
if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) {
ms->b &= ~VIA1B_vADBInt;
} else {
ms->b |= VIA1B_vADBInt;
}
trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD",
*data, (ms->b & VIA1B_vADBInt) ? "+" : "-",
adb_bus->status, v1s->adb_data_in_index,
v1s->adb_data_in_size);
v1s->adb_data_in_index++;
break;
case 1:
/* First ODD byte: vADBInt indicates SRQ */
*data = v1s->adb_data_in[v1s->adb_data_in_index];
pending = adb_bus->pending & ~(1 << (v1s->adb_autopoll_cmd >> 4));
if (pending) {
ms->b &= ~VIA1B_vADBInt;
} else {
ms->b |= VIA1B_vADBInt;
}
trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD",
*data, (ms->b & VIA1B_vADBInt) ? "+" : "-",
adb_bus->status, v1s->adb_data_in_index,
v1s->adb_data_in_size);
v1s->adb_data_in_index++;
break;
default:
/*
* Otherwise vADBInt indicates end of data. Note that Linux
* specifically checks for the sequence 0x0 0xff to confirm the
* end of the poll reply, so provide these extra bytes below to
* keep it happy
*/
if (v1s->adb_data_in_index < v1s->adb_data_in_size) {
/* Next data byte */
*data = v1s->adb_data_in[v1s->adb_data_in_index];
ms->b |= VIA1B_vADBInt;
} else if (v1s->adb_data_in_index == v1s->adb_data_in_size) {
if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) {
/* Bus timeout (no more data) */
*data = 0xff;
} else {
/* Return 0x0 after reply */
*data = 0;
}
ms->b &= ~VIA1B_vADBInt;
} else {
/* Bus timeout (no more data) */
*data = 0xff;
ms->b &= ~VIA1B_vADBInt;
adb_bus->status = 0;
adb_autopoll_unblock(adb_bus);
}
trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD",
*data, (ms->b & VIA1B_vADBInt) ? "+" : "-",
adb_bus->status, v1s->adb_data_in_index,
v1s->adb_data_in_size);
if (v1s->adb_data_in_index <= v1s->adb_data_in_size) {
v1s->adb_data_in_index++;
}
break;
}
qemu_irq_raise(v1s->adb_data_ready);
break;
}
}
static void via1_adb_update(MOS6522Q800VIA1State *v1s)
{
MOS6522State *s = MOS6522(v1s);
int oldstate, state;
oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift;
state = (s->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift;
if (state != oldstate) {
if (s->acr & VIA1ACR_vShiftOut) {
/* output mode */
adb_via_send(v1s, state, s->sr);
} else {
/* input mode */
adb_via_receive(v1s, state, &s->sr);
}
}
}
static void via1_auxmode_update(MOS6522Q800VIA1State *v1s)
{
MOS6522State *s = MOS6522(v1s);
int oldirq, irq;
oldirq = (v1s->last_b & VIA1B_vMystery) ? 1 : 0;
irq = (s->b & VIA1B_vMystery) ? 1 : 0;
/* Check to see if the A/UX mode bit has changed */
if (irq != oldirq) {
trace_via1_auxmode(irq);
qemu_set_irq(v1s->auxmode_irq, irq);
/*
* Clear the ADB interrupt. MacOS can leave VIA1B_vADBInt asserted
* (low) if a poll sequence doesn't complete before NetBSD disables
* interrupts upon boot. Fortunately NetBSD switches to the so-called
* "A/UX" interrupt mode after it initialises, so we can use this as
* a convenient place to clear the ADB interrupt for now.
*/
s->b |= VIA1B_vADBInt;
}
}
/*
* Addresses and real values for TimeDBRA/TimeSCCB to allow timer calibration
* to succeed (NOTE: both values have been multiplied by 3 to cope with the
* speed of QEMU execution on a modern host
*/
#define MACOS_TIMEDBRA 0xd00
#define MACOS_TIMESCCB 0xd02
#define MACOS_TIMEDBRA_VALUE (0x2a00 * 3)
#define MACOS_TIMESCCB_VALUE (0x079d * 3)
static bool via1_is_toolbox_timer_calibrated(void)
{
/*
* Indicate whether the MacOS toolbox has been calibrated by checking
* for the value of our magic constants
*/
uint16_t timedbra = lduw_be_phys(&address_space_memory, MACOS_TIMEDBRA);
uint16_t timesccdb = lduw_be_phys(&address_space_memory, MACOS_TIMESCCB);
return (timedbra == MACOS_TIMEDBRA_VALUE &&
timesccdb == MACOS_TIMESCCB_VALUE);
}
static void via1_timer_calibration_hack(MOS6522Q800VIA1State *v1s, int addr,
uint64_t val, int size)
{
/*
* Work around timer calibration to ensure we that we have non-zero and
* known good values for TIMEDRBA and TIMESCCDB.
*
* This works by attempting to detect the reset and calibration sequence
* of writes to VIA1
*/
int old_timer_hack_state = v1s->timer_hack_state;
switch (v1s->timer_hack_state) {
case 0:
if (addr == VIA_REG_PCR && val == 0x22) {
/* VIA_REG_PCR: configure VIA1 edge triggering */
v1s->timer_hack_state = 1;
}
break;
case 1:
if (addr == VIA_REG_T2CL && val == 0xc) {
/* VIA_REG_T2CL: low byte of 1ms counter */
if (!via1_is_toolbox_timer_calibrated()) {
v1s->timer_hack_state = 2;
} else {
v1s->timer_hack_state = 0;
}
}
break;
case 2:
if (addr == VIA_REG_T2CH && val == 0x3) {
/*
* VIA_REG_T2CH: high byte of 1ms counter (very likely at the
* start of SETUPTIMEK)
*/
if (!via1_is_toolbox_timer_calibrated()) {
v1s->timer_hack_state = 3;
} else {
v1s->timer_hack_state = 0;
}
}
break;
case 3:
if (addr == VIA_REG_IER && val == 0x20) {
/*
* VIA_REG_IER: update at end of SETUPTIMEK
*
* Timer calibration has finished: unfortunately the values in
* TIMEDBRA (0xd00) and TIMESCCDB (0xd02) are so far out they
* cause divide by zero errors.
*
* Update them with values obtained from a real Q800 but with
* a x3 scaling factor which seems to work well
*/
stw_be_phys(&address_space_memory, MACOS_TIMEDBRA,
MACOS_TIMEDBRA_VALUE);
stw_be_phys(&address_space_memory, MACOS_TIMESCCB,
MACOS_TIMESCCB_VALUE);
v1s->timer_hack_state = 4;
}
break;
case 4:
/*
* This is the normal post-calibration timer state: we should
* generally remain here unless we detect the A/UX calibration
* loop, or a write to VIA_REG_PCR suggesting a reset
*/
if (addr == VIA_REG_PCR && val == 0x22) {
/* Looks like there has been a reset? */
v1s->timer_hack_state = 1;
}
if (addr == VIA_REG_T2CL && val == 0xf0) {
/* VIA_REG_T2CL: low byte of counter (A/UX) */
v1s->timer_hack_state = 5;
}
break;
case 5:
if (addr == VIA_REG_T2CH && val == 0x3c) {
/*
* VIA_REG_T2CH: high byte of counter (A/UX). We are now extremely
* likely to be in the A/UX timer calibration routine, so move to
* the next state where we enable the calibration hack.
*/
v1s->timer_hack_state = 6;
} else if ((addr == VIA_REG_IER && val == 0x20) ||
addr == VIA_REG_T2CH) {
/* We're doing something else with the timer, not calibration */
v1s->timer_hack_state = 0;
}
break;
case 6:
if ((addr == VIA_REG_IER && val == 0x20) || addr == VIA_REG_T2CH) {
/* End of A/UX timer calibration routine, or another write */
v1s->timer_hack_state = 7;
} else {
v1s->timer_hack_state = 0;
}
break;
case 7:
/*
* This is the normal post-calibration timer state once both the
* MacOS toolbox and A/UX have been calibrated, until we see a write
* to VIA_REG_PCR to suggest a reset
*/
if (addr == VIA_REG_PCR && val == 0x22) {
/* Looks like there has been a reset? */
v1s->timer_hack_state = 1;
}
break;
default:
g_assert_not_reached();
}
if (old_timer_hack_state != v1s->timer_hack_state) {
trace_via1_timer_hack_state(v1s->timer_hack_state);
}
}
static uint64_t mos6522_q800_via1_read(void *opaque, hwaddr addr, unsigned size)
{
MOS6522Q800VIA1State *s = MOS6522_Q800_VIA1(opaque);
MOS6522State *ms = MOS6522(s);
uint64_t ret;
int64_t now;
addr = (addr >> 9) & 0xf;
ret = mos6522_read(ms, addr, size);
switch (addr) {
case VIA_REG_A:
case VIA_REG_ANH:
/* Quadra 800 Id */
ret = (ret & ~VIA1A_CPUID_MASK) | VIA1A_CPUID_Q800;
break;
case VIA_REG_T2CH:
if (s->timer_hack_state == 6) {
/*
* The A/UX timer calibration loop runs continuously until 2
* consecutive iterations differ by at least 0x492 timer ticks.
* Modern hosts execute the timer calibration loop so fast that
* this situation never occurs causing a hang on boot. Use a
* similar method to Shoebill which is to randomly add 0x500 to
* the T2 counter value during calibration to enable it to
* eventually succeed.
*/
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (now & 1) {
ret += 0x5;
}
}
break;
}
return ret;
}
static void mos6522_q800_via1_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque);
MOS6522State *ms = MOS6522(v1s);
int oldstate, state;
int oldsr = ms->sr;
addr = (addr >> 9) & 0xf;
via1_timer_calibration_hack(v1s, addr, val, size);
mos6522_write(ms, addr, val, size);
switch (addr) {
case VIA_REG_B:
via1_rtc_update(v1s);
via1_adb_update(v1s);
via1_auxmode_update(v1s);
v1s->last_b = ms->b;
break;
case VIA_REG_SR:
{
/*
* NetBSD assumes it can send its first ADB command after sending
* the ADB_BUSRESET command in ADB_STATE_NEW without changing the
* state back to ADB_STATE_IDLE first as detailed in the ADB
* protocol.
*
* Add a workaround to detect this condition at the start of ADB
* enumeration and send the next command written to SR after a
* ADB_BUSRESET onto the bus regardless, even if we don't detect a
* state transition to ADB_STATE_NEW.
*
* Note that in my tests the NetBSD state machine takes one ADB
* operation to recover which means the probe for an ADB device at
* address 1 always fails. However since the first device is at
* address 2 then this will work fine, without having to come up
* with a more complicated and invasive solution.
*/
oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >>
VIA1B_vADB_StateShift;
state = (ms->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift;
if (oldstate == ADB_STATE_NEW && state == ADB_STATE_NEW &&
(ms->acr & VIA1ACR_vShiftOut) &&
oldsr == 0 /* ADB_BUSRESET */) {
trace_via1_adb_netbsd_enum_hack();
adb_via_send(v1s, state, ms->sr);
}
}
break;
}
}
static const MemoryRegionOps mos6522_q800_via1_ops = {
.read = mos6522_q800_via1_read,
.write = mos6522_q800_via1_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static uint64_t mos6522_q800_via2_read(void *opaque, hwaddr addr, unsigned size)
{
MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque);
MOS6522State *ms = MOS6522(s);
uint64_t val;
addr = (addr >> 9) & 0xf;
val = mos6522_read(ms, addr, size);
switch (addr) {
case VIA_REG_IFR:
/*
* On a Q800 an emulated VIA2 is integrated into the onboard logic. The
* expectation of most OSs is that the DRQ bit is live, rather than
* latched as it would be on a real VIA so do the same here.
*
* Note: DRQ is negative edge triggered
*/
val &= ~VIA2_IRQ_SCSI_DATA;
val |= (~ms->last_irq_levels & VIA2_IRQ_SCSI_DATA);
break;
}
return val;
}
static void mos6522_q800_via2_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque);
MOS6522State *ms = MOS6522(s);
addr = (addr >> 9) & 0xf;
mos6522_write(ms, addr, val, size);
}
static const MemoryRegionOps mos6522_q800_via2_ops = {
.read = mos6522_q800_via2_read,
.write = mos6522_q800_via2_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void via1_postload_update_cb(void *opaque, bool running, RunState state)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque);
qemu_del_vm_change_state_handler(v1s->vmstate);
v1s->vmstate = NULL;
pram_update(v1s);
}
static int via1_post_load(void *opaque, int version_id)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque);
if (v1s->blk) {
v1s->vmstate = qemu_add_vm_change_state_handler(
via1_postload_update_cb, v1s);
}
return 0;
}
/* VIA 1 */
static void mos6522_q800_via1_reset_hold(Object *obj, ResetType type)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj);
MOS6522State *ms = MOS6522(v1s);
MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms);
ADBBusState *adb_bus = &v1s->adb_bus;
if (mdc->parent_phases.hold) {
mdc->parent_phases.hold(obj, type);
}
ms->timers[0].frequency = VIA_TIMER_FREQ;
ms->timers[1].frequency = VIA_TIMER_FREQ;
ms->b = VIA1B_vADB_StateMask | VIA1B_vADBInt | VIA1B_vRTCEnb;
/* ADB/RTC */
adb_set_autopoll_enabled(adb_bus, true);
v1s->cmd = REG_EMPTY;
v1s->alt = REG_EMPTY;
/* Timer calibration hack */
v1s->timer_hack_state = 0;
}
static void mos6522_q800_via1_realize(DeviceState *dev, Error **errp)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(dev);
ADBBusState *adb_bus = &v1s->adb_bus;
struct tm tm;
int ret;
v1s->one_second_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, via1_one_second,
v1s);
via1_one_second_update(v1s);
v1s->sixty_hz_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, via1_sixty_hz,
v1s);
via1_sixty_hz_update(v1s);
qemu_get_timedate(&tm, 0);
v1s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
adb_register_autopoll_callback(adb_bus, adb_via_poll, v1s);
v1s->adb_data_ready = qdev_get_gpio_in(dev, VIA1_IRQ_ADB_READY_BIT);
if (v1s->blk) {
int64_t len = blk_getlength(v1s->blk);
if (len < 0) {
error_setg_errno(errp, -len,
"could not get length of backing image");
return;
}
ret = blk_set_perm(v1s->blk,
BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
ret = blk_pread(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0);
if (ret < 0) {
error_setg(errp, "can't read PRAM contents");
return;
}
}
}
static void mos6522_q800_via1_init(Object *obj)
{
MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(v1s);
memory_region_init_io(&v1s->via_mem, obj, &mos6522_q800_via1_ops, v1s,
"via1", VIA_SIZE);
sysbus_init_mmio(sbd, &v1s->via_mem);
/* ADB */
qbus_init((BusState *)&v1s->adb_bus, sizeof(v1s->adb_bus),
TYPE_ADB_BUS, DEVICE(v1s), "adb.0");
/* A/UX mode */
qdev_init_gpio_out(DEVICE(obj), &v1s->auxmode_irq, 1);
}
static const VMStateDescription vmstate_q800_via1 = {
.name = "q800-via1",
.version_id = 0,
.minimum_version_id = 0,
.post_load = via1_post_load,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA1State, 0, vmstate_mos6522,
MOS6522State),
VMSTATE_UINT8(last_b, MOS6522Q800VIA1State),
/* RTC */
VMSTATE_BUFFER(PRAM, MOS6522Q800VIA1State),
VMSTATE_UINT32(tick_offset, MOS6522Q800VIA1State),
VMSTATE_UINT8(data_out, MOS6522Q800VIA1State),
VMSTATE_INT32(data_out_cnt, MOS6522Q800VIA1State),
VMSTATE_UINT8(data_in, MOS6522Q800VIA1State),
VMSTATE_UINT8(data_in_cnt, MOS6522Q800VIA1State),
VMSTATE_UINT8(cmd, MOS6522Q800VIA1State),
VMSTATE_INT32(wprotect, MOS6522Q800VIA1State),
VMSTATE_INT32(alt, MOS6522Q800VIA1State),
/* ADB */
VMSTATE_INT32(adb_data_in_size, MOS6522Q800VIA1State),
VMSTATE_INT32(adb_data_in_index, MOS6522Q800VIA1State),
VMSTATE_INT32(adb_data_out_index, MOS6522Q800VIA1State),
VMSTATE_BUFFER(adb_data_in, MOS6522Q800VIA1State),
VMSTATE_BUFFER(adb_data_out, MOS6522Q800VIA1State),
VMSTATE_UINT8(adb_autopoll_cmd, MOS6522Q800VIA1State),
/* Timers */
VMSTATE_TIMER_PTR(one_second_timer, MOS6522Q800VIA1State),
VMSTATE_INT64(next_second, MOS6522Q800VIA1State),
VMSTATE_TIMER_PTR(sixty_hz_timer, MOS6522Q800VIA1State),
VMSTATE_INT64(next_sixty_hz, MOS6522Q800VIA1State),
/* Timer hack */
VMSTATE_INT32(timer_hack_state, MOS6522Q800VIA1State),
VMSTATE_END_OF_LIST()
}
};
static Property mos6522_q800_via1_properties[] = {
DEFINE_PROP_DRIVE("drive", MOS6522Q800VIA1State, blk),
DEFINE_PROP_END_OF_LIST(),
};
static void mos6522_q800_via1_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
ResettableClass *rc = RESETTABLE_CLASS(oc);
MOS6522DeviceClass *mdc = MOS6522_CLASS(oc);
dc->realize = mos6522_q800_via1_realize;
resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via1_reset_hold,
NULL, &mdc->parent_phases);
dc->vmsd = &vmstate_q800_via1;
device_class_set_props(dc, mos6522_q800_via1_properties);
}
static const TypeInfo mos6522_q800_via1_type_info = {
.name = TYPE_MOS6522_Q800_VIA1,
.parent = TYPE_MOS6522,
.instance_size = sizeof(MOS6522Q800VIA1State),
.instance_init = mos6522_q800_via1_init,
.class_init = mos6522_q800_via1_class_init,
};
/* VIA 2 */
static void mos6522_q800_via2_portB_write(MOS6522State *s)
{
if (s->dirb & VIA2B_vPower && (s->b & VIA2B_vPower) == 0) {
/* shutdown */
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
}
}
static void mos6522_q800_via2_reset_hold(Object *obj, ResetType type)
{
MOS6522State *ms = MOS6522(obj);
MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms);
if (mdc->parent_phases.hold) {
mdc->parent_phases.hold(obj, type);
}
ms->timers[0].frequency = VIA_TIMER_FREQ;
ms->timers[1].frequency = VIA_TIMER_FREQ;
ms->dirb = 0;
ms->b = 0;
ms->dira = 0;
ms->a = 0x7f;
}
static void via2_nubus_irq_request(void *opaque, int n, int level)
{
MOS6522Q800VIA2State *v2s = opaque;
MOS6522State *s = MOS6522(v2s);
qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA2_IRQ_NUBUS_BIT);
if (level) {
/* Port A nubus IRQ inputs are active LOW */
s->a &= ~(1 << n);
} else {
s->a |= (1 << n);
}
/* Negative edge trigger */
qemu_set_irq(irq, !level);
}
static void mos6522_q800_via2_init(Object *obj)
{
MOS6522Q800VIA2State *v2s = MOS6522_Q800_VIA2(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(v2s);
memory_region_init_io(&v2s->via_mem, obj, &mos6522_q800_via2_ops, v2s,
"via2", VIA_SIZE);
sysbus_init_mmio(sbd, &v2s->via_mem);
qdev_init_gpio_in_named(DEVICE(obj), via2_nubus_irq_request, "nubus-irq",
VIA2_NUBUS_IRQ_NB);
}
static const VMStateDescription vmstate_q800_via2 = {
.name = "q800-via2",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA2State, 0, vmstate_mos6522,
MOS6522State),
VMSTATE_END_OF_LIST()
}
};
static void mos6522_q800_via2_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
ResettableClass *rc = RESETTABLE_CLASS(oc);
MOS6522DeviceClass *mdc = MOS6522_CLASS(oc);
resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via2_reset_hold,
NULL, &mdc->parent_phases);
dc->vmsd = &vmstate_q800_via2;
mdc->portB_write = mos6522_q800_via2_portB_write;
}
static const TypeInfo mos6522_q800_via2_type_info = {
.name = TYPE_MOS6522_Q800_VIA2,
.parent = TYPE_MOS6522,
.instance_size = sizeof(MOS6522Q800VIA2State),
.instance_init = mos6522_q800_via2_init,
.class_init = mos6522_q800_via2_class_init,
};
static void mac_via_register_types(void)
{
type_register_static(&mos6522_q800_via1_type_info);
type_register_static(&mos6522_q800_via2_type_info);
}
type_init(mac_via_register_types);