
Core by no means makes excessive use of these functions, but quite a large number of those usages do require the caller to call strlen() on the returned string. This is quite wasteful since these functions do already have a good idea of the length of the string, so we might as well just have them return that. Reviewed-by: Andrew Gierth Discussion: https://postgr.es/m/CAApHDvrm2A5x2uHYxsqriO2cUaGcFvND%2BksC9e7Tjep0t2RK_A%40mail.gmail.com
1629 lines
34 KiB
C
1629 lines
34 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* int.c
|
|
* Functions for the built-in integer types (except int8).
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/int.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* OLD COMMENTS
|
|
* I/O routines:
|
|
* int2in, int2out, int2recv, int2send
|
|
* int4in, int4out, int4recv, int4send
|
|
* int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend
|
|
* Boolean operators:
|
|
* inteq, intne, intlt, intle, intgt, intge
|
|
* Arithmetic operators:
|
|
* intpl, intmi, int4mul, intdiv
|
|
*
|
|
* Arithmetic operators:
|
|
* intmod
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "common/int.h"
|
|
#include "funcapi.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/supportnodes.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
|
|
#define Int2VectorSize(n) (offsetof(int2vector, values) + (n) * sizeof(int16))
|
|
|
|
typedef struct
|
|
{
|
|
int32 current;
|
|
int32 finish;
|
|
int32 step;
|
|
} generate_series_fctx;
|
|
|
|
|
|
/*****************************************************************************
|
|
* USER I/O ROUTINES *
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* int2in - converts "num" to short
|
|
*/
|
|
Datum
|
|
int2in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
|
|
PG_RETURN_INT16(pg_strtoint16(num));
|
|
}
|
|
|
|
/*
|
|
* int2out - converts short to "num"
|
|
*/
|
|
Datum
|
|
int2out(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */
|
|
|
|
pg_itoa(arg1, result);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int2recv - converts external binary format to int2
|
|
*/
|
|
Datum
|
|
int2recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16)));
|
|
}
|
|
|
|
/*
|
|
* int2send - converts int2 to binary format
|
|
*/
|
|
Datum
|
|
int2send(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint16(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* construct int2vector given a raw array of int2s
|
|
*
|
|
* If int2s is NULL then caller must fill values[] afterward
|
|
*/
|
|
int2vector *
|
|
buildint2vector(const int16 *int2s, int n)
|
|
{
|
|
int2vector *result;
|
|
|
|
result = (int2vector *) palloc0(Int2VectorSize(n));
|
|
|
|
if (n > 0 && int2s)
|
|
memcpy(result->values, int2s, n * sizeof(int16));
|
|
|
|
/*
|
|
* Attach standard array header. For historical reasons, we set the index
|
|
* lower bound to 0 not 1.
|
|
*/
|
|
SET_VARSIZE(result, Int2VectorSize(n));
|
|
result->ndim = 1;
|
|
result->dataoffset = 0; /* never any nulls */
|
|
result->elemtype = INT2OID;
|
|
result->dim1 = n;
|
|
result->lbound1 = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* int2vectorin - converts "num num ..." to internal form
|
|
*/
|
|
Datum
|
|
int2vectorin(PG_FUNCTION_ARGS)
|
|
{
|
|
char *intString = PG_GETARG_CSTRING(0);
|
|
int2vector *result;
|
|
int n;
|
|
|
|
result = (int2vector *) palloc0(Int2VectorSize(FUNC_MAX_ARGS));
|
|
|
|
for (n = 0; *intString && n < FUNC_MAX_ARGS; n++)
|
|
{
|
|
while (*intString && isspace((unsigned char) *intString))
|
|
intString++;
|
|
if (*intString == '\0')
|
|
break;
|
|
result->values[n] = pg_atoi(intString, sizeof(int16), ' ');
|
|
while (*intString && !isspace((unsigned char) *intString))
|
|
intString++;
|
|
}
|
|
while (*intString && isspace((unsigned char) *intString))
|
|
intString++;
|
|
if (*intString)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("int2vector has too many elements")));
|
|
|
|
SET_VARSIZE(result, Int2VectorSize(n));
|
|
result->ndim = 1;
|
|
result->dataoffset = 0; /* never any nulls */
|
|
result->elemtype = INT2OID;
|
|
result->dim1 = n;
|
|
result->lbound1 = 0;
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorout - converts internal form to "num num ..."
|
|
*/
|
|
Datum
|
|
int2vectorout(PG_FUNCTION_ARGS)
|
|
{
|
|
int2vector *int2Array = (int2vector *) PG_GETARG_POINTER(0);
|
|
int num,
|
|
nnums = int2Array->dim1;
|
|
char *rp;
|
|
char *result;
|
|
|
|
/* assumes sign, 5 digits, ' ' */
|
|
rp = result = (char *) palloc(nnums * 7 + 1);
|
|
for (num = 0; num < nnums; num++)
|
|
{
|
|
if (num != 0)
|
|
*rp++ = ' ';
|
|
rp += pg_itoa(int2Array->values[num], rp);
|
|
}
|
|
*rp = '\0';
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorrecv - converts external binary format to int2vector
|
|
*/
|
|
Datum
|
|
int2vectorrecv(PG_FUNCTION_ARGS)
|
|
{
|
|
LOCAL_FCINFO(locfcinfo, 3);
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
int2vector *result;
|
|
|
|
/*
|
|
* Normally one would call array_recv() using DirectFunctionCall3, but
|
|
* that does not work since array_recv wants to cache some data using
|
|
* fcinfo->flinfo->fn_extra. So we need to pass it our own flinfo
|
|
* parameter.
|
|
*/
|
|
InitFunctionCallInfoData(*locfcinfo, fcinfo->flinfo, 3,
|
|
InvalidOid, NULL, NULL);
|
|
|
|
locfcinfo->args[0].value = PointerGetDatum(buf);
|
|
locfcinfo->args[0].isnull = false;
|
|
locfcinfo->args[1].value = ObjectIdGetDatum(INT2OID);
|
|
locfcinfo->args[1].isnull = false;
|
|
locfcinfo->args[2].value = Int32GetDatum(-1);
|
|
locfcinfo->args[2].isnull = false;
|
|
|
|
result = (int2vector *) DatumGetPointer(array_recv(locfcinfo));
|
|
|
|
Assert(!locfcinfo->isnull);
|
|
|
|
/* sanity checks: int2vector must be 1-D, 0-based, no nulls */
|
|
if (ARR_NDIM(result) != 1 ||
|
|
ARR_HASNULL(result) ||
|
|
ARR_ELEMTYPE(result) != INT2OID ||
|
|
ARR_LBOUND(result)[0] != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid int2vector data")));
|
|
|
|
/* check length for consistency with int2vectorin() */
|
|
if (ARR_DIMS(result)[0] > FUNC_MAX_ARGS)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("oidvector has too many elements")));
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorsend - converts int2vector to binary format
|
|
*/
|
|
Datum
|
|
int2vectorsend(PG_FUNCTION_ARGS)
|
|
{
|
|
return array_send(fcinfo);
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* PUBLIC ROUTINES *
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* int4in - converts "num" to int4
|
|
*/
|
|
Datum
|
|
int4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
|
|
PG_RETURN_INT32(pg_strtoint32(num));
|
|
}
|
|
|
|
/*
|
|
* int4out - converts int4 to "num"
|
|
*/
|
|
Datum
|
|
int4out(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */
|
|
|
|
pg_ltoa(arg1, result);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int4recv - converts external binary format to int4
|
|
*/
|
|
Datum
|
|
int4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32)));
|
|
}
|
|
|
|
/*
|
|
* int4send - converts int4 to binary format
|
|
*/
|
|
Datum
|
|
int4send(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint32(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
Datum
|
|
i2toi4(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT32((int32) arg1);
|
|
}
|
|
|
|
Datum
|
|
i4toi2(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
|
|
if (unlikely(arg1 < SHRT_MIN) || unlikely(arg1 > SHRT_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) arg1);
|
|
}
|
|
|
|
/* Cast int4 -> bool */
|
|
Datum
|
|
int4_bool(PG_FUNCTION_ARGS)
|
|
{
|
|
if (PG_GETARG_INT32(0) == 0)
|
|
PG_RETURN_BOOL(false);
|
|
else
|
|
PG_RETURN_BOOL(true);
|
|
}
|
|
|
|
/* Cast bool -> int4 */
|
|
Datum
|
|
bool_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
if (PG_GETARG_BOOL(0) == false)
|
|
PG_RETURN_INT32(0);
|
|
else
|
|
PG_RETURN_INT32(1);
|
|
}
|
|
|
|
/*
|
|
* ============================
|
|
* COMPARISON OPERATOR ROUTINES
|
|
* ============================
|
|
*/
|
|
|
|
/*
|
|
* inteq - returns 1 iff arg1 == arg2
|
|
* intne - returns 1 iff arg1 != arg2
|
|
* intlt - returns 1 iff arg1 < arg2
|
|
* intle - returns 1 iff arg1 <= arg2
|
|
* intgt - returns 1 iff arg1 > arg2
|
|
* intge - returns 1 iff arg1 >= arg2
|
|
*/
|
|
|
|
Datum
|
|
int4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int4le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int2eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int2ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int2lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int2le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int2gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int2ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int24eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int24ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int24lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int24le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int24gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int24ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int42eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int42ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int42lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int42le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int42gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int42ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* in_range functions for int4 and int2,
|
|
* including cross-data-type comparisons.
|
|
*
|
|
* Note: we provide separate intN_int8 functions for performance
|
|
* reasons. This forces also providing intN_int2, else cases with a
|
|
* smallint offset value would fail to resolve which function to use.
|
|
* But that's an unlikely situation, so don't duplicate code for it.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
in_range_int4_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val = PG_GETARG_INT32(0);
|
|
int32 base = PG_GETARG_INT32(1);
|
|
int32 offset = PG_GETARG_INT32(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int32 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int4_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int4_int4 */
|
|
return DirectFunctionCall5(in_range_int4_int4,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(2)),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
Datum
|
|
in_range_int4_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
/* We must do all the math in int64 */
|
|
int64 val = (int64) PG_GETARG_INT32(0);
|
|
int64 base = (int64) PG_GETARG_INT32(1);
|
|
int64 offset = PG_GETARG_INT64(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int64 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
/* We must do all the math in int32 */
|
|
int32 val = (int32) PG_GETARG_INT16(0);
|
|
int32 base = (int32) PG_GETARG_INT16(1);
|
|
int32 offset = PG_GETARG_INT32(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int32 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int2_int4 */
|
|
return DirectFunctionCall5(in_range_int2_int4,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(2)),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int4_int8 */
|
|
return DirectFunctionCall5(in_range_int4_int8,
|
|
Int32GetDatum((int32) PG_GETARG_INT16(0)),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(1)),
|
|
PG_GETARG_DATUM(2),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
|
|
/*
|
|
* int[24]pl - returns arg1 + arg2
|
|
* int[24]mi - returns arg1 - arg2
|
|
* int[24]mul - returns arg1 * arg2
|
|
* int[24]div - returns arg1 / arg2
|
|
*/
|
|
|
|
Datum
|
|
int4um(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
if (unlikely(arg == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(-arg);
|
|
}
|
|
|
|
Datum
|
|
int4up(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT32(arg);
|
|
}
|
|
|
|
Datum
|
|
int4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT_MIN / -1 is problematic, since the result can't be represented on a
|
|
* two's-complement machine. Some machines produce INT_MIN, some produce
|
|
* zero, some throw an exception. We can dodge the problem by recognizing
|
|
* that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4inc(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int2um(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
if (unlikely(arg == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(-arg);
|
|
}
|
|
|
|
Datum
|
|
int2up(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT16(arg);
|
|
}
|
|
|
|
Datum
|
|
int2pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_add_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_sub_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_mul_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* SHRT_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce SHRT_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int24pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT32((int32) arg1 / arg2);
|
|
}
|
|
|
|
Datum
|
|
int42pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT_MIN / -1 is problematic, since the result can't be represented on a
|
|
* two's-complement machine. Some machines produce INT_MIN, some produce
|
|
* zero, some throw an exception. We can dodge the problem by recognizing
|
|
* that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT_MIN % -1, which
|
|
* is a bit silly since the correct answer is perfectly well-defined,
|
|
* namely zero.
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT32(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT32(arg1 % arg2);
|
|
}
|
|
|
|
Datum
|
|
int2mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT_MIN % -1, which
|
|
* is a bit silly since the correct answer is perfectly well-defined,
|
|
* namely zero. (It's not clear this ever happens when dealing with
|
|
* int16, but we might as well have the test for safety.)
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT16(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT16(arg1 % arg2);
|
|
}
|
|
|
|
|
|
/* int[24]abs()
|
|
* Absolute value
|
|
*/
|
|
Datum
|
|
int4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 result;
|
|
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int2abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 result;
|
|
|
|
if (unlikely(arg1 == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
/*
|
|
* Greatest Common Divisor
|
|
*
|
|
* Returns the largest positive integer that exactly divides both inputs.
|
|
* Special cases:
|
|
* - gcd(x, 0) = gcd(0, x) = abs(x)
|
|
* because 0 is divisible by anything
|
|
* - gcd(0, 0) = 0
|
|
* complies with the previous definition and is a common convention
|
|
*
|
|
* Special care must be taken if either input is INT_MIN --- gcd(0, INT_MIN),
|
|
* gcd(INT_MIN, 0) and gcd(INT_MIN, INT_MIN) are all equal to abs(INT_MIN),
|
|
* which cannot be represented as a 32-bit signed integer.
|
|
*/
|
|
static int32
|
|
int4gcd_internal(int32 arg1, int32 arg2)
|
|
{
|
|
int32 swap;
|
|
int32 a1,
|
|
a2;
|
|
|
|
/*
|
|
* Put the greater absolute value in arg1.
|
|
*
|
|
* This would happen automatically in the loop below, but avoids an
|
|
* expensive modulo operation, and simplifies the special-case handling
|
|
* for INT_MIN below.
|
|
*
|
|
* We do this in negative space in order to handle INT_MIN.
|
|
*/
|
|
a1 = (arg1 < 0) ? arg1 : -arg1;
|
|
a2 = (arg2 < 0) ? arg2 : -arg2;
|
|
if (a1 > a2)
|
|
{
|
|
swap = arg1;
|
|
arg1 = arg2;
|
|
arg2 = swap;
|
|
}
|
|
|
|
/* Special care needs to be taken with INT_MIN. See comments above. */
|
|
if (arg1 == PG_INT32_MIN)
|
|
{
|
|
if (arg2 == 0 || arg2 == PG_INT32_MIN)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT_MIN % -1,
|
|
* which is a bit silly since the correct answer is perfectly
|
|
* well-defined, namely zero. Guard against this and just return the
|
|
* result, gcd(INT_MIN, -1) = 1.
|
|
*/
|
|
if (arg2 == -1)
|
|
return 1;
|
|
}
|
|
|
|
/* Use the Euclidean algorithm to find the GCD */
|
|
while (arg2 != 0)
|
|
{
|
|
swap = arg2;
|
|
arg2 = arg1 % arg2;
|
|
arg1 = swap;
|
|
}
|
|
|
|
/*
|
|
* Make sure the result is positive. (We know we don't have INT_MIN
|
|
* anymore).
|
|
*/
|
|
if (arg1 < 0)
|
|
arg1 = -arg1;
|
|
|
|
return arg1;
|
|
}
|
|
|
|
Datum
|
|
int4gcd(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
result = int4gcd_internal(arg1, arg2);
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* Least Common Multiple
|
|
*/
|
|
Datum
|
|
int4lcm(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 gcd;
|
|
int32 result;
|
|
|
|
/*
|
|
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
|
|
* division-by-zero error below when x is zero, and an overflow error from
|
|
* the GCD computation when x = INT_MIN.
|
|
*/
|
|
if (arg1 == 0 || arg2 == 0)
|
|
PG_RETURN_INT32(0);
|
|
|
|
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
|
|
gcd = int4gcd_internal(arg1, arg2);
|
|
arg1 = arg1 / gcd;
|
|
|
|
if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
/* If the result is INT_MIN, it cannot be represented. */
|
|
if (unlikely(result == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
if (result < 0)
|
|
result = -result;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int2larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16((arg1 > arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int2smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16((arg1 < arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32((arg1 > arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32((arg1 < arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
/*
|
|
* Bit-pushing operators
|
|
*
|
|
* int[24]and - returns arg1 & arg2
|
|
* int[24]or - returns arg1 | arg2
|
|
* int[24]xor - returns arg1 # arg2
|
|
* int[24]not - returns ~arg1
|
|
* int[24]shl - returns arg1 << arg2
|
|
* int[24]shr - returns arg1 >> arg2
|
|
*/
|
|
|
|
Datum
|
|
int4and(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int4or(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int4xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int4shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int4shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 >> arg2);
|
|
}
|
|
|
|
Datum
|
|
int4not(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT32(~arg1);
|
|
}
|
|
|
|
Datum
|
|
int2and(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int2or(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int2xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int2not(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT16(~arg1);
|
|
}
|
|
|
|
|
|
Datum
|
|
int2shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT16(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int2shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT16(arg1 >> arg2);
|
|
}
|
|
|
|
/*
|
|
* non-persistent numeric series generator
|
|
*/
|
|
Datum
|
|
generate_series_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
return generate_series_step_int4(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
generate_series_step_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
generate_series_fctx *fctx;
|
|
int32 result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int32 start = PG_GETARG_INT32(0);
|
|
int32 finish = PG_GETARG_INT32(1);
|
|
int32 step = 1;
|
|
|
|
/* see if we were given an explicit step size */
|
|
if (PG_NARGS() == 3)
|
|
step = PG_GETARG_INT32(2);
|
|
if (step == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("step size cannot equal zero")));
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* allocate memory for user context */
|
|
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
|
|
|
|
/*
|
|
* Use fctx to keep state from call to call. Seed current with the
|
|
* original start value
|
|
*/
|
|
fctx->current = start;
|
|
fctx->finish = finish;
|
|
fctx->step = step;
|
|
|
|
funcctx->user_fctx = fctx;
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/*
|
|
* get the saved state and use current as the result for this iteration
|
|
*/
|
|
fctx = funcctx->user_fctx;
|
|
result = fctx->current;
|
|
|
|
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
|
|
(fctx->step < 0 && fctx->current >= fctx->finish))
|
|
{
|
|
/*
|
|
* Increment current in preparation for next iteration. If next-value
|
|
* computation overflows, this is the final result.
|
|
*/
|
|
if (pg_add_s32_overflow(fctx->current, fctx->step, &fctx->current))
|
|
fctx->step = 0;
|
|
|
|
/* do when there is more left to send */
|
|
SRF_RETURN_NEXT(funcctx, Int32GetDatum(result));
|
|
}
|
|
else
|
|
/* do when there is no more left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* Planner support function for generate_series(int4, int4 [, int4])
|
|
*/
|
|
Datum
|
|
generate_series_int4_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
Node *ret = NULL;
|
|
|
|
if (IsA(rawreq, SupportRequestRows))
|
|
{
|
|
/* Try to estimate the number of rows returned */
|
|
SupportRequestRows *req = (SupportRequestRows *) rawreq;
|
|
|
|
if (is_funcclause(req->node)) /* be paranoid */
|
|
{
|
|
List *args = ((FuncExpr *) req->node)->args;
|
|
Node *arg1,
|
|
*arg2,
|
|
*arg3;
|
|
|
|
/* We can use estimated argument values here */
|
|
arg1 = estimate_expression_value(req->root, linitial(args));
|
|
arg2 = estimate_expression_value(req->root, lsecond(args));
|
|
if (list_length(args) >= 3)
|
|
arg3 = estimate_expression_value(req->root, lthird(args));
|
|
else
|
|
arg3 = NULL;
|
|
|
|
/*
|
|
* If any argument is constant NULL, we can safely assume that
|
|
* zero rows are returned. Otherwise, if they're all non-NULL
|
|
* constants, we can calculate the number of rows that will be
|
|
* returned. Use double arithmetic to avoid overflow hazards.
|
|
*/
|
|
if ((IsA(arg1, Const) &&
|
|
((Const *) arg1)->constisnull) ||
|
|
(IsA(arg2, Const) &&
|
|
((Const *) arg2)->constisnull) ||
|
|
(arg3 != NULL && IsA(arg3, Const) &&
|
|
((Const *) arg3)->constisnull))
|
|
{
|
|
req->rows = 0;
|
|
ret = (Node *) req;
|
|
}
|
|
else if (IsA(arg1, Const) &&
|
|
IsA(arg2, Const) &&
|
|
(arg3 == NULL || IsA(arg3, Const)))
|
|
{
|
|
double start,
|
|
finish,
|
|
step;
|
|
|
|
start = DatumGetInt32(((Const *) arg1)->constvalue);
|
|
finish = DatumGetInt32(((Const *) arg2)->constvalue);
|
|
step = arg3 ? DatumGetInt32(((Const *) arg3)->constvalue) : 1;
|
|
|
|
/* This equation works for either sign of step */
|
|
if (step != 0)
|
|
{
|
|
req->rows = floor((finish - start + step) / step);
|
|
ret = (Node *) req;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PG_RETURN_POINTER(ret);
|
|
}
|