
Previously, callers of pg_newlocale_from_collation() did not call it if the collation was DEFAULT_COLLATION_OID and instead proceeded with a pg_locale_t of 0. Instead, now we call it anyway and have it return 0 if the default collation was passed. It already did this, so we just have to adjust the callers. This simplifies all the call sites and also makes future enhancements easier. After discussion and testing, the previous comment in pg_locale.c about avoiding this for performance reasons may have been mistaken since it was testing a very different patch version way back when. Reviewed-by: Julien Rouhaud <rjuju123@gmail.com> Discussion: https://www.postgresql.org/message-id/ed3baa81-7fac-7788-cc12-41e3f7917e34@enterprisedb.com
1797 lines
49 KiB
C
1797 lines
49 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* like_support.c
|
|
* Planner support functions for LIKE, regex, and related operators.
|
|
*
|
|
* These routines handle special optimization of operators that can be
|
|
* used with index scans even though they are not known to the executor's
|
|
* indexscan machinery. The key idea is that these operators allow us
|
|
* to derive approximate indexscan qual clauses, such that any tuples
|
|
* that pass the operator clause itself must also satisfy the simpler
|
|
* indexscan condition(s). Then we can use the indexscan machinery
|
|
* to avoid scanning as much of the table as we'd otherwise have to,
|
|
* while applying the original operator as a qpqual condition to ensure
|
|
* we deliver only the tuples we want. (In essence, we're using a regular
|
|
* index as if it were a lossy index.)
|
|
*
|
|
* An example of what we're doing is
|
|
* textfield LIKE 'abc%def'
|
|
* from which we can generate the indexscanable conditions
|
|
* textfield >= 'abc' AND textfield < 'abd'
|
|
* which allow efficient scanning of an index on textfield.
|
|
* (In reality, character set and collation issues make the transformation
|
|
* from LIKE to indexscan limits rather harder than one might think ...
|
|
* but that's the basic idea.)
|
|
*
|
|
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/like_support.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/stratnum.h"
|
|
#include "catalog/pg_collation.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_opfamily.h"
|
|
#include "catalog/pg_statistic.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/supportnodes.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/pg_locale.h"
|
|
#include "utils/selfuncs.h"
|
|
#include "utils/varlena.h"
|
|
|
|
|
|
typedef enum
|
|
{
|
|
Pattern_Type_Like,
|
|
Pattern_Type_Like_IC,
|
|
Pattern_Type_Regex,
|
|
Pattern_Type_Regex_IC,
|
|
Pattern_Type_Prefix
|
|
} Pattern_Type;
|
|
|
|
typedef enum
|
|
{
|
|
Pattern_Prefix_None, Pattern_Prefix_Partial, Pattern_Prefix_Exact
|
|
} Pattern_Prefix_Status;
|
|
|
|
static Node *like_regex_support(Node *rawreq, Pattern_Type ptype);
|
|
static List *match_pattern_prefix(Node *leftop,
|
|
Node *rightop,
|
|
Pattern_Type ptype,
|
|
Oid expr_coll,
|
|
Oid opfamily,
|
|
Oid indexcollation);
|
|
static double patternsel_common(PlannerInfo *root,
|
|
Oid oprid,
|
|
Oid opfuncid,
|
|
List *args,
|
|
int varRelid,
|
|
Oid collation,
|
|
Pattern_Type ptype,
|
|
bool negate);
|
|
static Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
|
|
Pattern_Type ptype,
|
|
Oid collation,
|
|
Const **prefix,
|
|
Selectivity *rest_selec);
|
|
static Selectivity prefix_selectivity(PlannerInfo *root,
|
|
VariableStatData *vardata,
|
|
Oid eqopr, Oid ltopr, Oid geopr,
|
|
Oid collation,
|
|
Const *prefixcon);
|
|
static Selectivity like_selectivity(const char *patt, int pattlen,
|
|
bool case_insensitive);
|
|
static Selectivity regex_selectivity(const char *patt, int pattlen,
|
|
bool case_insensitive,
|
|
int fixed_prefix_len);
|
|
static int pattern_char_isalpha(char c, bool is_multibyte,
|
|
pg_locale_t locale, bool locale_is_c);
|
|
static Const *make_greater_string(const Const *str_const, FmgrInfo *ltproc,
|
|
Oid collation);
|
|
static Datum string_to_datum(const char *str, Oid datatype);
|
|
static Const *string_to_const(const char *str, Oid datatype);
|
|
static Const *string_to_bytea_const(const char *str, size_t str_len);
|
|
|
|
|
|
/*
|
|
* Planner support functions for LIKE, regex, and related operators
|
|
*/
|
|
Datum
|
|
textlike_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(like_regex_support(rawreq, Pattern_Type_Like));
|
|
}
|
|
|
|
Datum
|
|
texticlike_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(like_regex_support(rawreq, Pattern_Type_Like_IC));
|
|
}
|
|
|
|
Datum
|
|
textregexeq_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(like_regex_support(rawreq, Pattern_Type_Regex));
|
|
}
|
|
|
|
Datum
|
|
texticregexeq_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(like_regex_support(rawreq, Pattern_Type_Regex_IC));
|
|
}
|
|
|
|
Datum
|
|
text_starts_with_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(like_regex_support(rawreq, Pattern_Type_Prefix));
|
|
}
|
|
|
|
/* Common code for the above */
|
|
static Node *
|
|
like_regex_support(Node *rawreq, Pattern_Type ptype)
|
|
{
|
|
Node *ret = NULL;
|
|
|
|
if (IsA(rawreq, SupportRequestSelectivity))
|
|
{
|
|
/*
|
|
* Make a selectivity estimate for a function call, just as we'd do if
|
|
* the call was via the corresponding operator.
|
|
*/
|
|
SupportRequestSelectivity *req = (SupportRequestSelectivity *) rawreq;
|
|
Selectivity s1;
|
|
|
|
if (req->is_join)
|
|
{
|
|
/*
|
|
* For the moment we just punt. If patternjoinsel is ever
|
|
* improved to do better, this should be made to call it.
|
|
*/
|
|
s1 = DEFAULT_MATCH_SEL;
|
|
}
|
|
else
|
|
{
|
|
/* Share code with operator restriction selectivity functions */
|
|
s1 = patternsel_common(req->root,
|
|
InvalidOid,
|
|
req->funcid,
|
|
req->args,
|
|
req->varRelid,
|
|
req->inputcollid,
|
|
ptype,
|
|
false);
|
|
}
|
|
req->selectivity = s1;
|
|
ret = (Node *) req;
|
|
}
|
|
else if (IsA(rawreq, SupportRequestIndexCondition))
|
|
{
|
|
/* Try to convert operator/function call to index conditions */
|
|
SupportRequestIndexCondition *req = (SupportRequestIndexCondition *) rawreq;
|
|
|
|
/*
|
|
* Currently we have no "reverse" match operators with the pattern on
|
|
* the left, so we only need consider cases with the indexkey on the
|
|
* left.
|
|
*/
|
|
if (req->indexarg != 0)
|
|
return NULL;
|
|
|
|
if (is_opclause(req->node))
|
|
{
|
|
OpExpr *clause = (OpExpr *) req->node;
|
|
|
|
Assert(list_length(clause->args) == 2);
|
|
ret = (Node *)
|
|
match_pattern_prefix((Node *) linitial(clause->args),
|
|
(Node *) lsecond(clause->args),
|
|
ptype,
|
|
clause->inputcollid,
|
|
req->opfamily,
|
|
req->indexcollation);
|
|
}
|
|
else if (is_funcclause(req->node)) /* be paranoid */
|
|
{
|
|
FuncExpr *clause = (FuncExpr *) req->node;
|
|
|
|
Assert(list_length(clause->args) == 2);
|
|
ret = (Node *)
|
|
match_pattern_prefix((Node *) linitial(clause->args),
|
|
(Node *) lsecond(clause->args),
|
|
ptype,
|
|
clause->inputcollid,
|
|
req->opfamily,
|
|
req->indexcollation);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* match_pattern_prefix
|
|
* Try to generate an indexqual for a LIKE or regex operator.
|
|
*/
|
|
static List *
|
|
match_pattern_prefix(Node *leftop,
|
|
Node *rightop,
|
|
Pattern_Type ptype,
|
|
Oid expr_coll,
|
|
Oid opfamily,
|
|
Oid indexcollation)
|
|
{
|
|
List *result;
|
|
Const *patt;
|
|
Const *prefix;
|
|
Pattern_Prefix_Status pstatus;
|
|
Oid ldatatype;
|
|
Oid rdatatype;
|
|
Oid eqopr;
|
|
Oid ltopr;
|
|
Oid geopr;
|
|
Oid preopr = InvalidOid;
|
|
bool collation_aware;
|
|
Expr *expr;
|
|
FmgrInfo ltproc;
|
|
Const *greaterstr;
|
|
|
|
/*
|
|
* Can't do anything with a non-constant or NULL pattern argument.
|
|
*
|
|
* Note that since we restrict ourselves to cases with a hard constant on
|
|
* the RHS, it's a-fortiori a pseudoconstant, and we don't need to worry
|
|
* about verifying that.
|
|
*/
|
|
if (!IsA(rightop, Const) ||
|
|
((Const *) rightop)->constisnull)
|
|
return NIL;
|
|
patt = (Const *) rightop;
|
|
|
|
/*
|
|
* Not supported if the expression collation is nondeterministic. The
|
|
* optimized equality or prefix tests use bytewise comparisons, which is
|
|
* not consistent with nondeterministic collations. The actual
|
|
* pattern-matching implementation functions will later error out that
|
|
* pattern-matching is not supported with nondeterministic collations. (We
|
|
* could also error out here, but by doing it later we get more precise
|
|
* error messages.) (It should be possible to support at least
|
|
* Pattern_Prefix_Exact, but no point as long as the actual
|
|
* pattern-matching implementations don't support it.)
|
|
*
|
|
* expr_coll is not set for a non-collation-aware data type such as bytea.
|
|
*/
|
|
if (expr_coll && !get_collation_isdeterministic(expr_coll))
|
|
return NIL;
|
|
|
|
/*
|
|
* Try to extract a fixed prefix from the pattern.
|
|
*/
|
|
pstatus = pattern_fixed_prefix(patt, ptype, expr_coll,
|
|
&prefix, NULL);
|
|
|
|
/* fail if no fixed prefix */
|
|
if (pstatus == Pattern_Prefix_None)
|
|
return NIL;
|
|
|
|
/*
|
|
* Identify the operators we want to use, based on the type of the
|
|
* left-hand argument. Usually these are just the type's regular
|
|
* comparison operators, but if we are considering one of the semi-legacy
|
|
* "pattern" opclasses, use the "pattern" operators instead. Those are
|
|
* not collation-sensitive but always use C collation, as we want. The
|
|
* selected operators also determine the needed type of the prefix
|
|
* constant.
|
|
*/
|
|
ldatatype = exprType(leftop);
|
|
switch (ldatatype)
|
|
{
|
|
case TEXTOID:
|
|
if (opfamily == TEXT_PATTERN_BTREE_FAM_OID)
|
|
{
|
|
eqopr = TextEqualOperator;
|
|
ltopr = TextPatternLessOperator;
|
|
geopr = TextPatternGreaterEqualOperator;
|
|
collation_aware = false;
|
|
}
|
|
else if (opfamily == TEXT_SPGIST_FAM_OID)
|
|
{
|
|
eqopr = TextEqualOperator;
|
|
ltopr = TextPatternLessOperator;
|
|
geopr = TextPatternGreaterEqualOperator;
|
|
/* This opfamily has direct support for prefixing */
|
|
preopr = TextPrefixOperator;
|
|
collation_aware = false;
|
|
}
|
|
else
|
|
{
|
|
eqopr = TextEqualOperator;
|
|
ltopr = TextLessOperator;
|
|
geopr = TextGreaterEqualOperator;
|
|
collation_aware = true;
|
|
}
|
|
rdatatype = TEXTOID;
|
|
break;
|
|
case NAMEOID:
|
|
|
|
/*
|
|
* Note that here, we need the RHS type to be text, so that the
|
|
* comparison value isn't improperly truncated to NAMEDATALEN.
|
|
*/
|
|
eqopr = NameEqualTextOperator;
|
|
ltopr = NameLessTextOperator;
|
|
geopr = NameGreaterEqualTextOperator;
|
|
collation_aware = true;
|
|
rdatatype = TEXTOID;
|
|
break;
|
|
case BPCHAROID:
|
|
if (opfamily == BPCHAR_PATTERN_BTREE_FAM_OID)
|
|
{
|
|
eqopr = BpcharEqualOperator;
|
|
ltopr = BpcharPatternLessOperator;
|
|
geopr = BpcharPatternGreaterEqualOperator;
|
|
collation_aware = false;
|
|
}
|
|
else
|
|
{
|
|
eqopr = BpcharEqualOperator;
|
|
ltopr = BpcharLessOperator;
|
|
geopr = BpcharGreaterEqualOperator;
|
|
collation_aware = true;
|
|
}
|
|
rdatatype = BPCHAROID;
|
|
break;
|
|
case BYTEAOID:
|
|
eqopr = ByteaEqualOperator;
|
|
ltopr = ByteaLessOperator;
|
|
geopr = ByteaGreaterEqualOperator;
|
|
collation_aware = false;
|
|
rdatatype = BYTEAOID;
|
|
break;
|
|
default:
|
|
/* Can't get here unless we're attached to the wrong operator */
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* If necessary, coerce the prefix constant to the right type. The given
|
|
* prefix constant is either text or bytea type, therefore the only case
|
|
* where we need to do anything is when converting text to bpchar. Those
|
|
* two types are binary-compatible, so relabeling the Const node is
|
|
* sufficient.
|
|
*/
|
|
if (prefix->consttype != rdatatype)
|
|
{
|
|
Assert(prefix->consttype == TEXTOID &&
|
|
rdatatype == BPCHAROID);
|
|
prefix->consttype = rdatatype;
|
|
}
|
|
|
|
/*
|
|
* If we found an exact-match pattern, generate an "=" indexqual.
|
|
*
|
|
* Here and below, check to see whether the desired operator is actually
|
|
* supported by the index opclass, and fail quietly if not. This allows
|
|
* us to not be concerned with specific opclasses (except for the legacy
|
|
* "pattern" cases); any index that correctly implements the operators
|
|
* will work.
|
|
*/
|
|
if (pstatus == Pattern_Prefix_Exact)
|
|
{
|
|
if (!op_in_opfamily(eqopr, opfamily))
|
|
return NIL;
|
|
expr = make_opclause(eqopr, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) prefix,
|
|
InvalidOid, indexcollation);
|
|
result = list_make1(expr);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we have a nonempty required prefix of the values. Some
|
|
* opclasses support prefix checks directly, otherwise we'll try to
|
|
* generate a range constraint.
|
|
*/
|
|
if (OidIsValid(preopr) && op_in_opfamily(preopr, opfamily))
|
|
{
|
|
expr = make_opclause(preopr, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) prefix,
|
|
InvalidOid, indexcollation);
|
|
result = list_make1(expr);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Since we need a range constraint, it's only going to work reliably if
|
|
* the index is collation-insensitive or has "C" collation. Note that
|
|
* here we are looking at the index's collation, not the expression's
|
|
* collation -- this test is *not* dependent on the LIKE/regex operator's
|
|
* collation.
|
|
*/
|
|
if (collation_aware &&
|
|
!lc_collate_is_c(indexcollation))
|
|
return NIL;
|
|
|
|
/*
|
|
* We can always say "x >= prefix".
|
|
*/
|
|
if (!op_in_opfamily(geopr, opfamily))
|
|
return NIL;
|
|
expr = make_opclause(geopr, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) prefix,
|
|
InvalidOid, indexcollation);
|
|
result = list_make1(expr);
|
|
|
|
/*-------
|
|
* If we can create a string larger than the prefix, we can say
|
|
* "x < greaterstr". NB: we rely on make_greater_string() to generate
|
|
* a guaranteed-greater string, not just a probably-greater string.
|
|
* In general this is only guaranteed in C locale, so we'd better be
|
|
* using a C-locale index collation.
|
|
*-------
|
|
*/
|
|
if (!op_in_opfamily(ltopr, opfamily))
|
|
return result;
|
|
fmgr_info(get_opcode(ltopr), <proc);
|
|
greaterstr = make_greater_string(prefix, <proc, indexcollation);
|
|
if (greaterstr)
|
|
{
|
|
expr = make_opclause(ltopr, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) greaterstr,
|
|
InvalidOid, indexcollation);
|
|
result = lappend(result, expr);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* patternsel_common - generic code for pattern-match restriction selectivity.
|
|
*
|
|
* To support using this from either the operator or function paths, caller
|
|
* may pass either operator OID or underlying function OID; we look up the
|
|
* latter from the former if needed. (We could just have patternsel() call
|
|
* get_opcode(), but the work would be wasted if we don't have a need to
|
|
* compare a fixed prefix to the pg_statistic data.)
|
|
*
|
|
* Note that oprid and/or opfuncid should be for the positive-match operator
|
|
* even when negate is true.
|
|
*/
|
|
static double
|
|
patternsel_common(PlannerInfo *root,
|
|
Oid oprid,
|
|
Oid opfuncid,
|
|
List *args,
|
|
int varRelid,
|
|
Oid collation,
|
|
Pattern_Type ptype,
|
|
bool negate)
|
|
{
|
|
VariableStatData vardata;
|
|
Node *other;
|
|
bool varonleft;
|
|
Datum constval;
|
|
Oid consttype;
|
|
Oid vartype;
|
|
Oid rdatatype;
|
|
Oid eqopr;
|
|
Oid ltopr;
|
|
Oid geopr;
|
|
Pattern_Prefix_Status pstatus;
|
|
Const *patt;
|
|
Const *prefix = NULL;
|
|
Selectivity rest_selec = 0;
|
|
double nullfrac = 0.0;
|
|
double result;
|
|
|
|
/*
|
|
* Initialize result to the appropriate default estimate depending on
|
|
* whether it's a match or not-match operator.
|
|
*/
|
|
if (negate)
|
|
result = 1.0 - DEFAULT_MATCH_SEL;
|
|
else
|
|
result = DEFAULT_MATCH_SEL;
|
|
|
|
/*
|
|
* If expression is not variable op constant, then punt and return the
|
|
* default estimate.
|
|
*/
|
|
if (!get_restriction_variable(root, args, varRelid,
|
|
&vardata, &other, &varonleft))
|
|
return result;
|
|
if (!varonleft || !IsA(other, Const))
|
|
{
|
|
ReleaseVariableStats(vardata);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* If the constant is NULL, assume operator is strict and return zero, ie,
|
|
* operator will never return TRUE. (It's zero even for a negator op.)
|
|
*/
|
|
if (((Const *) other)->constisnull)
|
|
{
|
|
ReleaseVariableStats(vardata);
|
|
return 0.0;
|
|
}
|
|
constval = ((Const *) other)->constvalue;
|
|
consttype = ((Const *) other)->consttype;
|
|
|
|
/*
|
|
* The right-hand const is type text or bytea for all supported operators.
|
|
* We do not expect to see binary-compatible types here, since
|
|
* const-folding should have relabeled the const to exactly match the
|
|
* operator's declared type.
|
|
*/
|
|
if (consttype != TEXTOID && consttype != BYTEAOID)
|
|
{
|
|
ReleaseVariableStats(vardata);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Similarly, the exposed type of the left-hand side should be one of
|
|
* those we know. (Do not look at vardata.atttype, which might be
|
|
* something binary-compatible but different.) We can use it to identify
|
|
* the comparison operators and the required type of the comparison
|
|
* constant, much as in match_pattern_prefix().
|
|
*/
|
|
vartype = vardata.vartype;
|
|
|
|
switch (vartype)
|
|
{
|
|
case TEXTOID:
|
|
eqopr = TextEqualOperator;
|
|
ltopr = TextLessOperator;
|
|
geopr = TextGreaterEqualOperator;
|
|
rdatatype = TEXTOID;
|
|
break;
|
|
case NAMEOID:
|
|
|
|
/*
|
|
* Note that here, we need the RHS type to be text, so that the
|
|
* comparison value isn't improperly truncated to NAMEDATALEN.
|
|
*/
|
|
eqopr = NameEqualTextOperator;
|
|
ltopr = NameLessTextOperator;
|
|
geopr = NameGreaterEqualTextOperator;
|
|
rdatatype = TEXTOID;
|
|
break;
|
|
case BPCHAROID:
|
|
eqopr = BpcharEqualOperator;
|
|
ltopr = BpcharLessOperator;
|
|
geopr = BpcharGreaterEqualOperator;
|
|
rdatatype = BPCHAROID;
|
|
break;
|
|
case BYTEAOID:
|
|
eqopr = ByteaEqualOperator;
|
|
ltopr = ByteaLessOperator;
|
|
geopr = ByteaGreaterEqualOperator;
|
|
rdatatype = BYTEAOID;
|
|
break;
|
|
default:
|
|
/* Can't get here unless we're attached to the wrong operator */
|
|
ReleaseVariableStats(vardata);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Grab the nullfrac for use below.
|
|
*/
|
|
if (HeapTupleIsValid(vardata.statsTuple))
|
|
{
|
|
Form_pg_statistic stats;
|
|
|
|
stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
|
|
nullfrac = stats->stanullfrac;
|
|
}
|
|
|
|
/*
|
|
* Pull out any fixed prefix implied by the pattern, and estimate the
|
|
* fractional selectivity of the remainder of the pattern. Unlike many
|
|
* other selectivity estimators, we use the pattern operator's actual
|
|
* collation for this step. This is not because we expect the collation
|
|
* to make a big difference in the selectivity estimate (it seldom would),
|
|
* but because we want to be sure we cache compiled regexps under the
|
|
* right cache key, so that they can be re-used at runtime.
|
|
*/
|
|
patt = (Const *) other;
|
|
pstatus = pattern_fixed_prefix(patt, ptype, collation,
|
|
&prefix, &rest_selec);
|
|
|
|
/*
|
|
* If necessary, coerce the prefix constant to the right type. The only
|
|
* case where we need to do anything is when converting text to bpchar.
|
|
* Those two types are binary-compatible, so relabeling the Const node is
|
|
* sufficient.
|
|
*/
|
|
if (prefix && prefix->consttype != rdatatype)
|
|
{
|
|
Assert(prefix->consttype == TEXTOID &&
|
|
rdatatype == BPCHAROID);
|
|
prefix->consttype = rdatatype;
|
|
}
|
|
|
|
if (pstatus == Pattern_Prefix_Exact)
|
|
{
|
|
/*
|
|
* Pattern specifies an exact match, so estimate as for '='
|
|
*/
|
|
result = var_eq_const(&vardata, eqopr, collation, prefix->constvalue,
|
|
false, true, false);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Not exact-match pattern. If we have a sufficiently large
|
|
* histogram, estimate selectivity for the histogram part of the
|
|
* population by counting matches in the histogram. If not, estimate
|
|
* selectivity of the fixed prefix and remainder of pattern
|
|
* separately, then combine the two to get an estimate of the
|
|
* selectivity for the part of the column population represented by
|
|
* the histogram. (For small histograms, we combine these
|
|
* approaches.)
|
|
*
|
|
* We then add up data for any most-common-values values; these are
|
|
* not in the histogram population, and we can get exact answers for
|
|
* them by applying the pattern operator, so there's no reason to
|
|
* approximate. (If the MCVs cover a significant part of the total
|
|
* population, this gives us a big leg up in accuracy.)
|
|
*/
|
|
Selectivity selec;
|
|
int hist_size;
|
|
FmgrInfo opproc;
|
|
double mcv_selec,
|
|
sumcommon;
|
|
|
|
/* Try to use the histogram entries to get selectivity */
|
|
if (!OidIsValid(opfuncid))
|
|
opfuncid = get_opcode(oprid);
|
|
fmgr_info(opfuncid, &opproc);
|
|
|
|
selec = histogram_selectivity(&vardata, &opproc, collation,
|
|
constval, true,
|
|
10, 1, &hist_size);
|
|
|
|
/* If not at least 100 entries, use the heuristic method */
|
|
if (hist_size < 100)
|
|
{
|
|
Selectivity heursel;
|
|
Selectivity prefixsel;
|
|
|
|
if (pstatus == Pattern_Prefix_Partial)
|
|
prefixsel = prefix_selectivity(root, &vardata,
|
|
eqopr, ltopr, geopr,
|
|
collation,
|
|
prefix);
|
|
else
|
|
prefixsel = 1.0;
|
|
heursel = prefixsel * rest_selec;
|
|
|
|
if (selec < 0) /* fewer than 10 histogram entries? */
|
|
selec = heursel;
|
|
else
|
|
{
|
|
/*
|
|
* For histogram sizes from 10 to 100, we combine the
|
|
* histogram and heuristic selectivities, putting increasingly
|
|
* more trust in the histogram for larger sizes.
|
|
*/
|
|
double hist_weight = hist_size / 100.0;
|
|
|
|
selec = selec * hist_weight + heursel * (1.0 - hist_weight);
|
|
}
|
|
}
|
|
|
|
/* In any case, don't believe extremely small or large estimates. */
|
|
if (selec < 0.0001)
|
|
selec = 0.0001;
|
|
else if (selec > 0.9999)
|
|
selec = 0.9999;
|
|
|
|
/*
|
|
* If we have most-common-values info, add up the fractions of the MCV
|
|
* entries that satisfy MCV OP PATTERN. These fractions contribute
|
|
* directly to the result selectivity. Also add up the total fraction
|
|
* represented by MCV entries.
|
|
*/
|
|
mcv_selec = mcv_selectivity(&vardata, &opproc, collation,
|
|
constval, true,
|
|
&sumcommon);
|
|
|
|
/*
|
|
* Now merge the results from the MCV and histogram calculations,
|
|
* realizing that the histogram covers only the non-null values that
|
|
* are not listed in MCV.
|
|
*/
|
|
selec *= 1.0 - nullfrac - sumcommon;
|
|
selec += mcv_selec;
|
|
result = selec;
|
|
}
|
|
|
|
/* now adjust if we wanted not-match rather than match */
|
|
if (negate)
|
|
result = 1.0 - result - nullfrac;
|
|
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(result);
|
|
|
|
if (prefix)
|
|
{
|
|
pfree(DatumGetPointer(prefix->constvalue));
|
|
pfree(prefix);
|
|
}
|
|
|
|
ReleaseVariableStats(vardata);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Fix impedance mismatch between SQL-callable functions and patternsel_common
|
|
*/
|
|
static double
|
|
patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
|
|
{
|
|
PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Oid collation = PG_GET_COLLATION();
|
|
|
|
/*
|
|
* If this is for a NOT LIKE or similar operator, get the corresponding
|
|
* positive-match operator and work with that.
|
|
*/
|
|
if (negate)
|
|
{
|
|
operator = get_negator(operator);
|
|
if (!OidIsValid(operator))
|
|
elog(ERROR, "patternsel called for operator without a negator");
|
|
}
|
|
|
|
return patternsel_common(root,
|
|
operator,
|
|
InvalidOid,
|
|
args,
|
|
varRelid,
|
|
collation,
|
|
ptype,
|
|
negate);
|
|
}
|
|
|
|
/*
|
|
* regexeqsel - Selectivity of regular-expression pattern match.
|
|
*/
|
|
Datum
|
|
regexeqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex, false));
|
|
}
|
|
|
|
/*
|
|
* icregexeqsel - Selectivity of case-insensitive regex match.
|
|
*/
|
|
Datum
|
|
icregexeqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC, false));
|
|
}
|
|
|
|
/*
|
|
* likesel - Selectivity of LIKE pattern match.
|
|
*/
|
|
Datum
|
|
likesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like, false));
|
|
}
|
|
|
|
/*
|
|
* prefixsel - selectivity of prefix operator
|
|
*/
|
|
Datum
|
|
prefixsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Prefix, false));
|
|
}
|
|
|
|
/*
|
|
*
|
|
* iclikesel - Selectivity of ILIKE pattern match.
|
|
*/
|
|
Datum
|
|
iclikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC, false));
|
|
}
|
|
|
|
/*
|
|
* regexnesel - Selectivity of regular-expression pattern non-match.
|
|
*/
|
|
Datum
|
|
regexnesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex, true));
|
|
}
|
|
|
|
/*
|
|
* icregexnesel - Selectivity of case-insensitive regex non-match.
|
|
*/
|
|
Datum
|
|
icregexnesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC, true));
|
|
}
|
|
|
|
/*
|
|
* nlikesel - Selectivity of LIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
nlikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like, true));
|
|
}
|
|
|
|
/*
|
|
* icnlikesel - Selectivity of ILIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
icnlikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC, true));
|
|
}
|
|
|
|
/*
|
|
* patternjoinsel - Generic code for pattern-match join selectivity.
|
|
*/
|
|
static double
|
|
patternjoinsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
|
|
{
|
|
/* For the moment we just punt. */
|
|
return negate ? (1.0 - DEFAULT_MATCH_SEL) : DEFAULT_MATCH_SEL;
|
|
}
|
|
|
|
/*
|
|
* regexeqjoinsel - Join selectivity of regular-expression pattern match.
|
|
*/
|
|
Datum
|
|
regexeqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex, false));
|
|
}
|
|
|
|
/*
|
|
* icregexeqjoinsel - Join selectivity of case-insensitive regex match.
|
|
*/
|
|
Datum
|
|
icregexeqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex_IC, false));
|
|
}
|
|
|
|
/*
|
|
* likejoinsel - Join selectivity of LIKE pattern match.
|
|
*/
|
|
Datum
|
|
likejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like, false));
|
|
}
|
|
|
|
/*
|
|
* prefixjoinsel - Join selectivity of prefix operator
|
|
*/
|
|
Datum
|
|
prefixjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Prefix, false));
|
|
}
|
|
|
|
/*
|
|
* iclikejoinsel - Join selectivity of ILIKE pattern match.
|
|
*/
|
|
Datum
|
|
iclikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like_IC, false));
|
|
}
|
|
|
|
/*
|
|
* regexnejoinsel - Join selectivity of regex non-match.
|
|
*/
|
|
Datum
|
|
regexnejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex, true));
|
|
}
|
|
|
|
/*
|
|
* icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
|
|
*/
|
|
Datum
|
|
icregexnejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex_IC, true));
|
|
}
|
|
|
|
/*
|
|
* nlikejoinsel - Join selectivity of LIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
nlikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like, true));
|
|
}
|
|
|
|
/*
|
|
* icnlikejoinsel - Join selectivity of ILIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
icnlikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like_IC, true));
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------------------
|
|
*
|
|
* Pattern analysis functions
|
|
*
|
|
* These routines support analysis of LIKE and regular-expression patterns
|
|
* by the planner/optimizer. It's important that they agree with the
|
|
* regular-expression code in backend/regex/ and the LIKE code in
|
|
* backend/utils/adt/like.c. Also, the computation of the fixed prefix
|
|
* must be conservative: if we report a string longer than the true fixed
|
|
* prefix, the query may produce actually wrong answers, rather than just
|
|
* getting a bad selectivity estimate!
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* Extract the fixed prefix, if any, for a pattern.
|
|
*
|
|
* *prefix is set to a palloc'd prefix string (in the form of a Const node),
|
|
* or to NULL if no fixed prefix exists for the pattern.
|
|
* If rest_selec is not NULL, *rest_selec is set to an estimate of the
|
|
* selectivity of the remainder of the pattern (without any fixed prefix).
|
|
* The prefix Const has the same type (TEXT or BYTEA) as the input pattern.
|
|
*
|
|
* The return value distinguishes no fixed prefix, a partial prefix,
|
|
* or an exact-match-only pattern.
|
|
*/
|
|
|
|
static Pattern_Prefix_Status
|
|
like_fixed_prefix(Const *patt_const, bool case_insensitive, Oid collation,
|
|
Const **prefix_const, Selectivity *rest_selec)
|
|
{
|
|
char *match;
|
|
char *patt;
|
|
int pattlen;
|
|
Oid typeid = patt_const->consttype;
|
|
int pos,
|
|
match_pos;
|
|
bool is_multibyte = (pg_database_encoding_max_length() > 1);
|
|
pg_locale_t locale = 0;
|
|
bool locale_is_c = false;
|
|
|
|
/* the right-hand const is type text or bytea */
|
|
Assert(typeid == BYTEAOID || typeid == TEXTOID);
|
|
|
|
if (case_insensitive)
|
|
{
|
|
if (typeid == BYTEAOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("case insensitive matching not supported on type bytea")));
|
|
|
|
if (!OidIsValid(collation))
|
|
{
|
|
/*
|
|
* This typically means that the parser could not resolve a
|
|
* conflict of implicit collations, so report it that way.
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INDETERMINATE_COLLATION),
|
|
errmsg("could not determine which collation to use for ILIKE"),
|
|
errhint("Use the COLLATE clause to set the collation explicitly.")));
|
|
}
|
|
|
|
/* If case-insensitive, we need locale info */
|
|
if (lc_ctype_is_c(collation))
|
|
locale_is_c = true;
|
|
else
|
|
locale = pg_newlocale_from_collation(collation);
|
|
}
|
|
|
|
if (typeid != BYTEAOID)
|
|
{
|
|
patt = TextDatumGetCString(patt_const->constvalue);
|
|
pattlen = strlen(patt);
|
|
}
|
|
else
|
|
{
|
|
bytea *bstr = DatumGetByteaPP(patt_const->constvalue);
|
|
|
|
pattlen = VARSIZE_ANY_EXHDR(bstr);
|
|
patt = (char *) palloc(pattlen);
|
|
memcpy(patt, VARDATA_ANY(bstr), pattlen);
|
|
Assert((Pointer) bstr == DatumGetPointer(patt_const->constvalue));
|
|
}
|
|
|
|
match = palloc(pattlen + 1);
|
|
match_pos = 0;
|
|
for (pos = 0; pos < pattlen; pos++)
|
|
{
|
|
/* % and _ are wildcard characters in LIKE */
|
|
if (patt[pos] == '%' ||
|
|
patt[pos] == '_')
|
|
break;
|
|
|
|
/* Backslash escapes the next character */
|
|
if (patt[pos] == '\\')
|
|
{
|
|
pos++;
|
|
if (pos >= pattlen)
|
|
break;
|
|
}
|
|
|
|
/* Stop if case-varying character (it's sort of a wildcard) */
|
|
if (case_insensitive &&
|
|
pattern_char_isalpha(patt[pos], is_multibyte, locale, locale_is_c))
|
|
break;
|
|
|
|
match[match_pos++] = patt[pos];
|
|
}
|
|
|
|
match[match_pos] = '\0';
|
|
|
|
if (typeid != BYTEAOID)
|
|
*prefix_const = string_to_const(match, typeid);
|
|
else
|
|
*prefix_const = string_to_bytea_const(match, match_pos);
|
|
|
|
if (rest_selec != NULL)
|
|
*rest_selec = like_selectivity(&patt[pos], pattlen - pos,
|
|
case_insensitive);
|
|
|
|
pfree(patt);
|
|
pfree(match);
|
|
|
|
/* in LIKE, an empty pattern is an exact match! */
|
|
if (pos == pattlen)
|
|
return Pattern_Prefix_Exact; /* reached end of pattern, so exact */
|
|
|
|
if (match_pos > 0)
|
|
return Pattern_Prefix_Partial;
|
|
|
|
return Pattern_Prefix_None;
|
|
}
|
|
|
|
static Pattern_Prefix_Status
|
|
regex_fixed_prefix(Const *patt_const, bool case_insensitive, Oid collation,
|
|
Const **prefix_const, Selectivity *rest_selec)
|
|
{
|
|
Oid typeid = patt_const->consttype;
|
|
char *prefix;
|
|
bool exact;
|
|
|
|
/*
|
|
* Should be unnecessary, there are no bytea regex operators defined. As
|
|
* such, it should be noted that the rest of this function has *not* been
|
|
* made safe for binary (possibly NULL containing) strings.
|
|
*/
|
|
if (typeid == BYTEAOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("regular-expression matching not supported on type bytea")));
|
|
|
|
/* Use the regexp machinery to extract the prefix, if any */
|
|
prefix = regexp_fixed_prefix(DatumGetTextPP(patt_const->constvalue),
|
|
case_insensitive, collation,
|
|
&exact);
|
|
|
|
if (prefix == NULL)
|
|
{
|
|
*prefix_const = NULL;
|
|
|
|
if (rest_selec != NULL)
|
|
{
|
|
char *patt = TextDatumGetCString(patt_const->constvalue);
|
|
|
|
*rest_selec = regex_selectivity(patt, strlen(patt),
|
|
case_insensitive,
|
|
0);
|
|
pfree(patt);
|
|
}
|
|
|
|
return Pattern_Prefix_None;
|
|
}
|
|
|
|
*prefix_const = string_to_const(prefix, typeid);
|
|
|
|
if (rest_selec != NULL)
|
|
{
|
|
if (exact)
|
|
{
|
|
/* Exact match, so there's no additional selectivity */
|
|
*rest_selec = 1.0;
|
|
}
|
|
else
|
|
{
|
|
char *patt = TextDatumGetCString(patt_const->constvalue);
|
|
|
|
*rest_selec = regex_selectivity(patt, strlen(patt),
|
|
case_insensitive,
|
|
strlen(prefix));
|
|
pfree(patt);
|
|
}
|
|
}
|
|
|
|
pfree(prefix);
|
|
|
|
if (exact)
|
|
return Pattern_Prefix_Exact; /* pattern specifies exact match */
|
|
else
|
|
return Pattern_Prefix_Partial;
|
|
}
|
|
|
|
static Pattern_Prefix_Status
|
|
pattern_fixed_prefix(Const *patt, Pattern_Type ptype, Oid collation,
|
|
Const **prefix, Selectivity *rest_selec)
|
|
{
|
|
Pattern_Prefix_Status result;
|
|
|
|
switch (ptype)
|
|
{
|
|
case Pattern_Type_Like:
|
|
result = like_fixed_prefix(patt, false, collation,
|
|
prefix, rest_selec);
|
|
break;
|
|
case Pattern_Type_Like_IC:
|
|
result = like_fixed_prefix(patt, true, collation,
|
|
prefix, rest_selec);
|
|
break;
|
|
case Pattern_Type_Regex:
|
|
result = regex_fixed_prefix(patt, false, collation,
|
|
prefix, rest_selec);
|
|
break;
|
|
case Pattern_Type_Regex_IC:
|
|
result = regex_fixed_prefix(patt, true, collation,
|
|
prefix, rest_selec);
|
|
break;
|
|
case Pattern_Type_Prefix:
|
|
/* Prefix type work is trivial. */
|
|
result = Pattern_Prefix_Partial;
|
|
*prefix = makeConst(patt->consttype,
|
|
patt->consttypmod,
|
|
patt->constcollid,
|
|
patt->constlen,
|
|
datumCopy(patt->constvalue,
|
|
patt->constbyval,
|
|
patt->constlen),
|
|
patt->constisnull,
|
|
patt->constbyval);
|
|
if (rest_selec != NULL)
|
|
*rest_selec = 1.0; /* all */
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized ptype: %d", (int) ptype);
|
|
result = Pattern_Prefix_None; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Estimate the selectivity of a fixed prefix for a pattern match.
|
|
*
|
|
* A fixed prefix "foo" is estimated as the selectivity of the expression
|
|
* "variable >= 'foo' AND variable < 'fop'".
|
|
*
|
|
* The selectivity estimate is with respect to the portion of the column
|
|
* population represented by the histogram --- the caller must fold this
|
|
* together with info about MCVs and NULLs.
|
|
*
|
|
* We use the given comparison operators and collation to do the estimation.
|
|
* The given variable and Const must be of the associated datatype(s).
|
|
*
|
|
* XXX Note: we make use of the upper bound to estimate operator selectivity
|
|
* even if the locale is such that we cannot rely on the upper-bound string.
|
|
* The selectivity only needs to be approximately right anyway, so it seems
|
|
* more useful to use the upper-bound code than not.
|
|
*/
|
|
static Selectivity
|
|
prefix_selectivity(PlannerInfo *root, VariableStatData *vardata,
|
|
Oid eqopr, Oid ltopr, Oid geopr,
|
|
Oid collation,
|
|
Const *prefixcon)
|
|
{
|
|
Selectivity prefixsel;
|
|
FmgrInfo opproc;
|
|
Const *greaterstrcon;
|
|
Selectivity eq_sel;
|
|
|
|
/* Estimate the selectivity of "x >= prefix" */
|
|
fmgr_info(get_opcode(geopr), &opproc);
|
|
|
|
prefixsel = ineq_histogram_selectivity(root, vardata,
|
|
geopr, &opproc, true, true,
|
|
collation,
|
|
prefixcon->constvalue,
|
|
prefixcon->consttype);
|
|
|
|
if (prefixsel < 0.0)
|
|
{
|
|
/* No histogram is present ... return a suitable default estimate */
|
|
return DEFAULT_MATCH_SEL;
|
|
}
|
|
|
|
/*
|
|
* If we can create a string larger than the prefix, say "x < greaterstr".
|
|
*/
|
|
fmgr_info(get_opcode(ltopr), &opproc);
|
|
greaterstrcon = make_greater_string(prefixcon, &opproc, collation);
|
|
if (greaterstrcon)
|
|
{
|
|
Selectivity topsel;
|
|
|
|
topsel = ineq_histogram_selectivity(root, vardata,
|
|
ltopr, &opproc, false, false,
|
|
collation,
|
|
greaterstrcon->constvalue,
|
|
greaterstrcon->consttype);
|
|
|
|
/* ineq_histogram_selectivity worked before, it shouldn't fail now */
|
|
Assert(topsel >= 0.0);
|
|
|
|
/*
|
|
* Merge the two selectivities in the same way as for a range query
|
|
* (see clauselist_selectivity()). Note that we don't need to worry
|
|
* about double-exclusion of nulls, since ineq_histogram_selectivity
|
|
* doesn't count those anyway.
|
|
*/
|
|
prefixsel = topsel + prefixsel - 1.0;
|
|
}
|
|
|
|
/*
|
|
* If the prefix is long then the two bounding values might be too close
|
|
* together for the histogram to distinguish them usefully, resulting in a
|
|
* zero estimate (plus or minus roundoff error). To avoid returning a
|
|
* ridiculously small estimate, compute the estimated selectivity for
|
|
* "variable = 'foo'", and clamp to that. (Obviously, the resultant
|
|
* estimate should be at least that.)
|
|
*
|
|
* We apply this even if we couldn't make a greater string. That case
|
|
* suggests that the prefix is near the maximum possible, and thus
|
|
* probably off the end of the histogram, and thus we probably got a very
|
|
* small estimate from the >= condition; so we still need to clamp.
|
|
*/
|
|
eq_sel = var_eq_const(vardata, eqopr, collation, prefixcon->constvalue,
|
|
false, true, false);
|
|
|
|
prefixsel = Max(prefixsel, eq_sel);
|
|
|
|
return prefixsel;
|
|
}
|
|
|
|
|
|
/*
|
|
* Estimate the selectivity of a pattern of the specified type.
|
|
* Note that any fixed prefix of the pattern will have been removed already,
|
|
* so actually we may be looking at just a fragment of the pattern.
|
|
*
|
|
* For now, we use a very simplistic approach: fixed characters reduce the
|
|
* selectivity a good deal, character ranges reduce it a little,
|
|
* wildcards (such as % for LIKE or .* for regex) increase it.
|
|
*/
|
|
|
|
#define FIXED_CHAR_SEL 0.20 /* about 1/5 */
|
|
#define CHAR_RANGE_SEL 0.25
|
|
#define ANY_CHAR_SEL 0.9 /* not 1, since it won't match end-of-string */
|
|
#define FULL_WILDCARD_SEL 5.0
|
|
#define PARTIAL_WILDCARD_SEL 2.0
|
|
|
|
static Selectivity
|
|
like_selectivity(const char *patt, int pattlen, bool case_insensitive)
|
|
{
|
|
Selectivity sel = 1.0;
|
|
int pos;
|
|
|
|
/* Skip any leading wildcard; it's already factored into initial sel */
|
|
for (pos = 0; pos < pattlen; pos++)
|
|
{
|
|
if (patt[pos] != '%' && patt[pos] != '_')
|
|
break;
|
|
}
|
|
|
|
for (; pos < pattlen; pos++)
|
|
{
|
|
/* % and _ are wildcard characters in LIKE */
|
|
if (patt[pos] == '%')
|
|
sel *= FULL_WILDCARD_SEL;
|
|
else if (patt[pos] == '_')
|
|
sel *= ANY_CHAR_SEL;
|
|
else if (patt[pos] == '\\')
|
|
{
|
|
/* Backslash quotes the next character */
|
|
pos++;
|
|
if (pos >= pattlen)
|
|
break;
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
else
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
/* Could get sel > 1 if multiple wildcards */
|
|
if (sel > 1.0)
|
|
sel = 1.0;
|
|
return sel;
|
|
}
|
|
|
|
static Selectivity
|
|
regex_selectivity_sub(const char *patt, int pattlen, bool case_insensitive)
|
|
{
|
|
Selectivity sel = 1.0;
|
|
int paren_depth = 0;
|
|
int paren_pos = 0; /* dummy init to keep compiler quiet */
|
|
int pos;
|
|
|
|
for (pos = 0; pos < pattlen; pos++)
|
|
{
|
|
if (patt[pos] == '(')
|
|
{
|
|
if (paren_depth == 0)
|
|
paren_pos = pos; /* remember start of parenthesized item */
|
|
paren_depth++;
|
|
}
|
|
else if (patt[pos] == ')' && paren_depth > 0)
|
|
{
|
|
paren_depth--;
|
|
if (paren_depth == 0)
|
|
sel *= regex_selectivity_sub(patt + (paren_pos + 1),
|
|
pos - (paren_pos + 1),
|
|
case_insensitive);
|
|
}
|
|
else if (patt[pos] == '|' && paren_depth == 0)
|
|
{
|
|
/*
|
|
* If unquoted | is present at paren level 0 in pattern, we have
|
|
* multiple alternatives; sum their probabilities.
|
|
*/
|
|
sel += regex_selectivity_sub(patt + (pos + 1),
|
|
pattlen - (pos + 1),
|
|
case_insensitive);
|
|
break; /* rest of pattern is now processed */
|
|
}
|
|
else if (patt[pos] == '[')
|
|
{
|
|
bool negclass = false;
|
|
|
|
if (patt[++pos] == '^')
|
|
{
|
|
negclass = true;
|
|
pos++;
|
|
}
|
|
if (patt[pos] == ']') /* ']' at start of class is not special */
|
|
pos++;
|
|
while (pos < pattlen && patt[pos] != ']')
|
|
pos++;
|
|
if (paren_depth == 0)
|
|
sel *= (negclass ? (1.0 - CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
|
|
}
|
|
else if (patt[pos] == '.')
|
|
{
|
|
if (paren_depth == 0)
|
|
sel *= ANY_CHAR_SEL;
|
|
}
|
|
else if (patt[pos] == '*' ||
|
|
patt[pos] == '?' ||
|
|
patt[pos] == '+')
|
|
{
|
|
/* Ought to be smarter about quantifiers... */
|
|
if (paren_depth == 0)
|
|
sel *= PARTIAL_WILDCARD_SEL;
|
|
}
|
|
else if (patt[pos] == '{')
|
|
{
|
|
while (pos < pattlen && patt[pos] != '}')
|
|
pos++;
|
|
if (paren_depth == 0)
|
|
sel *= PARTIAL_WILDCARD_SEL;
|
|
}
|
|
else if (patt[pos] == '\\')
|
|
{
|
|
/* backslash quotes the next character */
|
|
pos++;
|
|
if (pos >= pattlen)
|
|
break;
|
|
if (paren_depth == 0)
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
else
|
|
{
|
|
if (paren_depth == 0)
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
}
|
|
/* Could get sel > 1 if multiple wildcards */
|
|
if (sel > 1.0)
|
|
sel = 1.0;
|
|
return sel;
|
|
}
|
|
|
|
static Selectivity
|
|
regex_selectivity(const char *patt, int pattlen, bool case_insensitive,
|
|
int fixed_prefix_len)
|
|
{
|
|
Selectivity sel;
|
|
|
|
/* If patt doesn't end with $, consider it to have a trailing wildcard */
|
|
if (pattlen > 0 && patt[pattlen - 1] == '$' &&
|
|
(pattlen == 1 || patt[pattlen - 2] != '\\'))
|
|
{
|
|
/* has trailing $ */
|
|
sel = regex_selectivity_sub(patt, pattlen - 1, case_insensitive);
|
|
}
|
|
else
|
|
{
|
|
/* no trailing $ */
|
|
sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
|
|
sel *= FULL_WILDCARD_SEL;
|
|
}
|
|
|
|
/*
|
|
* If there's a fixed prefix, discount its selectivity. We have to be
|
|
* careful here since a very long prefix could result in pow's result
|
|
* underflowing to zero (in which case "sel" probably has as well).
|
|
*/
|
|
if (fixed_prefix_len > 0)
|
|
{
|
|
double prefixsel = pow(FIXED_CHAR_SEL, fixed_prefix_len);
|
|
|
|
if (prefixsel > 0.0)
|
|
sel /= prefixsel;
|
|
}
|
|
|
|
/* Make sure result stays in range */
|
|
CLAMP_PROBABILITY(sel);
|
|
return sel;
|
|
}
|
|
|
|
/*
|
|
* Check whether char is a letter (and, hence, subject to case-folding)
|
|
*
|
|
* In multibyte character sets or with ICU, we can't use isalpha, and it does
|
|
* not seem worth trying to convert to wchar_t to use iswalpha or u_isalpha.
|
|
* Instead, just assume any non-ASCII char is potentially case-varying, and
|
|
* hard-wire knowledge of which ASCII chars are letters.
|
|
*/
|
|
static int
|
|
pattern_char_isalpha(char c, bool is_multibyte,
|
|
pg_locale_t locale, bool locale_is_c)
|
|
{
|
|
if (locale_is_c)
|
|
return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z');
|
|
else if (is_multibyte && IS_HIGHBIT_SET(c))
|
|
return true;
|
|
else if (locale && locale->provider == COLLPROVIDER_ICU)
|
|
return IS_HIGHBIT_SET(c) ||
|
|
(c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z');
|
|
#ifdef HAVE_LOCALE_T
|
|
else if (locale && locale->provider == COLLPROVIDER_LIBC)
|
|
return isalpha_l((unsigned char) c, locale->info.lt);
|
|
#endif
|
|
else
|
|
return isalpha((unsigned char) c);
|
|
}
|
|
|
|
|
|
/*
|
|
* For bytea, the increment function need only increment the current byte
|
|
* (there are no multibyte characters to worry about).
|
|
*/
|
|
static bool
|
|
byte_increment(unsigned char *ptr, int len)
|
|
{
|
|
if (*ptr >= 255)
|
|
return false;
|
|
(*ptr)++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Try to generate a string greater than the given string or any
|
|
* string it is a prefix of. If successful, return a palloc'd string
|
|
* in the form of a Const node; else return NULL.
|
|
*
|
|
* The caller must provide the appropriate "less than" comparison function
|
|
* for testing the strings, along with the collation to use.
|
|
*
|
|
* The key requirement here is that given a prefix string, say "foo",
|
|
* we must be able to generate another string "fop" that is greater than
|
|
* all strings "foobar" starting with "foo". We can test that we have
|
|
* generated a string greater than the prefix string, but in non-C collations
|
|
* that is not a bulletproof guarantee that an extension of the string might
|
|
* not sort after it; an example is that "foo " is less than "foo!", but it
|
|
* is not clear that a "dictionary" sort ordering will consider "foo!" less
|
|
* than "foo bar". CAUTION: Therefore, this function should be used only for
|
|
* estimation purposes when working in a non-C collation.
|
|
*
|
|
* To try to catch most cases where an extended string might otherwise sort
|
|
* before the result value, we determine which of the strings "Z", "z", "y",
|
|
* and "9" is seen as largest by the collation, and append that to the given
|
|
* prefix before trying to find a string that compares as larger.
|
|
*
|
|
* To search for a greater string, we repeatedly "increment" the rightmost
|
|
* character, using an encoding-specific character incrementer function.
|
|
* When it's no longer possible to increment the last character, we truncate
|
|
* off that character and start incrementing the next-to-rightmost.
|
|
* For example, if "z" were the last character in the sort order, then we
|
|
* could produce "foo" as a string greater than "fonz".
|
|
*
|
|
* This could be rather slow in the worst case, but in most cases we
|
|
* won't have to try more than one or two strings before succeeding.
|
|
*
|
|
* Note that it's important for the character incrementer not to be too anal
|
|
* about producing every possible character code, since in some cases the only
|
|
* way to get a larger string is to increment a previous character position.
|
|
* So we don't want to spend too much time trying every possible character
|
|
* code at the last position. A good rule of thumb is to be sure that we
|
|
* don't try more than 256*K values for a K-byte character (and definitely
|
|
* not 256^K, which is what an exhaustive search would approach).
|
|
*/
|
|
static Const *
|
|
make_greater_string(const Const *str_const, FmgrInfo *ltproc, Oid collation)
|
|
{
|
|
Oid datatype = str_const->consttype;
|
|
char *workstr;
|
|
int len;
|
|
Datum cmpstr;
|
|
char *cmptxt = NULL;
|
|
mbcharacter_incrementer charinc;
|
|
|
|
/*
|
|
* Get a modifiable copy of the prefix string in C-string format, and set
|
|
* up the string we will compare to as a Datum. In C locale this can just
|
|
* be the given prefix string, otherwise we need to add a suffix. Type
|
|
* BYTEA sorts bytewise so it never needs a suffix either.
|
|
*/
|
|
if (datatype == BYTEAOID)
|
|
{
|
|
bytea *bstr = DatumGetByteaPP(str_const->constvalue);
|
|
|
|
len = VARSIZE_ANY_EXHDR(bstr);
|
|
workstr = (char *) palloc(len);
|
|
memcpy(workstr, VARDATA_ANY(bstr), len);
|
|
Assert((Pointer) bstr == DatumGetPointer(str_const->constvalue));
|
|
cmpstr = str_const->constvalue;
|
|
}
|
|
else
|
|
{
|
|
if (datatype == NAMEOID)
|
|
workstr = DatumGetCString(DirectFunctionCall1(nameout,
|
|
str_const->constvalue));
|
|
else
|
|
workstr = TextDatumGetCString(str_const->constvalue);
|
|
len = strlen(workstr);
|
|
if (lc_collate_is_c(collation) || len == 0)
|
|
cmpstr = str_const->constvalue;
|
|
else
|
|
{
|
|
/* If first time through, determine the suffix to use */
|
|
static char suffixchar = 0;
|
|
static Oid suffixcollation = 0;
|
|
|
|
if (!suffixchar || suffixcollation != collation)
|
|
{
|
|
char *best;
|
|
|
|
best = "Z";
|
|
if (varstr_cmp(best, 1, "z", 1, collation) < 0)
|
|
best = "z";
|
|
if (varstr_cmp(best, 1, "y", 1, collation) < 0)
|
|
best = "y";
|
|
if (varstr_cmp(best, 1, "9", 1, collation) < 0)
|
|
best = "9";
|
|
suffixchar = *best;
|
|
suffixcollation = collation;
|
|
}
|
|
|
|
/* And build the string to compare to */
|
|
if (datatype == NAMEOID)
|
|
{
|
|
cmptxt = palloc(len + 2);
|
|
memcpy(cmptxt, workstr, len);
|
|
cmptxt[len] = suffixchar;
|
|
cmptxt[len + 1] = '\0';
|
|
cmpstr = PointerGetDatum(cmptxt);
|
|
}
|
|
else
|
|
{
|
|
cmptxt = palloc(VARHDRSZ + len + 1);
|
|
SET_VARSIZE(cmptxt, VARHDRSZ + len + 1);
|
|
memcpy(VARDATA(cmptxt), workstr, len);
|
|
*(VARDATA(cmptxt) + len) = suffixchar;
|
|
cmpstr = PointerGetDatum(cmptxt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Select appropriate character-incrementer function */
|
|
if (datatype == BYTEAOID)
|
|
charinc = byte_increment;
|
|
else
|
|
charinc = pg_database_encoding_character_incrementer();
|
|
|
|
/* And search ... */
|
|
while (len > 0)
|
|
{
|
|
int charlen;
|
|
unsigned char *lastchar;
|
|
|
|
/* Identify the last character --- for bytea, just the last byte */
|
|
if (datatype == BYTEAOID)
|
|
charlen = 1;
|
|
else
|
|
charlen = len - pg_mbcliplen(workstr, len, len - 1);
|
|
lastchar = (unsigned char *) (workstr + len - charlen);
|
|
|
|
/*
|
|
* Try to generate a larger string by incrementing the last character
|
|
* (for BYTEA, we treat each byte as a character).
|
|
*
|
|
* Note: the incrementer function is expected to return true if it's
|
|
* generated a valid-per-the-encoding new character, otherwise false.
|
|
* The contents of the character on false return are unspecified.
|
|
*/
|
|
while (charinc(lastchar, charlen))
|
|
{
|
|
Const *workstr_const;
|
|
|
|
if (datatype == BYTEAOID)
|
|
workstr_const = string_to_bytea_const(workstr, len);
|
|
else
|
|
workstr_const = string_to_const(workstr, datatype);
|
|
|
|
if (DatumGetBool(FunctionCall2Coll(ltproc,
|
|
collation,
|
|
cmpstr,
|
|
workstr_const->constvalue)))
|
|
{
|
|
/* Successfully made a string larger than cmpstr */
|
|
if (cmptxt)
|
|
pfree(cmptxt);
|
|
pfree(workstr);
|
|
return workstr_const;
|
|
}
|
|
|
|
/* No good, release unusable value and try again */
|
|
pfree(DatumGetPointer(workstr_const->constvalue));
|
|
pfree(workstr_const);
|
|
}
|
|
|
|
/*
|
|
* No luck here, so truncate off the last character and try to
|
|
* increment the next one.
|
|
*/
|
|
len -= charlen;
|
|
workstr[len] = '\0';
|
|
}
|
|
|
|
/* Failed... */
|
|
if (cmptxt)
|
|
pfree(cmptxt);
|
|
pfree(workstr);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Generate a Datum of the appropriate type from a C string.
|
|
* Note that all of the supported types are pass-by-ref, so the
|
|
* returned value should be pfree'd if no longer needed.
|
|
*/
|
|
static Datum
|
|
string_to_datum(const char *str, Oid datatype)
|
|
{
|
|
Assert(str != NULL);
|
|
|
|
/*
|
|
* We cheat a little by assuming that CStringGetTextDatum() will do for
|
|
* bpchar and varchar constants too...
|
|
*/
|
|
if (datatype == NAMEOID)
|
|
return DirectFunctionCall1(namein, CStringGetDatum(str));
|
|
else if (datatype == BYTEAOID)
|
|
return DirectFunctionCall1(byteain, CStringGetDatum(str));
|
|
else
|
|
return CStringGetTextDatum(str);
|
|
}
|
|
|
|
/*
|
|
* Generate a Const node of the appropriate type from a C string.
|
|
*/
|
|
static Const *
|
|
string_to_const(const char *str, Oid datatype)
|
|
{
|
|
Datum conval = string_to_datum(str, datatype);
|
|
Oid collation;
|
|
int constlen;
|
|
|
|
/*
|
|
* We only need to support a few datatypes here, so hard-wire properties
|
|
* instead of incurring the expense of catalog lookups.
|
|
*/
|
|
switch (datatype)
|
|
{
|
|
case TEXTOID:
|
|
case VARCHAROID:
|
|
case BPCHAROID:
|
|
collation = DEFAULT_COLLATION_OID;
|
|
constlen = -1;
|
|
break;
|
|
|
|
case NAMEOID:
|
|
collation = C_COLLATION_OID;
|
|
constlen = NAMEDATALEN;
|
|
break;
|
|
|
|
case BYTEAOID:
|
|
collation = InvalidOid;
|
|
constlen = -1;
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unexpected datatype in string_to_const: %u",
|
|
datatype);
|
|
return NULL;
|
|
}
|
|
|
|
return makeConst(datatype, -1, collation, constlen,
|
|
conval, false, false);
|
|
}
|
|
|
|
/*
|
|
* Generate a Const node of bytea type from a binary C string and a length.
|
|
*/
|
|
static Const *
|
|
string_to_bytea_const(const char *str, size_t str_len)
|
|
{
|
|
bytea *bstr = palloc(VARHDRSZ + str_len);
|
|
Datum conval;
|
|
|
|
memcpy(VARDATA(bstr), str, str_len);
|
|
SET_VARSIZE(bstr, VARHDRSZ + str_len);
|
|
conval = PointerGetDatum(bstr);
|
|
|
|
return makeConst(BYTEAOID, -1, InvalidOid, -1, conval, false, false);
|
|
}
|