1515 lines
40 KiB
C
1515 lines
40 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_func.c
|
|
* handle function calls in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/parser/parse_func.c,v 1.122 2002/03/29 22:10:33 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/indexing.h"
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "catalog/pg_inherits.h"
|
|
#include "catalog/pg_namespace.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_func.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_type.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
static Node *ParseComplexProjection(ParseState *pstate,
|
|
char *funcname,
|
|
Node *first_arg);
|
|
static Oid **argtype_inherit(int nargs, Oid *argtypes);
|
|
|
|
static int find_inheritors(Oid relid, Oid **supervec);
|
|
static CandidateList func_get_candidates(char *funcname, int nargs);
|
|
static Oid **gen_cross_product(InhPaths *arginh, int nargs);
|
|
static void make_arguments(ParseState *pstate,
|
|
int nargs,
|
|
List *fargs,
|
|
Oid *input_typeids,
|
|
Oid *function_typeids);
|
|
static int match_argtypes(int nargs,
|
|
Oid *input_typeids,
|
|
CandidateList function_typeids,
|
|
CandidateList *candidates);
|
|
static FieldSelect *setup_field_select(Node *input, char *attname, Oid relid);
|
|
static Oid *func_select_candidate(int nargs, Oid *input_typeids,
|
|
CandidateList candidates);
|
|
static int agg_get_candidates(char *aggname, Oid typeId, CandidateList *candidates);
|
|
static Oid agg_select_candidate(Oid typeid, CandidateList candidates);
|
|
|
|
|
|
/*
|
|
* Parse a function call
|
|
*
|
|
* For historical reasons, Postgres tries to treat the notations tab.col
|
|
* and col(tab) as equivalent: if a single-argument function call has an
|
|
* argument of complex type and the function name matches any attribute
|
|
* of the type, we take it as a column projection.
|
|
*
|
|
* Hence, both cases come through here. The is_column parameter tells us
|
|
* which syntactic construct is actually being dealt with, but this is
|
|
* intended to be used only to deliver an appropriate error message,
|
|
* not to affect the semantics. When is_column is true, we should have
|
|
* a single argument (the putative table), function name equal to the
|
|
* column name, and no aggregate decoration.
|
|
*
|
|
* In the function-call case, the argument expressions have been transformed
|
|
* already. In the column case, we may get either a transformed expression
|
|
* or a RangeVar node as argument.
|
|
*/
|
|
Node *
|
|
ParseFuncOrColumn(ParseState *pstate, char *funcname, List *fargs,
|
|
bool agg_star, bool agg_distinct, bool is_column)
|
|
{
|
|
Oid rettype;
|
|
Oid funcid;
|
|
List *i;
|
|
Node *first_arg = NULL;
|
|
char *refname;
|
|
int nargs = length(fargs);
|
|
int argn;
|
|
Func *funcnode;
|
|
Oid oid_array[FUNC_MAX_ARGS];
|
|
Oid *true_oid_array;
|
|
Node *retval;
|
|
bool retset;
|
|
bool must_be_agg = agg_star || agg_distinct;
|
|
bool could_be_agg;
|
|
Expr *expr;
|
|
FuncDetailCode fdresult;
|
|
|
|
/*
|
|
* Most of the rest of the parser just assumes that functions do not
|
|
* have more than FUNC_MAX_ARGS parameters. We have to test here to
|
|
* protect against array overruns, etc. Of course, this may not be a
|
|
* function, but the test doesn't hurt.
|
|
*/
|
|
if (nargs > FUNC_MAX_ARGS)
|
|
elog(ERROR, "Cannot pass more than %d arguments to a function",
|
|
FUNC_MAX_ARGS);
|
|
|
|
if (fargs)
|
|
{
|
|
first_arg = lfirst(fargs);
|
|
if (first_arg == NULL) /* should not happen */
|
|
elog(ERROR, "Function '%s' does not allow NULL input", funcname);
|
|
}
|
|
|
|
/*
|
|
* check for column projection: if function has one argument, and that
|
|
* argument is of complex type, then the function could be a projection.
|
|
*/
|
|
/* We only have one parameter, and it's not got aggregate decoration */
|
|
if (nargs == 1 && !must_be_agg)
|
|
{
|
|
/* Is it a not-yet-transformed RangeVar node? */
|
|
if (IsA(first_arg, RangeVar))
|
|
{
|
|
/* First arg is a relation. This could be a projection. */
|
|
refname = ((RangeVar *) first_arg)->relname;
|
|
|
|
retval = qualifiedNameToVar(pstate, refname, funcname, true);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
else if (ISCOMPLEX(exprType(first_arg)))
|
|
{
|
|
/*
|
|
* Attempt to handle projection of a complex argument. If
|
|
* ParseComplexProjection can't handle the projection, we have
|
|
* to keep going.
|
|
*/
|
|
retval = ParseComplexProjection(pstate,
|
|
funcname,
|
|
first_arg);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if it's an aggregate.
|
|
*/
|
|
if (must_be_agg)
|
|
{
|
|
/* We don't presently cope with, eg, foo(DISTINCT x,y) */
|
|
if (nargs != 1)
|
|
elog(ERROR, "Aggregate functions may only have one parameter");
|
|
/* Agg's argument can't be a relation name, either */
|
|
if (IsA(first_arg, RangeVar))
|
|
elog(ERROR, "Aggregate functions cannot be applied to relation names");
|
|
could_be_agg = true;
|
|
}
|
|
else
|
|
{
|
|
/* Try to parse as an aggregate if above-mentioned checks are OK */
|
|
could_be_agg = (nargs == 1) && !(IsA(first_arg, RangeVar));
|
|
}
|
|
|
|
if (could_be_agg)
|
|
{
|
|
Oid basetype = exprType(lfirst(fargs));
|
|
int ncandidates;
|
|
CandidateList candidates;
|
|
|
|
/* try for exact match first... */
|
|
if (SearchSysCacheExists(AGGNAME,
|
|
PointerGetDatum(funcname),
|
|
ObjectIdGetDatum(basetype),
|
|
0, 0))
|
|
return (Node *) ParseAgg(pstate, funcname, basetype,
|
|
fargs, agg_star, agg_distinct);
|
|
|
|
/* check for aggregate-that-accepts-any-type (eg, COUNT) */
|
|
if (SearchSysCacheExists(AGGNAME,
|
|
PointerGetDatum(funcname),
|
|
ObjectIdGetDatum(0),
|
|
0, 0))
|
|
return (Node *) ParseAgg(pstate, funcname, 0,
|
|
fargs, agg_star, agg_distinct);
|
|
|
|
/*
|
|
* No exact match yet, so see if there is another entry in the
|
|
* aggregate table that is compatible. - thomas 1998-12-05
|
|
*/
|
|
ncandidates = agg_get_candidates(funcname, basetype, &candidates);
|
|
if (ncandidates > 0)
|
|
{
|
|
Oid type;
|
|
|
|
type = agg_select_candidate(basetype, candidates);
|
|
if (OidIsValid(type))
|
|
{
|
|
lfirst(fargs) = coerce_type(pstate, lfirst(fargs),
|
|
basetype, type, -1);
|
|
basetype = type;
|
|
return (Node *) ParseAgg(pstate, funcname, basetype,
|
|
fargs, agg_star, agg_distinct);
|
|
}
|
|
else
|
|
{
|
|
/* Multiple possible matches --- give up */
|
|
elog(ERROR, "Unable to select an aggregate function %s(%s)",
|
|
funcname, format_type_be(basetype));
|
|
}
|
|
}
|
|
|
|
if (must_be_agg)
|
|
{
|
|
/*
|
|
* No matching agg, but we had '*' or DISTINCT, so a plain
|
|
* function could not have been meant.
|
|
*/
|
|
elog(ERROR, "There is no aggregate function %s(%s)",
|
|
funcname, format_type_be(basetype));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Okay, it's not a column projection, so it must really be a function.
|
|
* Extract arg type info and transform RangeVar arguments into varnodes
|
|
* of the appropriate form.
|
|
*/
|
|
MemSet(oid_array, 0, FUNC_MAX_ARGS * sizeof(Oid));
|
|
|
|
argn = 0;
|
|
foreach(i, fargs)
|
|
{
|
|
Node *arg = lfirst(i);
|
|
Oid toid;
|
|
|
|
if (IsA(arg, RangeVar))
|
|
{
|
|
RangeTblEntry *rte;
|
|
int vnum;
|
|
int sublevels_up;
|
|
|
|
/*
|
|
* a relation
|
|
*/
|
|
refname = ((RangeVar *) arg)->relname;
|
|
|
|
rte = refnameRangeTblEntry(pstate, refname,
|
|
&sublevels_up);
|
|
|
|
if (rte == NULL)
|
|
rte = addImplicitRTE(pstate, (RangeVar *) arg);
|
|
|
|
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
|
|
|
|
/*
|
|
* The parameter to be passed to the function is the whole
|
|
* tuple from the relation. We build a special VarNode to
|
|
* reflect this -- it has varno set to the correct range table
|
|
* entry, but has varattno == 0 to signal that the whole tuple
|
|
* is the argument. Also, it has typmod set to
|
|
* sizeof(Pointer) to signal that the runtime representation
|
|
* will be a pointer not an Oid.
|
|
*/
|
|
if (rte->rtekind != RTE_RELATION)
|
|
{
|
|
/*
|
|
* RTE is a join or subselect; must fail for lack of a
|
|
* named tuple type
|
|
*/
|
|
if (is_column)
|
|
elog(ERROR, "No such attribute %s.%s",
|
|
refname, funcname);
|
|
else
|
|
{
|
|
elog(ERROR, "Cannot pass result of sub-select or join %s to a function",
|
|
refname);
|
|
}
|
|
}
|
|
|
|
toid = get_rel_type_id(rte->relid);
|
|
if (!OidIsValid(toid))
|
|
elog(ERROR, "Cannot find type OID for relation %u",
|
|
rte->relid);
|
|
|
|
/* replace RangeVar in the arg list */
|
|
lfirst(i) = makeVar(vnum,
|
|
InvalidAttrNumber,
|
|
toid,
|
|
sizeof(Pointer),
|
|
sublevels_up);
|
|
}
|
|
else
|
|
toid = exprType(arg);
|
|
|
|
oid_array[argn++] = toid;
|
|
}
|
|
|
|
/*
|
|
* func_get_detail looks up the function in the catalogs, does
|
|
* disambiguation for polymorphic functions, handles inheritance,
|
|
* and returns the funcid and type and set or singleton status of
|
|
* the function's return value. it also returns the true argument
|
|
* types to the function.
|
|
*/
|
|
fdresult = func_get_detail(funcname, fargs, nargs, oid_array,
|
|
&funcid, &rettype, &retset,
|
|
&true_oid_array);
|
|
if (fdresult == FUNCDETAIL_COERCION)
|
|
{
|
|
/*
|
|
* We can do it as a trivial coercion. coerce_type can handle
|
|
* these cases, so why duplicate code...
|
|
*/
|
|
return coerce_type(pstate, lfirst(fargs),
|
|
oid_array[0], rettype, -1);
|
|
}
|
|
if (fdresult != FUNCDETAIL_NORMAL)
|
|
{
|
|
/*
|
|
* Oops. Time to die.
|
|
*
|
|
* If we are dealing with the attribute notation rel.function,
|
|
* give an error message that is appropriate for that case.
|
|
*/
|
|
if (is_column)
|
|
elog(ERROR, "Attribute \"%s\" not found", funcname);
|
|
/* Else generate a detailed complaint */
|
|
func_error(NULL, funcname, nargs, oid_array,
|
|
"Unable to identify a function that satisfies the "
|
|
"given argument types"
|
|
"\n\tYou may need to add explicit typecasts");
|
|
}
|
|
|
|
/* got it */
|
|
funcnode = makeNode(Func);
|
|
funcnode->funcid = funcid;
|
|
funcnode->functype = rettype;
|
|
funcnode->func_fcache = NULL;
|
|
|
|
/* perform the necessary typecasting of arguments */
|
|
make_arguments(pstate, nargs, fargs, oid_array, true_oid_array);
|
|
|
|
expr = makeNode(Expr);
|
|
expr->typeOid = rettype;
|
|
expr->opType = FUNC_EXPR;
|
|
expr->oper = (Node *) funcnode;
|
|
expr->args = fargs;
|
|
retval = (Node *) expr;
|
|
|
|
/*
|
|
* if the function returns a set of values, then we need to iterate
|
|
* over all the returned values in the executor, so we stick an iter
|
|
* node here. if it returns a singleton, then we don't need the iter
|
|
* node.
|
|
*/
|
|
if (retset)
|
|
{
|
|
Iter *iter = makeNode(Iter);
|
|
|
|
iter->itertype = rettype;
|
|
iter->iterexpr = retval;
|
|
retval = (Node *) iter;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
static int
|
|
agg_get_candidates(char *aggname,
|
|
Oid typeId,
|
|
CandidateList *candidates)
|
|
{
|
|
Relation pg_aggregate_desc;
|
|
SysScanDesc pg_aggregate_scan;
|
|
HeapTuple tup;
|
|
int ncandidates = 0;
|
|
ScanKeyData aggKey[1];
|
|
|
|
*candidates = NULL;
|
|
|
|
ScanKeyEntryInitialize(&aggKey[0], 0,
|
|
Anum_pg_aggregate_aggname,
|
|
F_NAMEEQ,
|
|
NameGetDatum(aggname));
|
|
|
|
pg_aggregate_desc = heap_openr(AggregateRelationName, AccessShareLock);
|
|
pg_aggregate_scan = systable_beginscan(pg_aggregate_desc,
|
|
AggregateNameTypeIndex, true,
|
|
SnapshotNow,
|
|
1, aggKey);
|
|
|
|
while (HeapTupleIsValid(tup = systable_getnext(pg_aggregate_scan)))
|
|
{
|
|
Form_pg_aggregate agg = (Form_pg_aggregate) GETSTRUCT(tup);
|
|
CandidateList current_candidate;
|
|
|
|
current_candidate = (CandidateList) palloc(sizeof(struct _CandidateList));
|
|
current_candidate->args = (Oid *) palloc(sizeof(Oid));
|
|
|
|
current_candidate->args[0] = agg->aggbasetype;
|
|
current_candidate->next = *candidates;
|
|
*candidates = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
|
|
systable_endscan(pg_aggregate_scan);
|
|
heap_close(pg_aggregate_desc, AccessShareLock);
|
|
|
|
return ncandidates;
|
|
} /* agg_get_candidates() */
|
|
|
|
/* agg_select_candidate()
|
|
*
|
|
* Try to choose only one candidate aggregate function from a list of
|
|
* possible matches. Return value is Oid of input type of aggregate
|
|
* if successful, else InvalidOid.
|
|
*/
|
|
static Oid
|
|
agg_select_candidate(Oid typeid, CandidateList candidates)
|
|
{
|
|
CandidateList current_candidate;
|
|
CandidateList last_candidate;
|
|
Oid current_typeid;
|
|
int ncandidates;
|
|
CATEGORY category,
|
|
current_category;
|
|
|
|
/*
|
|
* First look for exact matches or binary compatible matches. (Of
|
|
* course exact matches shouldn't even get here, but anyway.)
|
|
*/
|
|
ncandidates = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeid = current_candidate->args[0];
|
|
|
|
if (IsBinaryCompatible(current_typeid, typeid))
|
|
{
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
}
|
|
if (ncandidates == 1)
|
|
return last_candidate->args[0];
|
|
|
|
/*
|
|
* If no luck that way, look for candidates which allow coercion and
|
|
* have a preferred type. Keep all candidates if none match.
|
|
*/
|
|
category = TypeCategory(typeid);
|
|
ncandidates = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeid = current_candidate->args[0];
|
|
current_category = TypeCategory(current_typeid);
|
|
|
|
if (current_category == category
|
|
&& IsPreferredType(current_category, current_typeid)
|
|
&& can_coerce_type(1, &typeid, ¤t_typeid))
|
|
{
|
|
/* only one so far? then keep it... */
|
|
if (last_candidate == NULL)
|
|
{
|
|
candidates = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates = 1;
|
|
}
|
|
/* otherwise, keep this one too... */
|
|
else
|
|
{
|
|
last_candidate->next = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
}
|
|
/* otherwise, don't bother keeping this one around... */
|
|
}
|
|
|
|
if (last_candidate) /* terminate rebuilt list */
|
|
last_candidate->next = NULL;
|
|
|
|
if (ncandidates == 1)
|
|
return candidates->args[0];
|
|
|
|
return InvalidOid;
|
|
} /* agg_select_candidate() */
|
|
|
|
|
|
/* func_get_candidates()
|
|
* get a list of all argument type vectors for which a function named
|
|
* funcname taking nargs arguments exists
|
|
*/
|
|
static CandidateList
|
|
func_get_candidates(char *funcname, int nargs)
|
|
{
|
|
Relation heapRelation;
|
|
ScanKeyData skey[2];
|
|
HeapTuple tuple;
|
|
SysScanDesc funcscan;
|
|
CandidateList candidates = NULL;
|
|
int i;
|
|
|
|
heapRelation = heap_openr(ProcedureRelationName, AccessShareLock);
|
|
|
|
ScanKeyEntryInitialize(&skey[0],
|
|
(bits16) 0x0,
|
|
(AttrNumber) Anum_pg_proc_proname,
|
|
(RegProcedure) F_NAMEEQ,
|
|
PointerGetDatum(funcname));
|
|
ScanKeyEntryInitialize(&skey[1],
|
|
(bits16) 0x0,
|
|
(AttrNumber) Anum_pg_proc_pronargs,
|
|
(RegProcedure) F_INT2EQ,
|
|
Int16GetDatum(nargs));
|
|
|
|
funcscan = systable_beginscan(heapRelation, ProcedureNameIndex, true,
|
|
SnapshotNow, 2, skey);
|
|
|
|
while (HeapTupleIsValid(tuple = systable_getnext(funcscan)))
|
|
{
|
|
Form_pg_proc pgProcP = (Form_pg_proc) GETSTRUCT(tuple);
|
|
CandidateList current_candidate;
|
|
|
|
current_candidate = (CandidateList)
|
|
palloc(sizeof(struct _CandidateList));
|
|
current_candidate->args = (Oid *)
|
|
palloc(FUNC_MAX_ARGS * sizeof(Oid));
|
|
MemSet(current_candidate->args, 0, FUNC_MAX_ARGS * sizeof(Oid));
|
|
for (i = 0; i < nargs; i++)
|
|
current_candidate->args[i] = pgProcP->proargtypes[i];
|
|
|
|
current_candidate->next = candidates;
|
|
candidates = current_candidate;
|
|
}
|
|
|
|
systable_endscan(funcscan);
|
|
heap_close(heapRelation, AccessShareLock);
|
|
|
|
return candidates;
|
|
}
|
|
|
|
|
|
/* match_argtypes()
|
|
* Given a list of possible typeid arrays to a function and an array of
|
|
* input typeids, produce a shortlist of those function typeid arrays
|
|
* that match the input typeids (either exactly or by coercion), and
|
|
* return the number of such arrays
|
|
*/
|
|
static int
|
|
match_argtypes(int nargs,
|
|
Oid *input_typeids,
|
|
CandidateList function_typeids,
|
|
CandidateList *candidates) /* return value */
|
|
{
|
|
CandidateList current_candidate;
|
|
CandidateList matching_candidate;
|
|
Oid *current_typeids;
|
|
int ncandidates = 0;
|
|
|
|
*candidates = NULL;
|
|
|
|
for (current_candidate = function_typeids;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeids = current_candidate->args;
|
|
if (can_coerce_type(nargs, input_typeids, current_typeids))
|
|
{
|
|
matching_candidate = (CandidateList)
|
|
palloc(sizeof(struct _CandidateList));
|
|
matching_candidate->args = current_typeids;
|
|
matching_candidate->next = *candidates;
|
|
*candidates = matching_candidate;
|
|
ncandidates++;
|
|
}
|
|
}
|
|
|
|
return ncandidates;
|
|
} /* match_argtypes() */
|
|
|
|
|
|
/* func_select_candidate()
|
|
* Given the input argtype array and more than one candidate
|
|
* for the function argtype array, attempt to resolve the conflict.
|
|
* Returns the selected argtype array if the conflict can be resolved,
|
|
* otherwise returns NULL.
|
|
*
|
|
* By design, this is pretty similar to oper_select_candidate in parse_oper.c.
|
|
* However, the calling convention is a little different: we assume the caller
|
|
* already pruned away "candidates" that aren't actually coercion-compatible
|
|
* with the input types, whereas oper_select_candidate must do that itself.
|
|
*/
|
|
static Oid *
|
|
func_select_candidate(int nargs,
|
|
Oid *input_typeids,
|
|
CandidateList candidates)
|
|
{
|
|
CandidateList current_candidate;
|
|
CandidateList last_candidate;
|
|
Oid *current_typeids;
|
|
Oid current_type;
|
|
int i;
|
|
int ncandidates;
|
|
int nbestMatch,
|
|
nmatch;
|
|
CATEGORY slot_category[FUNC_MAX_ARGS],
|
|
current_category;
|
|
bool slot_has_preferred_type[FUNC_MAX_ARGS];
|
|
bool resolved_unknowns;
|
|
|
|
/*
|
|
* Run through all candidates and keep those with the most matches on
|
|
* exact types. Keep all candidates if none match.
|
|
*/
|
|
ncandidates = 0;
|
|
nbestMatch = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeids = current_candidate->args;
|
|
nmatch = 0;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (input_typeids[i] != UNKNOWNOID &&
|
|
current_typeids[i] == input_typeids[i])
|
|
nmatch++;
|
|
}
|
|
|
|
/* take this one as the best choice so far? */
|
|
if ((nmatch > nbestMatch) || (last_candidate == NULL))
|
|
{
|
|
nbestMatch = nmatch;
|
|
candidates = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates = 1;
|
|
}
|
|
/* no worse than the last choice, so keep this one too? */
|
|
else if (nmatch == nbestMatch)
|
|
{
|
|
last_candidate->next = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
/* otherwise, don't bother keeping this one... */
|
|
}
|
|
|
|
if (last_candidate) /* terminate rebuilt list */
|
|
last_candidate->next = NULL;
|
|
|
|
if (ncandidates == 1)
|
|
return candidates->args;
|
|
|
|
/*
|
|
* Still too many candidates? Run through all candidates and keep
|
|
* those with the most matches on exact types + binary-compatible
|
|
* types. Keep all candidates if none match.
|
|
*/
|
|
ncandidates = 0;
|
|
nbestMatch = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeids = current_candidate->args;
|
|
nmatch = 0;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (input_typeids[i] != UNKNOWNOID)
|
|
{
|
|
if (IsBinaryCompatible(current_typeids[i], input_typeids[i]))
|
|
nmatch++;
|
|
}
|
|
}
|
|
|
|
/* take this one as the best choice so far? */
|
|
if ((nmatch > nbestMatch) || (last_candidate == NULL))
|
|
{
|
|
nbestMatch = nmatch;
|
|
candidates = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates = 1;
|
|
}
|
|
/* no worse than the last choice, so keep this one too? */
|
|
else if (nmatch == nbestMatch)
|
|
{
|
|
last_candidate->next = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
/* otherwise, don't bother keeping this one... */
|
|
}
|
|
|
|
if (last_candidate) /* terminate rebuilt list */
|
|
last_candidate->next = NULL;
|
|
|
|
if (ncandidates == 1)
|
|
return candidates->args;
|
|
|
|
/*
|
|
* Still too many candidates? Now look for candidates which are
|
|
* preferred types at the args that will require coercion. Keep all
|
|
* candidates if none match.
|
|
*/
|
|
ncandidates = 0;
|
|
nbestMatch = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeids = current_candidate->args;
|
|
nmatch = 0;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (input_typeids[i] != UNKNOWNOID)
|
|
{
|
|
current_category = TypeCategory(current_typeids[i]);
|
|
if (current_typeids[i] == input_typeids[i] ||
|
|
IsPreferredType(current_category, current_typeids[i]))
|
|
nmatch++;
|
|
}
|
|
}
|
|
|
|
if ((nmatch > nbestMatch) || (last_candidate == NULL))
|
|
{
|
|
nbestMatch = nmatch;
|
|
candidates = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates = 1;
|
|
}
|
|
else if (nmatch == nbestMatch)
|
|
{
|
|
last_candidate->next = current_candidate;
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
}
|
|
|
|
if (last_candidate) /* terminate rebuilt list */
|
|
last_candidate->next = NULL;
|
|
|
|
if (ncandidates == 1)
|
|
return candidates->args;
|
|
|
|
/*
|
|
* Still too many candidates? Try assigning types for the unknown
|
|
* columns.
|
|
*
|
|
* We do this by examining each unknown argument position to see if we
|
|
* can determine a "type category" for it. If any candidate has an
|
|
* input datatype of STRING category, use STRING category (this bias
|
|
* towards STRING is appropriate since unknown-type literals look like
|
|
* strings). Otherwise, if all the candidates agree on the type
|
|
* category of this argument position, use that category. Otherwise,
|
|
* fail because we cannot determine a category.
|
|
*
|
|
* If we are able to determine a type category, also notice whether any
|
|
* of the candidates takes a preferred datatype within the category.
|
|
*
|
|
* Having completed this examination, remove candidates that accept the
|
|
* wrong category at any unknown position. Also, if at least one
|
|
* candidate accepted a preferred type at a position, remove
|
|
* candidates that accept non-preferred types.
|
|
*
|
|
* If we are down to one candidate at the end, we win.
|
|
*/
|
|
resolved_unknowns = false;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
bool have_conflict;
|
|
|
|
if (input_typeids[i] != UNKNOWNOID)
|
|
continue;
|
|
resolved_unknowns = true; /* assume we can do it */
|
|
slot_category[i] = INVALID_TYPE;
|
|
slot_has_preferred_type[i] = false;
|
|
have_conflict = false;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
current_typeids = current_candidate->args;
|
|
current_type = current_typeids[i];
|
|
current_category = TypeCategory(current_type);
|
|
if (slot_category[i] == INVALID_TYPE)
|
|
{
|
|
/* first candidate */
|
|
slot_category[i] = current_category;
|
|
slot_has_preferred_type[i] =
|
|
IsPreferredType(current_category, current_type);
|
|
}
|
|
else if (current_category == slot_category[i])
|
|
{
|
|
/* more candidates in same category */
|
|
slot_has_preferred_type[i] |=
|
|
IsPreferredType(current_category, current_type);
|
|
}
|
|
else
|
|
{
|
|
/* category conflict! */
|
|
if (current_category == STRING_TYPE)
|
|
{
|
|
/* STRING always wins if available */
|
|
slot_category[i] = current_category;
|
|
slot_has_preferred_type[i] =
|
|
IsPreferredType(current_category, current_type);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Remember conflict, but keep going (might find
|
|
* STRING)
|
|
*/
|
|
have_conflict = true;
|
|
}
|
|
}
|
|
}
|
|
if (have_conflict && slot_category[i] != STRING_TYPE)
|
|
{
|
|
/* Failed to resolve category conflict at this position */
|
|
resolved_unknowns = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (resolved_unknowns)
|
|
{
|
|
/* Strip non-matching candidates */
|
|
ncandidates = 0;
|
|
last_candidate = NULL;
|
|
for (current_candidate = candidates;
|
|
current_candidate != NULL;
|
|
current_candidate = current_candidate->next)
|
|
{
|
|
bool keepit = true;
|
|
|
|
current_typeids = current_candidate->args;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (input_typeids[i] != UNKNOWNOID)
|
|
continue;
|
|
current_type = current_typeids[i];
|
|
current_category = TypeCategory(current_type);
|
|
if (current_category != slot_category[i])
|
|
{
|
|
keepit = false;
|
|
break;
|
|
}
|
|
if (slot_has_preferred_type[i] &&
|
|
!IsPreferredType(current_category, current_type))
|
|
{
|
|
keepit = false;
|
|
break;
|
|
}
|
|
}
|
|
if (keepit)
|
|
{
|
|
/* keep this candidate */
|
|
last_candidate = current_candidate;
|
|
ncandidates++;
|
|
}
|
|
else
|
|
{
|
|
/* forget this candidate */
|
|
if (last_candidate)
|
|
last_candidate->next = current_candidate->next;
|
|
else
|
|
candidates = current_candidate->next;
|
|
}
|
|
}
|
|
if (last_candidate) /* terminate rebuilt list */
|
|
last_candidate->next = NULL;
|
|
}
|
|
|
|
if (ncandidates == 1)
|
|
return candidates->args;
|
|
|
|
return NULL; /* failed to determine a unique candidate */
|
|
} /* func_select_candidate() */
|
|
|
|
|
|
/* func_get_detail()
|
|
*
|
|
* Find the named function in the system catalogs.
|
|
*
|
|
* Attempt to find the named function in the system catalogs with
|
|
* arguments exactly as specified, so that the normal case
|
|
* (exact match) is as quick as possible.
|
|
*
|
|
* If an exact match isn't found:
|
|
* 1) check for possible interpretation as a trivial type coercion
|
|
* 2) get a vector of all possible input arg type arrays constructed
|
|
* from the superclasses of the original input arg types
|
|
* 3) get a list of all possible argument type arrays to the function
|
|
* with given name and number of arguments
|
|
* 4) for each input arg type array from vector #1:
|
|
* a) find how many of the function arg type arrays from list #2
|
|
* it can be coerced to
|
|
* b) if the answer is one, we have our function
|
|
* c) if the answer is more than one, attempt to resolve the conflict
|
|
* d) if the answer is zero, try the next array from vector #1
|
|
*/
|
|
FuncDetailCode
|
|
func_get_detail(char *funcname,
|
|
List *fargs,
|
|
int nargs,
|
|
Oid *argtypes,
|
|
Oid *funcid, /* return value */
|
|
Oid *rettype, /* return value */
|
|
bool *retset, /* return value */
|
|
Oid **true_typeids) /* return value */
|
|
{
|
|
HeapTuple ftup;
|
|
CandidateList function_typeids;
|
|
|
|
/* attempt to find with arguments exactly as specified... */
|
|
ftup = SearchSysCache(PROCNAME,
|
|
PointerGetDatum(funcname),
|
|
Int32GetDatum(nargs),
|
|
PointerGetDatum(argtypes),
|
|
0);
|
|
|
|
if (HeapTupleIsValid(ftup))
|
|
{
|
|
/* given argument types are the right ones */
|
|
*true_typeids = argtypes;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If we didn't find an exact match, next consider the possibility
|
|
* that this is really a type-coercion request: a single-argument
|
|
* function call where the function name is a type name. If so,
|
|
* and if we can do the coercion trivially (no run-time function
|
|
* call needed), then go ahead and treat the "function call" as a
|
|
* coercion. This interpretation needs to be given higher
|
|
* priority than interpretations involving a type coercion
|
|
* followed by a function call, otherwise we can produce
|
|
* surprising results. For example, we want "text(varchar)" to be
|
|
* interpreted as a trivial coercion, not as "text(name(varchar))"
|
|
* which the code below this point is entirely capable of
|
|
* selecting.
|
|
*
|
|
* "Trivial" coercions are ones that involve binary-compatible types
|
|
* and ones that are coercing a previously-unknown-type literal
|
|
* constant to a specific type.
|
|
*
|
|
* NB: it's important that this code stays in sync with what
|
|
* coerce_type can do, because the caller will try to apply
|
|
* coerce_type if we return FUNCDETAIL_COERCION. If we return
|
|
* that result for something coerce_type can't handle, we'll cause
|
|
* infinite recursion between this module and coerce_type!
|
|
*/
|
|
if (nargs == 1)
|
|
{
|
|
Oid targetType;
|
|
|
|
/* XXX WRONG: need to search searchpath for name; but little
|
|
* point in fixing before we revise this code for qualified
|
|
* funcnames too.
|
|
*/
|
|
targetType = GetSysCacheOid(TYPENAMENSP,
|
|
PointerGetDatum(funcname),
|
|
ObjectIdGetDatum(PG_CATALOG_NAMESPACE),
|
|
0, 0);
|
|
if (OidIsValid(targetType) &&
|
|
!ISCOMPLEX(targetType))
|
|
{
|
|
Oid sourceType = argtypes[0];
|
|
Node *arg1 = lfirst(fargs);
|
|
|
|
if ((sourceType == UNKNOWNOID && IsA(arg1, Const)) ||
|
|
IsBinaryCompatible(sourceType, targetType))
|
|
{
|
|
/* Yup, it's a type coercion */
|
|
*funcid = InvalidOid;
|
|
*rettype = targetType;
|
|
*retset = false;
|
|
*true_typeids = argtypes;
|
|
return FUNCDETAIL_COERCION;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* didn't find an exact match, so now try to match up
|
|
* candidates...
|
|
*/
|
|
|
|
function_typeids = func_get_candidates(funcname, nargs);
|
|
|
|
/* found something, so let's look through them... */
|
|
if (function_typeids != NULL)
|
|
{
|
|
Oid **input_typeid_vector = NULL;
|
|
Oid *current_input_typeids;
|
|
|
|
/*
|
|
* First we will search with the given argtypes, then with
|
|
* variants based on replacing complex types with their
|
|
* inheritance ancestors. Stop as soon as any match is found.
|
|
*/
|
|
current_input_typeids = argtypes;
|
|
|
|
do
|
|
{
|
|
CandidateList current_function_typeids;
|
|
int ncandidates;
|
|
|
|
ncandidates = match_argtypes(nargs, current_input_typeids,
|
|
function_typeids,
|
|
¤t_function_typeids);
|
|
|
|
/* one match only? then run with it... */
|
|
if (ncandidates == 1)
|
|
{
|
|
*true_typeids = current_function_typeids->args;
|
|
ftup = SearchSysCache(PROCNAME,
|
|
PointerGetDatum(funcname),
|
|
Int32GetDatum(nargs),
|
|
PointerGetDatum(*true_typeids),
|
|
0);
|
|
Assert(HeapTupleIsValid(ftup));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* multiple candidates? then better decide or throw an
|
|
* error...
|
|
*/
|
|
if (ncandidates > 1)
|
|
{
|
|
*true_typeids = func_select_candidate(nargs,
|
|
current_input_typeids,
|
|
current_function_typeids);
|
|
|
|
if (*true_typeids != NULL)
|
|
{
|
|
/* was able to choose a best candidate */
|
|
ftup = SearchSysCache(PROCNAME,
|
|
PointerGetDatum(funcname),
|
|
Int32GetDatum(nargs),
|
|
PointerGetDatum(*true_typeids),
|
|
0);
|
|
Assert(HeapTupleIsValid(ftup));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* otherwise, ambiguous function call, so fail by
|
|
* exiting loop with ftup still NULL.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* No match here, so try the next inherited type vector.
|
|
* First time through, we need to compute the list of
|
|
* vectors.
|
|
*/
|
|
if (input_typeid_vector == NULL)
|
|
input_typeid_vector = argtype_inherit(nargs, argtypes);
|
|
|
|
current_input_typeids = *input_typeid_vector++;
|
|
}
|
|
while (current_input_typeids != NULL);
|
|
}
|
|
}
|
|
|
|
if (HeapTupleIsValid(ftup))
|
|
{
|
|
Form_pg_proc pform = (Form_pg_proc) GETSTRUCT(ftup);
|
|
|
|
*funcid = ftup->t_data->t_oid;
|
|
*rettype = pform->prorettype;
|
|
*retset = pform->proretset;
|
|
ReleaseSysCache(ftup);
|
|
return FUNCDETAIL_NORMAL;
|
|
}
|
|
|
|
return FUNCDETAIL_NOTFOUND;
|
|
} /* func_get_detail() */
|
|
|
|
/*
|
|
* argtype_inherit() -- Construct an argtype vector reflecting the
|
|
* inheritance properties of the supplied argv.
|
|
*
|
|
* This function is used to disambiguate among functions with the
|
|
* same name but different signatures. It takes an array of input
|
|
* type ids. For each type id in the array that's a complex type
|
|
* (a class), it walks up the inheritance tree, finding all
|
|
* superclasses of that type. A vector of new Oid type arrays
|
|
* is returned to the caller, reflecting the structure of the
|
|
* inheritance tree above the supplied arguments.
|
|
*
|
|
* The order of this vector is as follows: all superclasses of the
|
|
* rightmost complex class are explored first. The exploration
|
|
* continues from right to left. This policy means that we favor
|
|
* keeping the leftmost argument type as low in the inheritance tree
|
|
* as possible. This is intentional; it is exactly what we need to
|
|
* do for method dispatch. The last type array we return is all
|
|
* zeroes. This will match any functions for which return types are
|
|
* not defined. There are lots of these (mostly builtins) in the
|
|
* catalogs.
|
|
*/
|
|
static Oid **
|
|
argtype_inherit(int nargs, Oid *argtypes)
|
|
{
|
|
Oid relid;
|
|
int i;
|
|
InhPaths arginh[FUNC_MAX_ARGS];
|
|
|
|
for (i = 0; i < FUNC_MAX_ARGS; i++)
|
|
{
|
|
if (i < nargs)
|
|
{
|
|
arginh[i].self = argtypes[i];
|
|
if ((relid = typeidTypeRelid(argtypes[i])) != InvalidOid)
|
|
arginh[i].nsupers = find_inheritors(relid, &(arginh[i].supervec));
|
|
else
|
|
{
|
|
arginh[i].nsupers = 0;
|
|
arginh[i].supervec = (Oid *) NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
arginh[i].self = InvalidOid;
|
|
arginh[i].nsupers = 0;
|
|
arginh[i].supervec = (Oid *) NULL;
|
|
}
|
|
}
|
|
|
|
/* return an ordered cross-product of the classes involved */
|
|
return gen_cross_product(arginh, nargs);
|
|
}
|
|
|
|
static int
|
|
find_inheritors(Oid relid, Oid **supervec)
|
|
{
|
|
Relation inhrel;
|
|
HeapScanDesc inhscan;
|
|
ScanKeyData skey;
|
|
HeapTuple inhtup;
|
|
Oid *relidvec;
|
|
int nvisited;
|
|
List *visited,
|
|
*queue;
|
|
List *elt;
|
|
bool newrelid;
|
|
|
|
nvisited = 0;
|
|
queue = NIL;
|
|
visited = NIL;
|
|
|
|
inhrel = heap_openr(InheritsRelationName, AccessShareLock);
|
|
|
|
/*
|
|
* Use queue to do a breadth-first traversal of the inheritance graph
|
|
* from the relid supplied up to the root. At the top of the loop,
|
|
* relid is the OID of the reltype to check next, queue is the list of
|
|
* pending rels to check after this one, and visited is the list of
|
|
* relids we need to output.
|
|
*/
|
|
do
|
|
{
|
|
/* find all types this relid inherits from, and add them to queue */
|
|
|
|
ScanKeyEntryInitialize(&skey, 0x0, Anum_pg_inherits_inhrelid,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(relid));
|
|
|
|
inhscan = heap_beginscan(inhrel, 0, SnapshotNow, 1, &skey);
|
|
|
|
while (HeapTupleIsValid(inhtup = heap_getnext(inhscan, 0)))
|
|
{
|
|
Form_pg_inherits inh = (Form_pg_inherits) GETSTRUCT(inhtup);
|
|
|
|
queue = lappendi(queue, inh->inhparent);
|
|
}
|
|
|
|
heap_endscan(inhscan);
|
|
|
|
/* pull next unvisited relid off the queue */
|
|
|
|
newrelid = false;
|
|
while (queue != NIL)
|
|
{
|
|
relid = lfirsti(queue);
|
|
queue = lnext(queue);
|
|
if (!intMember(relid, visited))
|
|
{
|
|
newrelid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (newrelid)
|
|
{
|
|
visited = lappendi(visited, relid);
|
|
nvisited++;
|
|
}
|
|
} while (newrelid);
|
|
|
|
heap_close(inhrel, AccessShareLock);
|
|
|
|
if (nvisited > 0)
|
|
{
|
|
relidvec = (Oid *) palloc(nvisited * sizeof(Oid));
|
|
*supervec = relidvec;
|
|
|
|
foreach(elt, visited)
|
|
{
|
|
/* return the type id, rather than the relation id */
|
|
*relidvec++ = get_rel_type_id((Oid) lfirsti(elt));
|
|
}
|
|
}
|
|
else
|
|
*supervec = (Oid *) NULL;
|
|
|
|
freeList(visited);
|
|
|
|
/*
|
|
* there doesn't seem to be any equally easy way to release the queue
|
|
* list cells, but since they're palloc'd space it's not critical.
|
|
*/
|
|
|
|
return nvisited;
|
|
}
|
|
|
|
static Oid **
|
|
gen_cross_product(InhPaths *arginh, int nargs)
|
|
{
|
|
int nanswers;
|
|
Oid **result,
|
|
**iter;
|
|
Oid *oneres;
|
|
int i,
|
|
j;
|
|
int cur[FUNC_MAX_ARGS];
|
|
|
|
nanswers = 1;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
nanswers *= (arginh[i].nsupers + 2);
|
|
cur[i] = 0;
|
|
}
|
|
|
|
iter = result = (Oid **) palloc(sizeof(Oid *) * nanswers);
|
|
|
|
/* compute the cross product from right to left */
|
|
for (;;)
|
|
{
|
|
oneres = (Oid *) palloc(FUNC_MAX_ARGS * sizeof(Oid));
|
|
MemSet(oneres, 0, FUNC_MAX_ARGS * sizeof(Oid));
|
|
|
|
for (i = nargs - 1; i >= 0 && cur[i] > arginh[i].nsupers; i--)
|
|
continue;
|
|
|
|
/* if we're done, terminate with NULL pointer */
|
|
if (i < 0)
|
|
{
|
|
*iter = NULL;
|
|
return result;
|
|
}
|
|
|
|
/* no, increment this column and zero the ones after it */
|
|
cur[i] = cur[i] + 1;
|
|
for (j = nargs - 1; j > i; j--)
|
|
cur[j] = 0;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (cur[i] == 0)
|
|
oneres[i] = arginh[i].self;
|
|
else if (cur[i] > arginh[i].nsupers)
|
|
oneres[i] = 0; /* wild card */
|
|
else
|
|
oneres[i] = arginh[i].supervec[cur[i] - 1];
|
|
}
|
|
|
|
*iter++ = oneres;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Given two type OIDs, determine whether the first is a complex type
|
|
* (class type) that inherits from the second.
|
|
*/
|
|
bool
|
|
typeInheritsFrom(Oid subclassTypeId, Oid superclassTypeId)
|
|
{
|
|
Oid relid;
|
|
Oid *supervec;
|
|
int nsupers,
|
|
i;
|
|
bool result;
|
|
|
|
if (!ISCOMPLEX(subclassTypeId) || !ISCOMPLEX(superclassTypeId))
|
|
return false;
|
|
relid = typeidTypeRelid(subclassTypeId);
|
|
if (relid == InvalidOid)
|
|
return false;
|
|
nsupers = find_inheritors(relid, &supervec);
|
|
result = false;
|
|
for (i = 0; i < nsupers; i++)
|
|
{
|
|
if (supervec[i] == superclassTypeId)
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
if (supervec)
|
|
pfree(supervec);
|
|
return result;
|
|
}
|
|
|
|
|
|
/* make_arguments()
|
|
* Given the number and types of arguments to a function, and the
|
|
* actual arguments and argument types, do the necessary typecasting.
|
|
*/
|
|
static void
|
|
make_arguments(ParseState *pstate,
|
|
int nargs,
|
|
List *fargs,
|
|
Oid *input_typeids,
|
|
Oid *function_typeids)
|
|
{
|
|
List *current_fargs;
|
|
int i;
|
|
|
|
for (i = 0, current_fargs = fargs;
|
|
i < nargs;
|
|
i++, current_fargs = lnext(current_fargs))
|
|
{
|
|
/* types don't match? then force coercion using a function call... */
|
|
if (input_typeids[i] != function_typeids[i])
|
|
{
|
|
lfirst(current_fargs) = coerce_type(pstate,
|
|
lfirst(current_fargs),
|
|
input_typeids[i],
|
|
function_typeids[i], -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* setup_field_select
|
|
* Build a FieldSelect node that says which attribute to project to.
|
|
* This routine is called by ParseFuncOrColumn() when we have found
|
|
* a projection on a function result or parameter.
|
|
*/
|
|
static FieldSelect *
|
|
setup_field_select(Node *input, char *attname, Oid relid)
|
|
{
|
|
FieldSelect *fselect = makeNode(FieldSelect);
|
|
AttrNumber attno;
|
|
|
|
attno = get_attnum(relid, attname);
|
|
|
|
fselect->arg = input;
|
|
fselect->fieldnum = attno;
|
|
fselect->resulttype = get_atttype(relid, attno);
|
|
fselect->resulttypmod = get_atttypmod(relid, attno);
|
|
|
|
return fselect;
|
|
}
|
|
|
|
/*
|
|
* ParseComplexProjection -
|
|
* handles function calls with a single argument that is of complex type.
|
|
* If the function call is actually a column projection, return a suitably
|
|
* transformed expression tree. If not, return NULL.
|
|
*
|
|
* NB: argument is expected to be transformed already, ie, not a RangeVar.
|
|
*/
|
|
static Node *
|
|
ParseComplexProjection(ParseState *pstate,
|
|
char *funcname,
|
|
Node *first_arg)
|
|
{
|
|
Oid argtype = exprType(first_arg);
|
|
Oid argrelid;
|
|
AttrNumber attnum;
|
|
FieldSelect *fselect;
|
|
|
|
argrelid = typeidTypeRelid(argtype);
|
|
if (!argrelid)
|
|
return NULL; /* probably should not happen */
|
|
attnum = get_attnum(argrelid, funcname);
|
|
if (attnum == InvalidAttrNumber)
|
|
return NULL; /* funcname does not match any column */
|
|
|
|
/*
|
|
* Check for special cases where we don't want to return a FieldSelect.
|
|
*/
|
|
switch (nodeTag(first_arg))
|
|
{
|
|
case T_Iter:
|
|
{
|
|
Iter *iter = (Iter *) first_arg;
|
|
|
|
/*
|
|
* If it's an Iter, we stick the FieldSelect
|
|
* *inside* the Iter --- this is klugy, but necessary
|
|
* because ExecTargetList() currently does the right thing
|
|
* only when the Iter node is at the top level of a
|
|
* targetlist item.
|
|
*
|
|
* XXX Iter should go away altogether...
|
|
*/
|
|
fselect = setup_field_select(iter->iterexpr,
|
|
funcname, argrelid);
|
|
iter->iterexpr = (Node *) fselect;
|
|
iter->itertype = fselect->resulttype;
|
|
return (Node *) iter;
|
|
break;
|
|
}
|
|
case T_Var:
|
|
{
|
|
Var *var = (Var *) first_arg;
|
|
|
|
/*
|
|
* If the Var is a whole-row tuple, we can just replace it
|
|
* with a simple Var reference.
|
|
*/
|
|
if (var->varattno == InvalidAttrNumber)
|
|
{
|
|
Oid vartype;
|
|
int32 vartypmod;
|
|
|
|
get_atttypetypmod(argrelid, attnum,
|
|
&vartype, &vartypmod);
|
|
|
|
return (Node *) makeVar(var->varno,
|
|
attnum,
|
|
vartype,
|
|
vartypmod,
|
|
var->varlevelsup);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Else generate a FieldSelect expression */
|
|
fselect = setup_field_select(first_arg, funcname, argrelid);
|
|
return (Node *) fselect;
|
|
}
|
|
|
|
/*
|
|
* Error message when function lookup fails that gives details of the
|
|
* argument types
|
|
*/
|
|
void
|
|
func_error(const char *caller, const char *funcname,
|
|
int nargs, const Oid *argtypes,
|
|
const char *msg)
|
|
{
|
|
char p[(NAMEDATALEN + 2) * FUNC_MAX_ARGS],
|
|
*ptr;
|
|
int i;
|
|
|
|
ptr = p;
|
|
*ptr = '\0';
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
if (i)
|
|
{
|
|
*ptr++ = ',';
|
|
*ptr++ = ' ';
|
|
}
|
|
if (OidIsValid(argtypes[i]))
|
|
{
|
|
strncpy(ptr, typeidTypeName(argtypes[i]), NAMEDATALEN);
|
|
*(ptr + NAMEDATALEN) = '\0';
|
|
}
|
|
else
|
|
strcpy(ptr, "opaque");
|
|
ptr += strlen(ptr);
|
|
}
|
|
|
|
if (caller == NULL)
|
|
{
|
|
elog(ERROR, "Function '%s(%s)' does not exist%s%s",
|
|
funcname, p,
|
|
((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : ""));
|
|
}
|
|
else
|
|
{
|
|
elog(ERROR, "%s: function '%s(%s)' does not exist%s%s",
|
|
caller, funcname, p,
|
|
((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : ""));
|
|
}
|
|
}
|