
per previous discussion on pghackers. Most of the duplicate code in different AMs' ambuild routines has been moved out to a common routine in index.c; this means that all index types now do the right things about inserting recently-dead tuples, etc. (I also removed support for EXTEND INDEX in the ambuild routines, since that's about to go away anyway, and it cluttered the code a lot.) The retail indextuple deletion routines have been replaced by a "bulk delete" routine in which the indexscan is inside the access method. I haven't pushed this change as far as it should go yet, but it should allow considerable simplification of the internal bookkeeping for deletions. Also, add flag columns to pg_am to eliminate various hardcoded tests on AM OIDs, and remove unused pg_am columns. Fix rtree and gist index types to not attempt to store NULLs; before this, gist usually crashed, while rtree managed not to crash but computed wacko bounding boxes for NULL entries (which might have had something to do with the performance problems we've heard about occasionally). Add AtEOXact routines to hash, rtree, and gist, all of which have static state that needs to be reset after an error. We discovered this need long ago for btree, but missed the other guys. Oh, one more thing: concurrent VACUUM is now the default.
2046 lines
61 KiB
C
2046 lines
61 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* btinsert.c
|
|
* Item insertion in Lehman and Yao btrees for Postgres.
|
|
*
|
|
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtinsert.c,v 1.84 2001/07/15 22:48:16 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/nbtree.h"
|
|
#include "miscadmin.h"
|
|
|
|
|
|
typedef struct
|
|
{
|
|
/* context data for _bt_checksplitloc */
|
|
Size newitemsz; /* size of new item to be inserted */
|
|
bool non_leaf; /* T if splitting an internal node */
|
|
|
|
bool have_split; /* found a valid split? */
|
|
|
|
/* these fields valid only if have_split is true */
|
|
bool newitemonleft; /* new item on left or right of best split */
|
|
OffsetNumber firstright; /* best split point */
|
|
int best_delta; /* best size delta so far */
|
|
} FindSplitData;
|
|
|
|
extern bool FixBTree;
|
|
|
|
Buffer _bt_fixroot(Relation rel, Buffer oldrootbuf, bool release);
|
|
static void _bt_fixtree(Relation rel, BlockNumber blkno);
|
|
static void _bt_fixbranch(Relation rel, BlockNumber lblkno,
|
|
BlockNumber rblkno, BTStack true_stack);
|
|
static void _bt_fixlevel(Relation rel, Buffer buf, BlockNumber limit);
|
|
static void _bt_fixup(Relation rel, Buffer buf);
|
|
static OffsetNumber _bt_getoff(Page page, BlockNumber blkno);
|
|
|
|
static Buffer _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf);
|
|
|
|
static TransactionId _bt_check_unique(Relation rel, BTItem btitem,
|
|
Relation heapRel, Buffer buf,
|
|
ScanKey itup_scankey);
|
|
static InsertIndexResult _bt_insertonpg(Relation rel, Buffer buf,
|
|
BTStack stack,
|
|
int keysz, ScanKey scankey,
|
|
BTItem btitem,
|
|
OffsetNumber afteritem);
|
|
static void _bt_insertuple(Relation rel, Buffer buf,
|
|
Size itemsz, BTItem btitem, OffsetNumber newitemoff);
|
|
static Buffer _bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
|
|
OffsetNumber newitemoff, Size newitemsz,
|
|
BTItem newitem, bool newitemonleft,
|
|
OffsetNumber *itup_off, BlockNumber *itup_blkno);
|
|
static OffsetNumber _bt_findsplitloc(Relation rel, Page page,
|
|
OffsetNumber newitemoff,
|
|
Size newitemsz,
|
|
bool *newitemonleft);
|
|
static void _bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
|
|
int leftfree, int rightfree,
|
|
bool newitemonleft, Size firstrightitemsz);
|
|
static Buffer _bt_getstackbuf(Relation rel, BTStack stack, int access);
|
|
static void _bt_pgaddtup(Relation rel, Page page,
|
|
Size itemsize, BTItem btitem,
|
|
OffsetNumber itup_off, const char *where);
|
|
static bool _bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
|
|
int keysz, ScanKey scankey);
|
|
|
|
static Relation _xlheapRel; /* temporary hack */
|
|
|
|
/*
|
|
* _bt_doinsert() -- Handle insertion of a single btitem in the tree.
|
|
*
|
|
* This routine is called by the public interface routines, btbuild
|
|
* and btinsert. By here, btitem is filled in, including the TID.
|
|
*/
|
|
InsertIndexResult
|
|
_bt_doinsert(Relation rel, BTItem btitem,
|
|
bool index_is_unique, Relation heapRel)
|
|
{
|
|
IndexTuple itup = &(btitem->bti_itup);
|
|
int natts = rel->rd_rel->relnatts;
|
|
ScanKey itup_scankey;
|
|
BTStack stack;
|
|
Buffer buf;
|
|
InsertIndexResult res;
|
|
|
|
/* we need a scan key to do our search, so build one */
|
|
itup_scankey = _bt_mkscankey(rel, itup);
|
|
|
|
top:
|
|
/* find the page containing this key */
|
|
stack = _bt_search(rel, natts, itup_scankey, &buf, BT_WRITE);
|
|
|
|
/* trade in our read lock for a write lock */
|
|
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
|
|
LockBuffer(buf, BT_WRITE);
|
|
|
|
/*
|
|
* If the page was split between the time that we surrendered our read
|
|
* lock and acquired our write lock, then this page may no longer be
|
|
* the right place for the key we want to insert. In this case, we
|
|
* need to move right in the tree. See Lehman and Yao for an
|
|
* excruciatingly precise description.
|
|
*/
|
|
buf = _bt_moveright(rel, buf, natts, itup_scankey, BT_WRITE);
|
|
|
|
/*
|
|
* If we're not allowing duplicates, make sure the key isn't already
|
|
* in the index. XXX this belongs somewhere else, likely
|
|
*/
|
|
if (index_is_unique)
|
|
{
|
|
TransactionId xwait;
|
|
|
|
xwait = _bt_check_unique(rel, btitem, heapRel, buf, itup_scankey);
|
|
|
|
if (TransactionIdIsValid(xwait))
|
|
{
|
|
/* Have to wait for the other guy ... */
|
|
_bt_relbuf(rel, buf);
|
|
XactLockTableWait(xwait);
|
|
/* start over... */
|
|
_bt_freestack(stack);
|
|
goto top;
|
|
}
|
|
}
|
|
|
|
_xlheapRel = heapRel; /* temporary hack */
|
|
|
|
/* do the insertion */
|
|
res = _bt_insertonpg(rel, buf, stack, natts, itup_scankey, btitem, 0);
|
|
|
|
/* be tidy */
|
|
_bt_freestack(stack);
|
|
_bt_freeskey(itup_scankey);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* _bt_check_unique() -- Check for violation of unique index constraint
|
|
*
|
|
* Returns NullTransactionId if there is no conflict, else an xact ID we
|
|
* must wait for to see if it commits a conflicting tuple. If an actual
|
|
* conflict is detected, no return --- just elog().
|
|
*/
|
|
static TransactionId
|
|
_bt_check_unique(Relation rel, BTItem btitem, Relation heapRel,
|
|
Buffer buf, ScanKey itup_scankey)
|
|
{
|
|
TupleDesc itupdesc = RelationGetDescr(rel);
|
|
int natts = rel->rd_rel->relnatts;
|
|
OffsetNumber offset,
|
|
maxoff;
|
|
Page page;
|
|
BTPageOpaque opaque;
|
|
Buffer nbuf = InvalidBuffer;
|
|
bool chtup = true;
|
|
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
maxoff = PageGetMaxOffsetNumber(page);
|
|
|
|
/*
|
|
* Find first item >= proposed new item. Note we could also get a
|
|
* pointer to end-of-page here.
|
|
*/
|
|
offset = _bt_binsrch(rel, buf, natts, itup_scankey);
|
|
|
|
/*
|
|
* Scan over all equal tuples, looking for live conflicts.
|
|
*/
|
|
for (;;)
|
|
{
|
|
HeapTupleData htup;
|
|
Buffer buffer;
|
|
BTItem cbti;
|
|
BlockNumber nblkno;
|
|
|
|
/*
|
|
* _bt_compare returns 0 for (1,NULL) and (1,NULL) - this's how we
|
|
* handling NULLs - and so we must not use _bt_compare in real
|
|
* comparison, but only for ordering/finding items on pages. -
|
|
* vadim 03/24/97
|
|
*
|
|
* make sure the offset points to an actual key before trying to
|
|
* compare it...
|
|
*/
|
|
if (offset <= maxoff)
|
|
{
|
|
if (!_bt_isequal(itupdesc, page, offset, natts, itup_scankey))
|
|
break; /* we're past all the equal tuples */
|
|
|
|
/*
|
|
* Have to check is inserted heap tuple deleted one (i.e. just
|
|
* moved to another place by vacuum)! We only need to do this
|
|
* once, but don't want to do it at all unless we see equal
|
|
* tuples, so as not to slow down unequal case.
|
|
*/
|
|
if (chtup)
|
|
{
|
|
htup.t_self = btitem->bti_itup.t_tid;
|
|
heap_fetch(heapRel, SnapshotDirty, &htup, &buffer, NULL);
|
|
if (htup.t_data == NULL) /* YES! */
|
|
break;
|
|
/* Live tuple is being inserted, so continue checking */
|
|
ReleaseBuffer(buffer);
|
|
chtup = false;
|
|
}
|
|
|
|
cbti = (BTItem) PageGetItem(page, PageGetItemId(page, offset));
|
|
htup.t_self = cbti->bti_itup.t_tid;
|
|
heap_fetch(heapRel, SnapshotDirty, &htup, &buffer, NULL);
|
|
if (htup.t_data != NULL) /* it is a duplicate */
|
|
{
|
|
TransactionId xwait =
|
|
(TransactionIdIsValid(SnapshotDirty->xmin)) ?
|
|
SnapshotDirty->xmin : SnapshotDirty->xmax;
|
|
|
|
/*
|
|
* If this tuple is being updated by other transaction
|
|
* then we have to wait for its commit/abort.
|
|
*/
|
|
ReleaseBuffer(buffer);
|
|
if (TransactionIdIsValid(xwait))
|
|
{
|
|
if (nbuf != InvalidBuffer)
|
|
_bt_relbuf(rel, nbuf);
|
|
/* Tell _bt_doinsert to wait... */
|
|
return xwait;
|
|
}
|
|
|
|
/*
|
|
* Otherwise we have a definite conflict.
|
|
*/
|
|
elog(ERROR, "Cannot insert a duplicate key into unique index %s",
|
|
RelationGetRelationName(rel));
|
|
}
|
|
/* htup null so no buffer to release */
|
|
}
|
|
|
|
/*
|
|
* Advance to next tuple to continue checking.
|
|
*/
|
|
if (offset < maxoff)
|
|
offset = OffsetNumberNext(offset);
|
|
else
|
|
{
|
|
/* If scankey == hikey we gotta check the next page too */
|
|
if (P_RIGHTMOST(opaque))
|
|
break;
|
|
if (!_bt_isequal(itupdesc, page, P_HIKEY,
|
|
natts, itup_scankey))
|
|
break;
|
|
nblkno = opaque->btpo_next;
|
|
if (nbuf != InvalidBuffer)
|
|
_bt_relbuf(rel, nbuf);
|
|
nbuf = _bt_getbuf(rel, nblkno, BT_READ);
|
|
page = BufferGetPage(nbuf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
maxoff = PageGetMaxOffsetNumber(page);
|
|
offset = P_FIRSTDATAKEY(opaque);
|
|
}
|
|
}
|
|
|
|
if (nbuf != InvalidBuffer)
|
|
_bt_relbuf(rel, nbuf);
|
|
|
|
return NullTransactionId;
|
|
}
|
|
|
|
/*----------
|
|
* _bt_insertonpg() -- Insert a tuple on a particular page in the index.
|
|
*
|
|
* This recursive procedure does the following things:
|
|
*
|
|
* + finds the right place to insert the tuple.
|
|
* + if necessary, splits the target page (making sure that the
|
|
* split is equitable as far as post-insert free space goes).
|
|
* + inserts the tuple.
|
|
* + if the page was split, pops the parent stack, and finds the
|
|
* right place to insert the new child pointer (by walking
|
|
* right using information stored in the parent stack).
|
|
* + invokes itself with the appropriate tuple for the right
|
|
* child page on the parent.
|
|
*
|
|
* On entry, we must have the right buffer on which to do the
|
|
* insertion, and the buffer must be pinned and locked. On return,
|
|
* we will have dropped both the pin and the write lock on the buffer.
|
|
*
|
|
* If 'afteritem' is >0 then the new tuple must be inserted after the
|
|
* existing item of that number, noplace else. If 'afteritem' is 0
|
|
* then the procedure finds the exact spot to insert it by searching.
|
|
* (keysz and scankey parameters are used ONLY if afteritem == 0.)
|
|
*
|
|
* NOTE: if the new key is equal to one or more existing keys, we can
|
|
* legitimately place it anywhere in the series of equal keys --- in fact,
|
|
* if the new key is equal to the page's "high key" we can place it on
|
|
* the next page. If it is equal to the high key, and there's not room
|
|
* to insert the new tuple on the current page without splitting, then
|
|
* we can move right hoping to find more free space and avoid a split.
|
|
* (We should not move right indefinitely, however, since that leads to
|
|
* O(N^2) insertion behavior in the presence of many equal keys.)
|
|
* Once we have chosen the page to put the key on, we'll insert it before
|
|
* any existing equal keys because of the way _bt_binsrch() works.
|
|
*
|
|
* The locking interactions in this code are critical. You should
|
|
* grok Lehman and Yao's paper before making any changes. In addition,
|
|
* you need to understand how we disambiguate duplicate keys in this
|
|
* implementation, in order to be able to find our location using
|
|
* L&Y "move right" operations. Since we may insert duplicate user
|
|
* keys, and since these dups may propagate up the tree, we use the
|
|
* 'afteritem' parameter to position ourselves correctly for the
|
|
* insertion on internal pages.
|
|
*----------
|
|
*/
|
|
static InsertIndexResult
|
|
_bt_insertonpg(Relation rel,
|
|
Buffer buf,
|
|
BTStack stack,
|
|
int keysz,
|
|
ScanKey scankey,
|
|
BTItem btitem,
|
|
OffsetNumber afteritem)
|
|
{
|
|
InsertIndexResult res;
|
|
Page page;
|
|
BTPageOpaque lpageop;
|
|
OffsetNumber itup_off;
|
|
BlockNumber itup_blkno;
|
|
OffsetNumber newitemoff;
|
|
OffsetNumber firstright = InvalidOffsetNumber;
|
|
Size itemsz;
|
|
|
|
page = BufferGetPage(buf);
|
|
lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
itemsz = IndexTupleDSize(btitem->bti_itup)
|
|
+ (sizeof(BTItemData) - sizeof(IndexTupleData));
|
|
|
|
itemsz = MAXALIGN(itemsz); /* be safe, PageAddItem will do this but
|
|
* we need to be consistent */
|
|
|
|
/*
|
|
* Check whether the item can fit on a btree page at all. (Eventually,
|
|
* we ought to try to apply TOAST methods if not.) We actually need to
|
|
* be able to fit three items on every page, so restrict any one item
|
|
* to 1/3 the per-page available space. Note that at this point,
|
|
* itemsz doesn't include the ItemId.
|
|
*/
|
|
if (itemsz > (PageGetPageSize(page) - sizeof(PageHeaderData) - MAXALIGN(sizeof(BTPageOpaqueData))) / 3 - sizeof(ItemIdData))
|
|
elog(ERROR, "btree: index item size %lu exceeds maximum %lu",
|
|
(unsigned long) itemsz,
|
|
(PageGetPageSize(page) - sizeof(PageHeaderData) - MAXALIGN(sizeof(BTPageOpaqueData))) / 3 - sizeof(ItemIdData));
|
|
|
|
/*
|
|
* Determine exactly where new item will go.
|
|
*/
|
|
if (afteritem > 0)
|
|
newitemoff = afteritem + 1;
|
|
else
|
|
{
|
|
/*----------
|
|
* If we will need to split the page to put the item here,
|
|
* check whether we can put the tuple somewhere to the right,
|
|
* instead. Keep scanning right until we
|
|
* (a) find a page with enough free space,
|
|
* (b) reach the last page where the tuple can legally go, or
|
|
* (c) get tired of searching.
|
|
* (c) is not flippant; it is important because if there are many
|
|
* pages' worth of equal keys, it's better to split one of the early
|
|
* pages than to scan all the way to the end of the run of equal keys
|
|
* on every insert. We implement "get tired" as a random choice,
|
|
* since stopping after scanning a fixed number of pages wouldn't work
|
|
* well (we'd never reach the right-hand side of previously split
|
|
* pages). Currently the probability of moving right is set at 0.99,
|
|
* which may seem too high to change the behavior much, but it does an
|
|
* excellent job of preventing O(N^2) behavior with many equal keys.
|
|
*----------
|
|
*/
|
|
bool movedright = false;
|
|
|
|
while (PageGetFreeSpace(page) < itemsz &&
|
|
!P_RIGHTMOST(lpageop) &&
|
|
_bt_compare(rel, keysz, scankey, page, P_HIKEY) == 0 &&
|
|
random() > (MAX_RANDOM_VALUE / 100))
|
|
{
|
|
/* step right one page */
|
|
BlockNumber rblkno = lpageop->btpo_next;
|
|
|
|
_bt_relbuf(rel, buf);
|
|
buf = _bt_getbuf(rel, rblkno, BT_WRITE);
|
|
page = BufferGetPage(buf);
|
|
lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
movedright = true;
|
|
}
|
|
|
|
/*
|
|
* Now we are on the right page, so find the insert position. If
|
|
* we moved right at all, we know we should insert at the start of
|
|
* the page, else must find the position by searching.
|
|
*/
|
|
if (movedright)
|
|
newitemoff = P_FIRSTDATAKEY(lpageop);
|
|
else
|
|
newitemoff = _bt_binsrch(rel, buf, keysz, scankey);
|
|
}
|
|
|
|
/*
|
|
* Do we need to split the page to fit the item on it?
|
|
*
|
|
* Note: PageGetFreeSpace() subtracts sizeof(ItemIdData) from its result,
|
|
* so this comparison is correct even though we appear to be
|
|
* accounting only for the item and not for its line pointer.
|
|
*/
|
|
if (PageGetFreeSpace(page) < itemsz)
|
|
{
|
|
Buffer rbuf;
|
|
BlockNumber bknum = BufferGetBlockNumber(buf);
|
|
BlockNumber rbknum;
|
|
bool is_root = P_ISROOT(lpageop);
|
|
bool newitemonleft;
|
|
|
|
/* Choose the split point */
|
|
firstright = _bt_findsplitloc(rel, page,
|
|
newitemoff, itemsz,
|
|
&newitemonleft);
|
|
|
|
/* split the buffer into left and right halves */
|
|
rbuf = _bt_split(rel, buf, firstright,
|
|
newitemoff, itemsz, btitem, newitemonleft,
|
|
&itup_off, &itup_blkno);
|
|
|
|
/*----------
|
|
* By here,
|
|
*
|
|
* + our target page has been split;
|
|
* + the original tuple has been inserted;
|
|
* + we have write locks on both the old (left half)
|
|
* and new (right half) buffers, after the split; and
|
|
* + we know the key we want to insert into the parent
|
|
* (it's the "high key" on the left child page).
|
|
*
|
|
* We're ready to do the parent insertion. We need to hold onto the
|
|
* locks for the child pages until we locate the parent, but we can
|
|
* release them before doing the actual insertion (see Lehman and Yao
|
|
* for the reasoning).
|
|
*
|
|
* Here we have to do something Lehman and Yao don't talk about:
|
|
* deal with a root split and construction of a new root. If our
|
|
* stack is empty then we have just split a node on what had been
|
|
* the root level when we descended the tree. If it is still the
|
|
* root then we perform a new-root construction. If it *wasn't*
|
|
* the root anymore, use the parent pointer to get up to the root
|
|
* level that someone constructed meanwhile, and find the right
|
|
* place to insert as for the normal case.
|
|
*----------
|
|
*/
|
|
|
|
if (is_root)
|
|
{
|
|
Buffer rootbuf;
|
|
|
|
Assert(stack == (BTStack) NULL);
|
|
/* create a new root node and release the split buffers */
|
|
rootbuf = _bt_newroot(rel, buf, rbuf);
|
|
_bt_wrtbuf(rel, rootbuf);
|
|
_bt_wrtbuf(rel, rbuf);
|
|
_bt_wrtbuf(rel, buf);
|
|
}
|
|
else
|
|
{
|
|
InsertIndexResult newres;
|
|
BTItem new_item;
|
|
BTStackData fakestack;
|
|
BTItem ritem;
|
|
Buffer pbuf;
|
|
|
|
/* If root page was splitted */
|
|
if (stack == (BTStack) NULL)
|
|
{
|
|
elog(DEBUG, "btree: concurrent ROOT page split");
|
|
|
|
/*
|
|
* If root page splitter failed to create new root page
|
|
* then old root' btpo_parent still points to metapage. We
|
|
* have to fix root page in this case.
|
|
*/
|
|
if (BTreeInvalidParent(lpageop))
|
|
{
|
|
if (!FixBTree)
|
|
elog(ERROR, "bt_insertonpg[%s]: no root page found", RelationGetRelationName(rel));
|
|
_bt_wrtbuf(rel, rbuf);
|
|
_bt_wrtnorelbuf(rel, buf);
|
|
elog(NOTICE, "bt_insertonpg[%s]: root page unfound - fixing upper levels", RelationGetRelationName(rel));
|
|
_bt_fixup(rel, buf);
|
|
goto formres;
|
|
}
|
|
|
|
/*
|
|
* Set up a phony stack entry if we haven't got a real one
|
|
*/
|
|
stack = &fakestack;
|
|
stack->bts_blkno = lpageop->btpo_parent;
|
|
stack->bts_offset = InvalidOffsetNumber;
|
|
/* bts_btitem will be initialized below */
|
|
stack->bts_parent = NULL;
|
|
}
|
|
|
|
/* get high key from left page == lowest key on new right page */
|
|
ritem = (BTItem) PageGetItem(page,
|
|
PageGetItemId(page, P_HIKEY));
|
|
|
|
/* form an index tuple that points at the new right page */
|
|
new_item = _bt_formitem(&(ritem->bti_itup));
|
|
rbknum = BufferGetBlockNumber(rbuf);
|
|
ItemPointerSet(&(new_item->bti_itup.t_tid), rbknum, P_HIKEY);
|
|
|
|
/*
|
|
* Find the parent buffer and get the parent page.
|
|
*
|
|
* Oops - if we were moved right then we need to change stack
|
|
* item! We want to find parent pointing to where we are,
|
|
* right ? - vadim 05/27/97
|
|
*
|
|
* Interestingly, this means we didn't *really* need to stack the
|
|
* parent key at all; all we really care about is the saved
|
|
* block and offset as a starting point for our search...
|
|
*/
|
|
ItemPointerSet(&(stack->bts_btitem.bti_itup.t_tid),
|
|
bknum, P_HIKEY);
|
|
|
|
pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
|
|
|
|
/* Now we can write and unlock the children */
|
|
_bt_wrtbuf(rel, rbuf);
|
|
_bt_wrtbuf(rel, buf);
|
|
|
|
if (pbuf == InvalidBuffer)
|
|
{
|
|
if (!FixBTree)
|
|
elog(ERROR, "_bt_getstackbuf: my bits moved right off the end of the world!"
|
|
"\n\tRecreate index %s.", RelationGetRelationName(rel));
|
|
pfree(new_item);
|
|
elog(NOTICE, "bt_insertonpg[%s]: parent page unfound - fixing branch", RelationGetRelationName(rel));
|
|
_bt_fixbranch(rel, bknum, rbknum, stack);
|
|
goto formres;
|
|
}
|
|
/* Recursively update the parent */
|
|
newres = _bt_insertonpg(rel, pbuf, stack->bts_parent,
|
|
0, NULL, new_item, stack->bts_offset);
|
|
|
|
/* be tidy */
|
|
pfree(newres);
|
|
pfree(new_item);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
itup_off = newitemoff;
|
|
itup_blkno = BufferGetBlockNumber(buf);
|
|
|
|
_bt_insertuple(rel, buf, itemsz, btitem, newitemoff);
|
|
|
|
/* Write out the updated page and release pin/lock */
|
|
_bt_wrtbuf(rel, buf);
|
|
}
|
|
|
|
formres:;
|
|
/* by here, the new tuple is inserted at itup_blkno/itup_off */
|
|
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
|
|
ItemPointerSet(&(res->pointerData), itup_blkno, itup_off);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
_bt_insertuple(Relation rel, Buffer buf,
|
|
Size itemsz, BTItem btitem, OffsetNumber newitemoff)
|
|
{
|
|
Page page = BufferGetPage(buf);
|
|
BTPageOpaque pageop = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
START_CRIT_SECTION();
|
|
_bt_pgaddtup(rel, page, itemsz, btitem, newitemoff, "page");
|
|
/* XLOG stuff */
|
|
{
|
|
xl_btree_insert xlrec;
|
|
uint8 flag = XLOG_BTREE_INSERT;
|
|
XLogRecPtr recptr;
|
|
XLogRecData rdata[2];
|
|
BTItemData truncitem;
|
|
|
|
xlrec.target.node = rel->rd_node;
|
|
ItemPointerSet(&(xlrec.target.tid), BufferGetBlockNumber(buf), newitemoff);
|
|
rdata[0].buffer = InvalidBuffer;
|
|
rdata[0].data = (char *) &xlrec;
|
|
rdata[0].len = SizeOfBtreeInsert;
|
|
rdata[0].next = &(rdata[1]);
|
|
|
|
/* Read comments in _bt_pgaddtup */
|
|
if (!(P_ISLEAF(pageop)) && newitemoff == P_FIRSTDATAKEY(pageop))
|
|
{
|
|
truncitem = *btitem;
|
|
truncitem.bti_itup.t_info = sizeof(BTItemData);
|
|
rdata[1].data = (char *) &truncitem;
|
|
rdata[1].len = sizeof(BTItemData);
|
|
}
|
|
else
|
|
{
|
|
rdata[1].data = (char *) btitem;
|
|
rdata[1].len = IndexTupleDSize(btitem->bti_itup) +
|
|
(sizeof(BTItemData) - sizeof(IndexTupleData));
|
|
}
|
|
rdata[1].buffer = buf;
|
|
rdata[1].next = NULL;
|
|
if (P_ISLEAF(pageop))
|
|
flag |= XLOG_BTREE_LEAF;
|
|
|
|
recptr = XLogInsert(RM_BTREE_ID, flag, rdata);
|
|
|
|
PageSetLSN(page, recptr);
|
|
PageSetSUI(page, ThisStartUpID);
|
|
}
|
|
|
|
END_CRIT_SECTION();
|
|
}
|
|
|
|
/*
|
|
* _bt_split() -- split a page in the btree.
|
|
*
|
|
* On entry, buf is the page to split, and is write-locked and pinned.
|
|
* firstright is the item index of the first item to be moved to the
|
|
* new right page. newitemoff etc. tell us about the new item that
|
|
* must be inserted along with the data from the old page.
|
|
*
|
|
* Returns the new right sibling of buf, pinned and write-locked.
|
|
* The pin and lock on buf are maintained. *itup_off and *itup_blkno
|
|
* are set to the exact location where newitem was inserted.
|
|
*/
|
|
static Buffer
|
|
_bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
|
|
OffsetNumber newitemoff, Size newitemsz, BTItem newitem,
|
|
bool newitemonleft,
|
|
OffsetNumber *itup_off, BlockNumber *itup_blkno)
|
|
{
|
|
Buffer rbuf;
|
|
Page origpage;
|
|
Page leftpage,
|
|
rightpage;
|
|
BTPageOpaque ropaque,
|
|
lopaque,
|
|
oopaque;
|
|
Buffer sbuf = 0;
|
|
Page spage = 0;
|
|
Size itemsz;
|
|
ItemId itemid;
|
|
BTItem item;
|
|
OffsetNumber leftoff,
|
|
rightoff;
|
|
OffsetNumber maxoff;
|
|
OffsetNumber i;
|
|
BTItem lhikey;
|
|
|
|
rbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
|
|
origpage = BufferGetPage(buf);
|
|
leftpage = PageGetTempPage(origpage, sizeof(BTPageOpaqueData));
|
|
rightpage = BufferGetPage(rbuf);
|
|
|
|
_bt_pageinit(leftpage, BufferGetPageSize(buf));
|
|
_bt_pageinit(rightpage, BufferGetPageSize(rbuf));
|
|
|
|
/* init btree private data */
|
|
oopaque = (BTPageOpaque) PageGetSpecialPointer(origpage);
|
|
lopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage);
|
|
ropaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);
|
|
|
|
/* if we're splitting this page, it won't be the root when we're done */
|
|
lopaque->btpo_flags = oopaque->btpo_flags;
|
|
lopaque->btpo_flags &= ~BTP_ROOT;
|
|
ropaque->btpo_flags = lopaque->btpo_flags;
|
|
lopaque->btpo_prev = oopaque->btpo_prev;
|
|
lopaque->btpo_next = BufferGetBlockNumber(rbuf);
|
|
ropaque->btpo_prev = BufferGetBlockNumber(buf);
|
|
ropaque->btpo_next = oopaque->btpo_next;
|
|
|
|
/*
|
|
* Must copy the original parent link into both new pages, even though
|
|
* it might be quite obsolete by now. We might need it if this level
|
|
* is or recently was the root (see README).
|
|
*/
|
|
lopaque->btpo_parent = ropaque->btpo_parent = oopaque->btpo_parent;
|
|
|
|
/*
|
|
* If the page we're splitting is not the rightmost page at its level
|
|
* in the tree, then the first entry on the page is the high key for
|
|
* the page. We need to copy that to the right half. Otherwise
|
|
* (meaning the rightmost page case), all the items on the right half
|
|
* will be user data.
|
|
*/
|
|
rightoff = P_HIKEY;
|
|
|
|
if (!P_RIGHTMOST(oopaque))
|
|
{
|
|
itemid = PageGetItemId(origpage, P_HIKEY);
|
|
itemsz = ItemIdGetLength(itemid);
|
|
item = (BTItem) PageGetItem(origpage, itemid);
|
|
if (PageAddItem(rightpage, (Item) item, itemsz, rightoff,
|
|
LP_USED) == InvalidOffsetNumber)
|
|
elog(STOP, "btree: failed to add hikey to the right sibling");
|
|
rightoff = OffsetNumberNext(rightoff);
|
|
}
|
|
|
|
/*
|
|
* The "high key" for the new left page will be the first key that's
|
|
* going to go into the new right page. This might be either the
|
|
* existing data item at position firstright, or the incoming tuple.
|
|
*/
|
|
leftoff = P_HIKEY;
|
|
if (!newitemonleft && newitemoff == firstright)
|
|
{
|
|
/* incoming tuple will become first on right page */
|
|
itemsz = newitemsz;
|
|
item = newitem;
|
|
}
|
|
else
|
|
{
|
|
/* existing item at firstright will become first on right page */
|
|
itemid = PageGetItemId(origpage, firstright);
|
|
itemsz = ItemIdGetLength(itemid);
|
|
item = (BTItem) PageGetItem(origpage, itemid);
|
|
}
|
|
lhikey = item;
|
|
if (PageAddItem(leftpage, (Item) item, itemsz, leftoff,
|
|
LP_USED) == InvalidOffsetNumber)
|
|
elog(STOP, "btree: failed to add hikey to the left sibling");
|
|
leftoff = OffsetNumberNext(leftoff);
|
|
|
|
/*
|
|
* Now transfer all the data items to the appropriate page
|
|
*/
|
|
maxoff = PageGetMaxOffsetNumber(origpage);
|
|
|
|
for (i = P_FIRSTDATAKEY(oopaque); i <= maxoff; i = OffsetNumberNext(i))
|
|
{
|
|
itemid = PageGetItemId(origpage, i);
|
|
itemsz = ItemIdGetLength(itemid);
|
|
item = (BTItem) PageGetItem(origpage, itemid);
|
|
|
|
/* does new item belong before this one? */
|
|
if (i == newitemoff)
|
|
{
|
|
if (newitemonleft)
|
|
{
|
|
_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
|
|
"left sibling");
|
|
*itup_off = leftoff;
|
|
*itup_blkno = BufferGetBlockNumber(buf);
|
|
leftoff = OffsetNumberNext(leftoff);
|
|
}
|
|
else
|
|
{
|
|
_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
|
|
"right sibling");
|
|
*itup_off = rightoff;
|
|
*itup_blkno = BufferGetBlockNumber(rbuf);
|
|
rightoff = OffsetNumberNext(rightoff);
|
|
}
|
|
}
|
|
|
|
/* decide which page to put it on */
|
|
if (i < firstright)
|
|
{
|
|
_bt_pgaddtup(rel, leftpage, itemsz, item, leftoff,
|
|
"left sibling");
|
|
leftoff = OffsetNumberNext(leftoff);
|
|
}
|
|
else
|
|
{
|
|
_bt_pgaddtup(rel, rightpage, itemsz, item, rightoff,
|
|
"right sibling");
|
|
rightoff = OffsetNumberNext(rightoff);
|
|
}
|
|
}
|
|
|
|
/* cope with possibility that newitem goes at the end */
|
|
if (i <= newitemoff)
|
|
{
|
|
if (newitemonleft)
|
|
{
|
|
_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
|
|
"left sibling");
|
|
*itup_off = leftoff;
|
|
*itup_blkno = BufferGetBlockNumber(buf);
|
|
leftoff = OffsetNumberNext(leftoff);
|
|
}
|
|
else
|
|
{
|
|
_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
|
|
"right sibling");
|
|
*itup_off = rightoff;
|
|
*itup_blkno = BufferGetBlockNumber(rbuf);
|
|
rightoff = OffsetNumberNext(rightoff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have to grab the right sibling (if any) and fix the prev pointer
|
|
* there. We are guaranteed that this is deadlock-free since no other
|
|
* writer will be holding a lock on that page and trying to move left,
|
|
* and all readers release locks on a page before trying to fetch its
|
|
* neighbors.
|
|
*/
|
|
|
|
if (!P_RIGHTMOST(ropaque))
|
|
{
|
|
sbuf = _bt_getbuf(rel, ropaque->btpo_next, BT_WRITE);
|
|
spage = BufferGetPage(sbuf);
|
|
}
|
|
|
|
/*
|
|
* Right sibling is locked, new siblings are prepared, but original
|
|
* page is not updated yet. Log changes before continuing.
|
|
*
|
|
* NO ELOG(ERROR) till right sibling is updated.
|
|
*
|
|
*/
|
|
START_CRIT_SECTION();
|
|
{
|
|
xl_btree_split xlrec;
|
|
int flag = (newitemonleft) ?
|
|
XLOG_BTREE_SPLEFT : XLOG_BTREE_SPLIT;
|
|
BlockNumber blkno;
|
|
XLogRecPtr recptr;
|
|
XLogRecData rdata[4];
|
|
|
|
xlrec.target.node = rel->rd_node;
|
|
ItemPointerSet(&(xlrec.target.tid), *itup_blkno, *itup_off);
|
|
if (newitemonleft)
|
|
{
|
|
blkno = BufferGetBlockNumber(rbuf);
|
|
BlockIdSet(&(xlrec.otherblk), blkno);
|
|
}
|
|
else
|
|
{
|
|
blkno = BufferGetBlockNumber(buf);
|
|
BlockIdSet(&(xlrec.otherblk), blkno);
|
|
}
|
|
BlockIdSet(&(xlrec.parentblk), lopaque->btpo_parent);
|
|
BlockIdSet(&(xlrec.leftblk), lopaque->btpo_prev);
|
|
BlockIdSet(&(xlrec.rightblk), ropaque->btpo_next);
|
|
|
|
/*
|
|
* Dirrect access to page is not good but faster - we should
|
|
* implement some new func in page API.
|
|
*/
|
|
xlrec.leftlen = ((PageHeader) leftpage)->pd_special -
|
|
((PageHeader) leftpage)->pd_upper;
|
|
rdata[0].buffer = InvalidBuffer;
|
|
rdata[0].data = (char *) &xlrec;
|
|
rdata[0].len = SizeOfBtreeSplit;
|
|
rdata[0].next = &(rdata[1]);
|
|
|
|
rdata[1].buffer = InvalidBuffer;
|
|
rdata[1].data = (char *) leftpage + ((PageHeader) leftpage)->pd_upper;
|
|
rdata[1].len = xlrec.leftlen;
|
|
rdata[1].next = &(rdata[2]);
|
|
|
|
rdata[2].buffer = InvalidBuffer;
|
|
rdata[2].data = (char *) rightpage + ((PageHeader) rightpage)->pd_upper;
|
|
rdata[2].len = ((PageHeader) rightpage)->pd_special -
|
|
((PageHeader) rightpage)->pd_upper;
|
|
rdata[2].next = NULL;
|
|
|
|
if (!P_RIGHTMOST(ropaque))
|
|
{
|
|
BTPageOpaque sopaque = (BTPageOpaque) PageGetSpecialPointer(spage);
|
|
|
|
sopaque->btpo_prev = BufferGetBlockNumber(rbuf);
|
|
|
|
rdata[2].next = &(rdata[3]);
|
|
rdata[3].buffer = sbuf;
|
|
rdata[3].data = NULL;
|
|
rdata[3].len = 0;
|
|
rdata[3].next = NULL;
|
|
}
|
|
|
|
if (P_ISLEAF(lopaque))
|
|
flag |= XLOG_BTREE_LEAF;
|
|
|
|
recptr = XLogInsert(RM_BTREE_ID, flag, rdata);
|
|
|
|
PageSetLSN(leftpage, recptr);
|
|
PageSetSUI(leftpage, ThisStartUpID);
|
|
PageSetLSN(rightpage, recptr);
|
|
PageSetSUI(rightpage, ThisStartUpID);
|
|
if (!P_RIGHTMOST(ropaque))
|
|
{
|
|
PageSetLSN(spage, recptr);
|
|
PageSetSUI(spage, ThisStartUpID);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By here, the original data page has been split into two new halves,
|
|
* and these are correct. The algorithm requires that the left page
|
|
* never move during a split, so we copy the new left page back on top
|
|
* of the original. Note that this is not a waste of time, since we
|
|
* also require (in the page management code) that the center of a
|
|
* page always be clean, and the most efficient way to guarantee this
|
|
* is just to compact the data by reinserting it into a new left page.
|
|
*/
|
|
|
|
PageRestoreTempPage(leftpage, origpage);
|
|
|
|
END_CRIT_SECTION();
|
|
|
|
/* write and release the old right sibling */
|
|
if (!P_RIGHTMOST(ropaque))
|
|
_bt_wrtbuf(rel, sbuf);
|
|
|
|
/* split's done */
|
|
return rbuf;
|
|
}
|
|
|
|
/*
|
|
* _bt_findsplitloc() -- find an appropriate place to split a page.
|
|
*
|
|
* The idea here is to equalize the free space that will be on each split
|
|
* page, *after accounting for the inserted tuple*. (If we fail to account
|
|
* for it, we might find ourselves with too little room on the page that
|
|
* it needs to go into!)
|
|
*
|
|
* We are passed the intended insert position of the new tuple, expressed as
|
|
* the offsetnumber of the tuple it must go in front of. (This could be
|
|
* maxoff+1 if the tuple is to go at the end.)
|
|
*
|
|
* We return the index of the first existing tuple that should go on the
|
|
* righthand page, plus a boolean indicating whether the new tuple goes on
|
|
* the left or right page. The bool is necessary to disambiguate the case
|
|
* where firstright == newitemoff.
|
|
*/
|
|
static OffsetNumber
|
|
_bt_findsplitloc(Relation rel,
|
|
Page page,
|
|
OffsetNumber newitemoff,
|
|
Size newitemsz,
|
|
bool *newitemonleft)
|
|
{
|
|
BTPageOpaque opaque;
|
|
OffsetNumber offnum;
|
|
OffsetNumber maxoff;
|
|
ItemId itemid;
|
|
FindSplitData state;
|
|
int leftspace,
|
|
rightspace,
|
|
goodenough,
|
|
dataitemtotal,
|
|
dataitemstoleft;
|
|
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
|
|
newitemsz += sizeof(ItemIdData);
|
|
state.newitemsz = newitemsz;
|
|
state.non_leaf = !P_ISLEAF(opaque);
|
|
state.have_split = false;
|
|
|
|
/* Total free space available on a btree page, after fixed overhead */
|
|
leftspace = rightspace =
|
|
PageGetPageSize(page) - sizeof(PageHeaderData) -
|
|
MAXALIGN(sizeof(BTPageOpaqueData))
|
|
+sizeof(ItemIdData);
|
|
|
|
/*
|
|
* Finding the best possible split would require checking all the
|
|
* possible split points, because of the high-key and left-key special
|
|
* cases. That's probably more work than it's worth; instead, stop as
|
|
* soon as we find a "good-enough" split, where good-enough is defined
|
|
* as an imbalance in free space of no more than pagesize/16
|
|
* (arbitrary...) This should let us stop near the middle on most
|
|
* pages, instead of plowing to the end.
|
|
*/
|
|
goodenough = leftspace / 16;
|
|
|
|
/* The right page will have the same high key as the old page */
|
|
if (!P_RIGHTMOST(opaque))
|
|
{
|
|
itemid = PageGetItemId(page, P_HIKEY);
|
|
rightspace -= (int) (MAXALIGN(ItemIdGetLength(itemid)) +
|
|
sizeof(ItemIdData));
|
|
}
|
|
|
|
/* Count up total space in data items without actually scanning 'em */
|
|
dataitemtotal = rightspace - (int) PageGetFreeSpace(page);
|
|
|
|
/*
|
|
* Scan through the data items and calculate space usage for a split
|
|
* at each possible position.
|
|
*/
|
|
dataitemstoleft = 0;
|
|
maxoff = PageGetMaxOffsetNumber(page);
|
|
|
|
for (offnum = P_FIRSTDATAKEY(opaque);
|
|
offnum <= maxoff;
|
|
offnum = OffsetNumberNext(offnum))
|
|
{
|
|
Size itemsz;
|
|
int leftfree,
|
|
rightfree;
|
|
|
|
itemid = PageGetItemId(page, offnum);
|
|
itemsz = MAXALIGN(ItemIdGetLength(itemid)) + sizeof(ItemIdData);
|
|
|
|
/*
|
|
* We have to allow for the current item becoming the high key of
|
|
* the left page; therefore it counts against left space as well
|
|
* as right space.
|
|
*/
|
|
leftfree = leftspace - dataitemstoleft - (int) itemsz;
|
|
rightfree = rightspace - (dataitemtotal - dataitemstoleft);
|
|
|
|
/*
|
|
* Will the new item go to left or right of split?
|
|
*/
|
|
if (offnum > newitemoff)
|
|
_bt_checksplitloc(&state, offnum, leftfree, rightfree,
|
|
true, itemsz);
|
|
else if (offnum < newitemoff)
|
|
_bt_checksplitloc(&state, offnum, leftfree, rightfree,
|
|
false, itemsz);
|
|
else
|
|
{
|
|
/* need to try it both ways! */
|
|
_bt_checksplitloc(&state, offnum, leftfree, rightfree,
|
|
true, itemsz);
|
|
/* here we are contemplating newitem as first on right */
|
|
_bt_checksplitloc(&state, offnum, leftfree, rightfree,
|
|
false, newitemsz);
|
|
}
|
|
|
|
/* Abort scan once we find a good-enough choice */
|
|
if (state.have_split && state.best_delta <= goodenough)
|
|
break;
|
|
|
|
dataitemstoleft += itemsz;
|
|
}
|
|
|
|
/*
|
|
* I believe it is not possible to fail to find a feasible split, but
|
|
* just in case ...
|
|
*/
|
|
if (!state.have_split)
|
|
elog(FATAL, "_bt_findsplitloc: can't find a feasible split point for %s",
|
|
RelationGetRelationName(rel));
|
|
|
|
*newitemonleft = state.newitemonleft;
|
|
return state.firstright;
|
|
}
|
|
|
|
/*
|
|
* Subroutine to analyze a particular possible split choice (ie, firstright
|
|
* and newitemonleft settings), and record the best split so far in *state.
|
|
*/
|
|
static void
|
|
_bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
|
|
int leftfree, int rightfree,
|
|
bool newitemonleft, Size firstrightitemsz)
|
|
{
|
|
|
|
/*
|
|
* Account for the new item on whichever side it is to be put.
|
|
*/
|
|
if (newitemonleft)
|
|
leftfree -= (int) state->newitemsz;
|
|
else
|
|
rightfree -= (int) state->newitemsz;
|
|
|
|
/*
|
|
* If we are not on the leaf level, we will be able to discard the key
|
|
* data from the first item that winds up on the right page.
|
|
*/
|
|
if (state->non_leaf)
|
|
rightfree += (int) firstrightitemsz -
|
|
(int) (MAXALIGN(sizeof(BTItemData)) + sizeof(ItemIdData));
|
|
|
|
/*
|
|
* If feasible split point, remember best delta.
|
|
*/
|
|
if (leftfree >= 0 && rightfree >= 0)
|
|
{
|
|
int delta = leftfree - rightfree;
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (!state->have_split || delta < state->best_delta)
|
|
{
|
|
state->have_split = true;
|
|
state->newitemonleft = newitemonleft;
|
|
state->firstright = firstright;
|
|
state->best_delta = delta;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* _bt_getstackbuf() -- Walk back up the tree one step, and find the item
|
|
* we last looked at in the parent.
|
|
*
|
|
* This is possible because we save a bit image of the last item
|
|
* we looked at in the parent, and the update algorithm guarantees
|
|
* that if items above us in the tree move, they only move right.
|
|
*
|
|
* Also, re-set bts_blkno & bts_offset if changed.
|
|
*/
|
|
static Buffer
|
|
_bt_getstackbuf(Relation rel, BTStack stack, int access)
|
|
{
|
|
BlockNumber blkno;
|
|
Buffer buf;
|
|
OffsetNumber start,
|
|
offnum,
|
|
maxoff;
|
|
Page page;
|
|
ItemId itemid;
|
|
BTItem item;
|
|
BTPageOpaque opaque;
|
|
|
|
blkno = stack->bts_blkno;
|
|
buf = _bt_getbuf(rel, blkno, access);
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
maxoff = PageGetMaxOffsetNumber(page);
|
|
|
|
start = stack->bts_offset;
|
|
|
|
/*
|
|
* _bt_insertonpg set bts_offset to InvalidOffsetNumber in the case of
|
|
* concurrent ROOT page split. Also, watch out for possibility that
|
|
* page has a high key now when it didn't before.
|
|
*/
|
|
if (start < P_FIRSTDATAKEY(opaque))
|
|
start = P_FIRSTDATAKEY(opaque);
|
|
|
|
for (;;)
|
|
{
|
|
/* see if it's on this page */
|
|
for (offnum = start;
|
|
offnum <= maxoff;
|
|
offnum = OffsetNumberNext(offnum))
|
|
{
|
|
itemid = PageGetItemId(page, offnum);
|
|
item = (BTItem) PageGetItem(page, itemid);
|
|
if (BTItemSame(item, &stack->bts_btitem))
|
|
{
|
|
/* Return accurate pointer to where link is now */
|
|
stack->bts_blkno = blkno;
|
|
stack->bts_offset = offnum;
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* by here, the item we're looking for moved right at least one
|
|
* page
|
|
*/
|
|
if (P_RIGHTMOST(opaque))
|
|
{
|
|
_bt_relbuf(rel, buf);
|
|
return (InvalidBuffer);
|
|
}
|
|
|
|
blkno = opaque->btpo_next;
|
|
_bt_relbuf(rel, buf);
|
|
buf = _bt_getbuf(rel, blkno, access);
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
maxoff = PageGetMaxOffsetNumber(page);
|
|
start = P_FIRSTDATAKEY(opaque);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* _bt_newroot() -- Create a new root page for the index.
|
|
*
|
|
* We've just split the old root page and need to create a new one.
|
|
* In order to do this, we add a new root page to the file, then lock
|
|
* the metadata page and update it. This is guaranteed to be deadlock-
|
|
* free, because all readers release their locks on the metadata page
|
|
* before trying to lock the root, and all writers lock the root before
|
|
* trying to lock the metadata page. We have a write lock on the old
|
|
* root page, so we have not introduced any cycles into the waits-for
|
|
* graph.
|
|
*
|
|
* On entry, lbuf (the old root) and rbuf (its new peer) are write-
|
|
* locked. On exit, a new root page exists with entries for the
|
|
* two new children, metapage is updated and unlocked/unpinned.
|
|
* The new root buffer is returned to caller which has to unlock/unpin
|
|
* lbuf, rbuf & rootbuf.
|
|
*/
|
|
static Buffer
|
|
_bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf)
|
|
{
|
|
Buffer rootbuf;
|
|
Page lpage,
|
|
rpage,
|
|
rootpage;
|
|
BlockNumber lbkno,
|
|
rbkno;
|
|
BlockNumber rootblknum;
|
|
BTPageOpaque rootopaque;
|
|
ItemId itemid;
|
|
BTItem item;
|
|
Size itemsz;
|
|
BTItem new_item;
|
|
Buffer metabuf;
|
|
Page metapg;
|
|
BTMetaPageData *metad;
|
|
|
|
/* get a new root page */
|
|
rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
|
|
rootpage = BufferGetPage(rootbuf);
|
|
rootblknum = BufferGetBlockNumber(rootbuf);
|
|
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
|
|
metapg = BufferGetPage(metabuf);
|
|
metad = BTPageGetMeta(metapg);
|
|
|
|
/* NO ELOG(ERROR) from here till newroot op is logged */
|
|
START_CRIT_SECTION();
|
|
|
|
/* set btree special data */
|
|
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
|
|
rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
|
|
rootopaque->btpo_flags |= BTP_ROOT;
|
|
rootopaque->btpo_parent = BTREE_METAPAGE;
|
|
|
|
lbkno = BufferGetBlockNumber(lbuf);
|
|
rbkno = BufferGetBlockNumber(rbuf);
|
|
lpage = BufferGetPage(lbuf);
|
|
rpage = BufferGetPage(rbuf);
|
|
|
|
/*
|
|
* Make sure pages in old root level have valid parent links --- we
|
|
* will need this in _bt_insertonpg() if a concurrent root split
|
|
* happens (see README).
|
|
*/
|
|
((BTPageOpaque) PageGetSpecialPointer(lpage))->btpo_parent =
|
|
((BTPageOpaque) PageGetSpecialPointer(rpage))->btpo_parent =
|
|
rootblknum;
|
|
|
|
/*
|
|
* Create downlink item for left page (old root). Since this will be
|
|
* the first item in a non-leaf page, it implicitly has minus-infinity
|
|
* key value, so we need not store any actual key in it.
|
|
*/
|
|
itemsz = sizeof(BTItemData);
|
|
new_item = (BTItem) palloc(itemsz);
|
|
new_item->bti_itup.t_info = itemsz;
|
|
ItemPointerSet(&(new_item->bti_itup.t_tid), lbkno, P_HIKEY);
|
|
|
|
/*
|
|
* Insert the left page pointer into the new root page. The root page
|
|
* is the rightmost page on its level so there is no "high key" in it;
|
|
* the two items will go into positions P_HIKEY and P_FIRSTKEY.
|
|
*/
|
|
if (PageAddItem(rootpage, (Item) new_item, itemsz, P_HIKEY, LP_USED) == InvalidOffsetNumber)
|
|
elog(STOP, "btree: failed to add leftkey to new root page");
|
|
pfree(new_item);
|
|
|
|
/*
|
|
* Create downlink item for right page. The key for it is obtained
|
|
* from the "high key" position in the left page.
|
|
*/
|
|
itemid = PageGetItemId(lpage, P_HIKEY);
|
|
itemsz = ItemIdGetLength(itemid);
|
|
item = (BTItem) PageGetItem(lpage, itemid);
|
|
new_item = _bt_formitem(&(item->bti_itup));
|
|
ItemPointerSet(&(new_item->bti_itup.t_tid), rbkno, P_HIKEY);
|
|
|
|
/*
|
|
* insert the right page pointer into the new root page.
|
|
*/
|
|
if (PageAddItem(rootpage, (Item) new_item, itemsz, P_FIRSTKEY, LP_USED) == InvalidOffsetNumber)
|
|
elog(STOP, "btree: failed to add rightkey to new root page");
|
|
pfree(new_item);
|
|
|
|
metad->btm_root = rootblknum;
|
|
(metad->btm_level)++;
|
|
|
|
/* XLOG stuff */
|
|
{
|
|
xl_btree_newroot xlrec;
|
|
XLogRecPtr recptr;
|
|
XLogRecData rdata[2];
|
|
|
|
xlrec.node = rel->rd_node;
|
|
xlrec.level = metad->btm_level;
|
|
BlockIdSet(&(xlrec.rootblk), rootblknum);
|
|
rdata[0].buffer = InvalidBuffer;
|
|
rdata[0].data = (char *) &xlrec;
|
|
rdata[0].len = SizeOfBtreeNewroot;
|
|
rdata[0].next = &(rdata[1]);
|
|
|
|
/*
|
|
* Dirrect access to page is not good but faster - we should
|
|
* implement some new func in page API.
|
|
*/
|
|
rdata[1].buffer = InvalidBuffer;
|
|
rdata[1].data = (char *) rootpage + ((PageHeader) rootpage)->pd_upper;
|
|
rdata[1].len = ((PageHeader) rootpage)->pd_special -
|
|
((PageHeader) rootpage)->pd_upper;
|
|
rdata[1].next = NULL;
|
|
|
|
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, rdata);
|
|
|
|
PageSetLSN(rootpage, recptr);
|
|
PageSetSUI(rootpage, ThisStartUpID);
|
|
PageSetLSN(metapg, recptr);
|
|
PageSetSUI(metapg, ThisStartUpID);
|
|
|
|
/* we changed their btpo_parent */
|
|
PageSetLSN(lpage, recptr);
|
|
PageSetSUI(lpage, ThisStartUpID);
|
|
PageSetLSN(rpage, recptr);
|
|
PageSetSUI(rpage, ThisStartUpID);
|
|
}
|
|
END_CRIT_SECTION();
|
|
|
|
/* write and let go of metapage buffer */
|
|
_bt_wrtbuf(rel, metabuf);
|
|
|
|
return (rootbuf);
|
|
}
|
|
|
|
/*
|
|
* In the event old root page was splitted but no new one was created we
|
|
* build required parent levels keeping write lock on old root page.
|
|
* Note: it's assumed that old root page' btpo_parent points to meta page,
|
|
* ie not to parent page. On exit, new root page buffer is write locked.
|
|
* If "release" is TRUE then oldrootbuf will be released immediately
|
|
* after upper level is builded.
|
|
*/
|
|
Buffer
|
|
_bt_fixroot(Relation rel, Buffer oldrootbuf, bool release)
|
|
{
|
|
Buffer rootbuf;
|
|
BlockNumber rootblk;
|
|
Page rootpage;
|
|
XLogRecPtr rootLSN;
|
|
Page oldrootpage = BufferGetPage(oldrootbuf);
|
|
BTPageOpaque oldrootopaque = (BTPageOpaque)
|
|
PageGetSpecialPointer(oldrootpage);
|
|
Buffer buf,
|
|
leftbuf,
|
|
rightbuf;
|
|
Page page,
|
|
leftpage,
|
|
rightpage;
|
|
BTPageOpaque opaque,
|
|
leftopaque,
|
|
rightopaque;
|
|
OffsetNumber newitemoff;
|
|
BTItem btitem,
|
|
ritem;
|
|
Size itemsz;
|
|
|
|
if (!P_LEFTMOST(oldrootopaque) || P_RIGHTMOST(oldrootopaque))
|
|
elog(ERROR, "bt_fixroot: not valid old root page");
|
|
|
|
/* Read right neighbor and create new root page */
|
|
leftbuf = _bt_getbuf(rel, oldrootopaque->btpo_next, BT_WRITE);
|
|
leftpage = BufferGetPage(leftbuf);
|
|
leftopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage);
|
|
rootbuf = _bt_newroot(rel, oldrootbuf, leftbuf);
|
|
rootpage = BufferGetPage(rootbuf);
|
|
rootLSN = PageGetLSN(rootpage);
|
|
rootblk = BufferGetBlockNumber(rootbuf);
|
|
|
|
/* parent page where to insert pointers */
|
|
buf = rootbuf;
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
/*
|
|
* Now read other pages (if any) on level and add them to new root.
|
|
* Here we break one of our locking rules - never hold lock on parent
|
|
* page when acquiring lock on its child, - but we free from deadlock:
|
|
*
|
|
* If concurrent process will split one of pages on this level then it
|
|
* will see either btpo_parent == metablock or btpo_parent == rootblk.
|
|
* In first case it will give up its locks and walk to the leftmost
|
|
* page (oldrootbuf) in _bt_fixup() - ie it will wait for us and let
|
|
* us continue. In second case it will try to lock rootbuf keeping its
|
|
* locks on buffers we already passed, also waiting for us. If we'll
|
|
* have to unlock rootbuf (split it) and that process will have to
|
|
* split page of new level we created (level of rootbuf) then it will
|
|
* wait while we create upper level. Etc.
|
|
*/
|
|
while (!P_RIGHTMOST(leftopaque))
|
|
{
|
|
rightbuf = _bt_getbuf(rel, leftopaque->btpo_next, BT_WRITE);
|
|
rightpage = BufferGetPage(rightbuf);
|
|
rightopaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);
|
|
|
|
/*
|
|
* Update LSN & StartUpID of child page buffer to ensure that it
|
|
* will be written on disk after flushing log record for new root
|
|
* creation. Unfortunately, for the moment (?) we do not log this
|
|
* operation and so possibly break our rule to log entire page
|
|
* content on first after checkpoint modification.
|
|
*/
|
|
HOLD_INTERRUPTS();
|
|
rightopaque->btpo_parent = rootblk;
|
|
if (XLByteLT(PageGetLSN(rightpage), rootLSN))
|
|
PageSetLSN(rightpage, rootLSN);
|
|
PageSetSUI(rightpage, ThisStartUpID);
|
|
RESUME_INTERRUPTS();
|
|
|
|
ritem = (BTItem) PageGetItem(leftpage, PageGetItemId(leftpage, P_HIKEY));
|
|
btitem = _bt_formitem(&(ritem->bti_itup));
|
|
ItemPointerSet(&(btitem->bti_itup.t_tid), leftopaque->btpo_next, P_HIKEY);
|
|
itemsz = IndexTupleDSize(btitem->bti_itup)
|
|
+ (sizeof(BTItemData) - sizeof(IndexTupleData));
|
|
itemsz = MAXALIGN(itemsz);
|
|
|
|
newitemoff = OffsetNumberNext(PageGetMaxOffsetNumber(page));
|
|
|
|
if (PageGetFreeSpace(page) < itemsz)
|
|
{
|
|
Buffer newbuf;
|
|
OffsetNumber firstright;
|
|
OffsetNumber itup_off;
|
|
BlockNumber itup_blkno;
|
|
bool newitemonleft;
|
|
|
|
firstright = _bt_findsplitloc(rel, page,
|
|
newitemoff, itemsz, &newitemonleft);
|
|
newbuf = _bt_split(rel, buf, firstright,
|
|
newitemoff, itemsz, btitem, newitemonleft,
|
|
&itup_off, &itup_blkno);
|
|
/* Keep lock on new "root" buffer ! */
|
|
if (buf != rootbuf)
|
|
_bt_relbuf(rel, buf);
|
|
buf = newbuf;
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
}
|
|
else
|
|
_bt_insertuple(rel, buf, itemsz, btitem, newitemoff);
|
|
|
|
/* give up left buffer */
|
|
_bt_wrtbuf(rel, leftbuf);
|
|
pfree(btitem);
|
|
leftbuf = rightbuf;
|
|
leftpage = rightpage;
|
|
leftopaque = rightopaque;
|
|
}
|
|
|
|
/* give up rightmost page buffer */
|
|
_bt_wrtbuf(rel, leftbuf);
|
|
|
|
/*
|
|
* Here we hold locks on old root buffer, new root buffer we've
|
|
* created with _bt_newroot() - rootbuf, - and buf we've used for last
|
|
* insert ops - buf. If rootbuf != buf then we have to create at least
|
|
* one more level. And if "release" is TRUE then we give up
|
|
* oldrootbuf.
|
|
*/
|
|
if (release)
|
|
_bt_wrtbuf(rel, oldrootbuf);
|
|
|
|
if (rootbuf != buf)
|
|
{
|
|
_bt_wrtbuf(rel, buf);
|
|
return (_bt_fixroot(rel, rootbuf, true));
|
|
}
|
|
|
|
return (rootbuf);
|
|
}
|
|
|
|
/*
|
|
* Using blkno of leftmost page on a level inside tree this func
|
|
* checks/fixes tree from this level up to the root page.
|
|
*/
|
|
static void
|
|
_bt_fixtree(Relation rel, BlockNumber blkno)
|
|
{
|
|
Buffer buf;
|
|
Page page;
|
|
BTPageOpaque opaque;
|
|
BlockNumber pblkno;
|
|
|
|
for (;;)
|
|
{
|
|
buf = _bt_getbuf(rel, blkno, BT_READ);
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
if (!P_LEFTMOST(opaque) || P_ISLEAF(opaque))
|
|
elog(ERROR, "bt_fixtree[%s]: invalid start page (need to recreate index)", RelationGetRelationName(rel));
|
|
pblkno = opaque->btpo_parent;
|
|
|
|
/* check/fix entire level */
|
|
_bt_fixlevel(rel, buf, InvalidBlockNumber);
|
|
|
|
/*
|
|
* No pins/locks are held here. Re-read start page if its
|
|
* btpo_parent pointed to meta page else go up one level.
|
|
*
|
|
* XXX have to catch InvalidBlockNumber at the moment -:(
|
|
*/
|
|
if (pblkno == BTREE_METAPAGE || pblkno == InvalidBlockNumber)
|
|
{
|
|
buf = _bt_getbuf(rel, blkno, BT_WRITE);
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
if (P_ISROOT(opaque))
|
|
{
|
|
/* Tree is Ok now */
|
|
_bt_relbuf(rel, buf);
|
|
return;
|
|
}
|
|
/* Call _bt_fixroot() if there is no upper level */
|
|
if (BTreeInvalidParent(opaque))
|
|
{
|
|
elog(NOTICE, "bt_fixtree[%s]: fixing root page", RelationGetRelationName(rel));
|
|
buf = _bt_fixroot(rel, buf, true);
|
|
_bt_relbuf(rel, buf);
|
|
return;
|
|
}
|
|
/* Have to go up one level */
|
|
pblkno = opaque->btpo_parent;
|
|
_bt_relbuf(rel, buf);
|
|
}
|
|
blkno = pblkno;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Check/fix level starting from page in buffer buf up to block
|
|
* limit on *child* level (or till rightmost child page if limit
|
|
* is InvalidBlockNumber). Start buffer must be read locked.
|
|
* No pins/locks are held on exit.
|
|
*/
|
|
static void
|
|
_bt_fixlevel(Relation rel, Buffer buf, BlockNumber limit)
|
|
{
|
|
BlockNumber blkno = BufferGetBlockNumber(buf);
|
|
Page page;
|
|
BTPageOpaque opaque;
|
|
BlockNumber cblkno[3];
|
|
OffsetNumber coff[3];
|
|
Buffer cbuf[3];
|
|
Page cpage[3];
|
|
BTPageOpaque copaque[3];
|
|
BTItem btitem;
|
|
int cidx,
|
|
i;
|
|
bool goodbye = false;
|
|
char tbuf[BLCKSZ];
|
|
|
|
page = BufferGetPage(buf);
|
|
/* copy page to temp storage */
|
|
memmove(tbuf, page, PageGetPageSize(page));
|
|
_bt_relbuf(rel, buf);
|
|
|
|
page = (Page) tbuf;
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
/* Initialize first child data */
|
|
coff[0] = P_FIRSTDATAKEY(opaque);
|
|
if (coff[0] > PageGetMaxOffsetNumber(page))
|
|
elog(ERROR, "bt_fixlevel[%s]: invalid maxoff on start page (need to recreate index)", RelationGetRelationName(rel));
|
|
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, coff[0]));
|
|
cblkno[0] = ItemPointerGetBlockNumber(&(btitem->bti_itup.t_tid));
|
|
cbuf[0] = _bt_getbuf(rel, cblkno[0], BT_READ);
|
|
cpage[0] = BufferGetPage(cbuf[0]);
|
|
copaque[0] = (BTPageOpaque) PageGetSpecialPointer(cpage[0]);
|
|
if (P_LEFTMOST(opaque) && !P_LEFTMOST(copaque[0]))
|
|
elog(ERROR, "bt_fixtlevel[%s]: non-leftmost child page of leftmost parent (need to recreate index)", RelationGetRelationName(rel));
|
|
/* caller should take care and avoid this */
|
|
if (P_RIGHTMOST(copaque[0]))
|
|
elog(ERROR, "bt_fixtlevel[%s]: invalid start child (need to recreate index)", RelationGetRelationName(rel));
|
|
|
|
for (;;)
|
|
{
|
|
|
|
/*
|
|
* Read up to 2 more child pages and look for pointers to them in
|
|
* *saved* parent page
|
|
*/
|
|
coff[1] = coff[2] = InvalidOffsetNumber;
|
|
for (cidx = 0; cidx < 2;)
|
|
{
|
|
cidx++;
|
|
cblkno[cidx] = (copaque[cidx - 1])->btpo_next;
|
|
cbuf[cidx] = _bt_getbuf(rel, cblkno[cidx], BT_READ);
|
|
cpage[cidx] = BufferGetPage(cbuf[cidx]);
|
|
copaque[cidx] = (BTPageOpaque) PageGetSpecialPointer(cpage[cidx]);
|
|
coff[cidx] = _bt_getoff(page, cblkno[cidx]);
|
|
|
|
/* sanity check */
|
|
if (coff[cidx] != InvalidOffsetNumber)
|
|
{
|
|
for (i = cidx - 1; i >= 0; i--)
|
|
{
|
|
if (coff[i] == InvalidOffsetNumber)
|
|
continue;
|
|
if (coff[cidx] != coff[i] + 1)
|
|
elog(ERROR, "bt_fixlevel[%s]: invalid item order(1) (need to recreate index)", RelationGetRelationName(rel));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (P_RIGHTMOST(copaque[cidx]))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Read parent page and insert missed pointers.
|
|
*/
|
|
if (coff[1] == InvalidOffsetNumber ||
|
|
(cidx == 2 && coff[2] == InvalidOffsetNumber))
|
|
{
|
|
Buffer newbuf;
|
|
Page newpage;
|
|
BTPageOpaque newopaque;
|
|
BTItem ritem;
|
|
Size itemsz;
|
|
OffsetNumber newitemoff;
|
|
BlockNumber parblk[3];
|
|
BTStackData stack;
|
|
|
|
stack.bts_parent = NULL;
|
|
stack.bts_blkno = blkno;
|
|
stack.bts_offset = InvalidOffsetNumber;
|
|
ItemPointerSet(&(stack.bts_btitem.bti_itup.t_tid),
|
|
cblkno[0], P_HIKEY);
|
|
|
|
buf = _bt_getstackbuf(rel, &stack, BT_WRITE);
|
|
if (buf == InvalidBuffer)
|
|
elog(ERROR, "bt_fixlevel[%s]: pointer disappeared (need to recreate index)", RelationGetRelationName(rel));
|
|
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
coff[0] = stack.bts_offset;
|
|
blkno = BufferGetBlockNumber(buf);
|
|
parblk[0] = blkno;
|
|
|
|
/* Check/insert missed pointers */
|
|
for (i = 1; i <= cidx; i++)
|
|
{
|
|
coff[i] = _bt_getoff(page, cblkno[i]);
|
|
|
|
/* sanity check */
|
|
parblk[i] = BufferGetBlockNumber(buf);
|
|
if (coff[i] != InvalidOffsetNumber)
|
|
{
|
|
if (parblk[i] == parblk[i - 1] &&
|
|
coff[i] != coff[i - 1] + 1)
|
|
elog(ERROR, "bt_fixlevel[%s]: invalid item order(2) (need to recreate index)", RelationGetRelationName(rel));
|
|
continue;
|
|
}
|
|
/* Have to check next page ? */
|
|
if ((!P_RIGHTMOST(opaque)) &&
|
|
coff[i - 1] == PageGetMaxOffsetNumber(page)) /* yes */
|
|
{
|
|
newbuf = _bt_getbuf(rel, opaque->btpo_next, BT_WRITE);
|
|
newpage = BufferGetPage(newbuf);
|
|
newopaque = (BTPageOpaque) PageGetSpecialPointer(newpage);
|
|
coff[i] = _bt_getoff(newpage, cblkno[i]);
|
|
if (coff[i] != InvalidOffsetNumber) /* found ! */
|
|
{
|
|
if (coff[i] != P_FIRSTDATAKEY(newopaque))
|
|
elog(ERROR, "bt_fixlevel[%s]: invalid item order(3) (need to recreate index)", RelationGetRelationName(rel));
|
|
_bt_relbuf(rel, buf);
|
|
buf = newbuf;
|
|
page = newpage;
|
|
opaque = newopaque;
|
|
blkno = BufferGetBlockNumber(buf);
|
|
parblk[i] = blkno;
|
|
continue;
|
|
}
|
|
/* unfound - need to insert on current page */
|
|
_bt_relbuf(rel, newbuf);
|
|
}
|
|
/* insert pointer */
|
|
ritem = (BTItem) PageGetItem(cpage[i - 1],
|
|
PageGetItemId(cpage[i - 1], P_HIKEY));
|
|
btitem = _bt_formitem(&(ritem->bti_itup));
|
|
ItemPointerSet(&(btitem->bti_itup.t_tid), cblkno[i], P_HIKEY);
|
|
itemsz = IndexTupleDSize(btitem->bti_itup)
|
|
+ (sizeof(BTItemData) - sizeof(IndexTupleData));
|
|
itemsz = MAXALIGN(itemsz);
|
|
|
|
newitemoff = coff[i - 1] + 1;
|
|
|
|
if (PageGetFreeSpace(page) < itemsz)
|
|
{
|
|
OffsetNumber firstright;
|
|
OffsetNumber itup_off;
|
|
BlockNumber itup_blkno;
|
|
bool newitemonleft;
|
|
|
|
firstright = _bt_findsplitloc(rel, page,
|
|
newitemoff, itemsz, &newitemonleft);
|
|
newbuf = _bt_split(rel, buf, firstright,
|
|
newitemoff, itemsz, btitem, newitemonleft,
|
|
&itup_off, &itup_blkno);
|
|
/* what buffer we need in ? */
|
|
if (newitemonleft)
|
|
_bt_relbuf(rel, newbuf);
|
|
else
|
|
{
|
|
_bt_relbuf(rel, buf);
|
|
buf = newbuf;
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
}
|
|
blkno = BufferGetBlockNumber(buf);
|
|
coff[i] = itup_off;
|
|
}
|
|
else
|
|
{
|
|
_bt_insertuple(rel, buf, itemsz, btitem, newitemoff);
|
|
coff[i] = newitemoff;
|
|
}
|
|
|
|
pfree(btitem);
|
|
parblk[i] = blkno;
|
|
}
|
|
|
|
/* copy page with pointer to cblkno[cidx] to temp storage */
|
|
memmove(tbuf, page, PageGetPageSize(page));
|
|
_bt_relbuf(rel, buf);
|
|
page = (Page) tbuf;
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
}
|
|
|
|
/* Continue if current check/fix level page is rightmost */
|
|
if (P_RIGHTMOST(opaque))
|
|
goodbye = false;
|
|
|
|
/* Pointers to child pages are Ok - right end of child level ? */
|
|
_bt_relbuf(rel, cbuf[0]);
|
|
_bt_relbuf(rel, cbuf[1]);
|
|
if (cidx == 1 ||
|
|
(cidx == 2 && (P_RIGHTMOST(copaque[2]) || goodbye)))
|
|
{
|
|
if (cidx == 2)
|
|
_bt_relbuf(rel, cbuf[2]);
|
|
return;
|
|
}
|
|
if (cblkno[0] == limit || cblkno[1] == limit)
|
|
goodbye = true;
|
|
cblkno[0] = cblkno[2];
|
|
cbuf[0] = cbuf[2];
|
|
cpage[0] = cpage[2];
|
|
copaque[0] = copaque[2];
|
|
coff[0] = coff[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check/fix part of tree - branch - up from parent of level with blocks
|
|
* lblkno and rblknum. We first ensure that parent level has pointers
|
|
* to both lblkno & rblknum and if those pointers are on different
|
|
* parent pages then do the same for parent level, etc. No locks must
|
|
* be held on target level and upper on entry. No locks will be held
|
|
* on exit. Stack created when traversing tree down should be provided and
|
|
* it must points to parent level. rblkno must be on the right from lblkno.
|
|
* (This function is special edition of more expensive _bt_fixtree(),
|
|
* but it doesn't guarantee full consistency of tree.)
|
|
*/
|
|
static void
|
|
_bt_fixbranch(Relation rel, BlockNumber lblkno,
|
|
BlockNumber rblkno, BTStack true_stack)
|
|
{
|
|
BlockNumber blkno = true_stack->bts_blkno;
|
|
BTStackData stack;
|
|
BTPageOpaque opaque;
|
|
Buffer buf,
|
|
rbuf;
|
|
Page page;
|
|
OffsetNumber offnum;
|
|
|
|
true_stack = true_stack->bts_parent;
|
|
for (;;)
|
|
{
|
|
buf = _bt_getbuf(rel, blkno, BT_READ);
|
|
|
|
/* Check/fix parent level pointed by blkno */
|
|
_bt_fixlevel(rel, buf, rblkno);
|
|
|
|
/*
|
|
* Here parent level should have pointers for both lblkno and
|
|
* rblkno and we have to find them.
|
|
*/
|
|
stack.bts_parent = NULL;
|
|
stack.bts_blkno = blkno;
|
|
stack.bts_offset = InvalidOffsetNumber;
|
|
ItemPointerSet(&(stack.bts_btitem.bti_itup.t_tid), lblkno, P_HIKEY);
|
|
buf = _bt_getstackbuf(rel, &stack, BT_READ);
|
|
if (buf == InvalidBuffer)
|
|
elog(ERROR, "bt_fixbranch[%s]: left pointer unfound (need to recreate index)", RelationGetRelationName(rel));
|
|
page = BufferGetPage(buf);
|
|
offnum = _bt_getoff(page, rblkno);
|
|
|
|
if (offnum != InvalidOffsetNumber) /* right pointer found */
|
|
{
|
|
if (offnum <= stack.bts_offset)
|
|
elog(ERROR, "bt_fixbranch[%s]: invalid item order (need to recreate index)", RelationGetRelationName(rel));
|
|
_bt_relbuf(rel, buf);
|
|
return;
|
|
}
|
|
|
|
/* Pointers are on different parent pages - find right one */
|
|
lblkno = BufferGetBlockNumber(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
if (P_RIGHTMOST(opaque))
|
|
elog(ERROR, "bt_fixbranch[%s]: right pointer unfound(1) (need to recreate index)", RelationGetRelationName(rel));
|
|
|
|
stack.bts_parent = NULL;
|
|
stack.bts_blkno = opaque->btpo_next;
|
|
stack.bts_offset = InvalidOffsetNumber;
|
|
ItemPointerSet(&(stack.bts_btitem.bti_itup.t_tid), rblkno, P_HIKEY);
|
|
rbuf = _bt_getstackbuf(rel, &stack, BT_READ);
|
|
if (rbuf == InvalidBuffer)
|
|
elog(ERROR, "bt_fixbranch[%s]: right pointer unfound(2) (need to recreate index)", RelationGetRelationName(rel));
|
|
rblkno = BufferGetBlockNumber(rbuf);
|
|
_bt_relbuf(rel, rbuf);
|
|
|
|
/*
|
|
* If we have parent item in true_stack then go up one level and
|
|
* ensure that it has pointers to new lblkno & rblkno.
|
|
*/
|
|
if (true_stack)
|
|
{
|
|
_bt_relbuf(rel, buf);
|
|
blkno = true_stack->bts_blkno;
|
|
true_stack = true_stack->bts_parent;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Well, we are on the level that was root or unexistent when we
|
|
* started traversing tree down. If btpo_parent is updated then
|
|
* we'll use it to continue, else we'll fix/restore upper levels
|
|
* entirely.
|
|
*/
|
|
if (!BTreeInvalidParent(opaque))
|
|
{
|
|
blkno = opaque->btpo_parent;
|
|
_bt_relbuf(rel, buf);
|
|
continue;
|
|
}
|
|
|
|
/* Have to switch to excl buf lock and re-check btpo_parent */
|
|
_bt_relbuf(rel, buf);
|
|
buf = _bt_getbuf(rel, blkno, BT_WRITE);
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
if (!BTreeInvalidParent(opaque))
|
|
{
|
|
blkno = opaque->btpo_parent;
|
|
_bt_relbuf(rel, buf);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We hold excl lock on some internal page with unupdated
|
|
* btpo_parent - time for _bt_fixup.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
elog(NOTICE, "bt_fixbranch[%s]: fixing upper levels", RelationGetRelationName(rel));
|
|
_bt_fixup(rel, buf);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Having buf excl locked this routine walks to the left on level and
|
|
* uses either _bt_fixtree() or _bt_fixroot() to create/check&fix upper
|
|
* levels. No buffer pins/locks will be held on exit.
|
|
*/
|
|
static void
|
|
_bt_fixup(Relation rel, Buffer buf)
|
|
{
|
|
Page page;
|
|
BTPageOpaque opaque;
|
|
BlockNumber blkno;
|
|
|
|
for (;;)
|
|
{
|
|
page = BufferGetPage(buf);
|
|
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
|
|
/*
|
|
* If someone else already created parent pages then it's time for
|
|
* _bt_fixtree() to check upper levels and fix them, if required.
|
|
*/
|
|
if (!BTreeInvalidParent(opaque))
|
|
{
|
|
blkno = opaque->btpo_parent;
|
|
_bt_relbuf(rel, buf);
|
|
elog(NOTICE, "bt_fixup[%s]: checking/fixing upper levels", RelationGetRelationName(rel));
|
|
_bt_fixtree(rel, blkno);
|
|
return;
|
|
}
|
|
if (P_LEFTMOST(opaque))
|
|
break;
|
|
blkno = opaque->btpo_prev;
|
|
_bt_relbuf(rel, buf);
|
|
buf = _bt_getbuf(rel, blkno, BT_WRITE);
|
|
}
|
|
|
|
/*
|
|
* Ok, we are on the leftmost page, it's write locked by us and its
|
|
* btpo_parent points to meta page - time for _bt_fixroot().
|
|
*/
|
|
elog(NOTICE, "bt_fixup[%s]: fixing root page", RelationGetRelationName(rel));
|
|
buf = _bt_fixroot(rel, buf, true);
|
|
_bt_relbuf(rel, buf);
|
|
}
|
|
|
|
static OffsetNumber
|
|
_bt_getoff(Page page, BlockNumber blkno)
|
|
{
|
|
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
OffsetNumber maxoff = PageGetMaxOffsetNumber(page);
|
|
OffsetNumber offnum = P_FIRSTDATAKEY(opaque);
|
|
BlockNumber curblkno;
|
|
ItemId itemid;
|
|
BTItem item;
|
|
|
|
for (; offnum <= maxoff; offnum++)
|
|
{
|
|
itemid = PageGetItemId(page, offnum);
|
|
item = (BTItem) PageGetItem(page, itemid);
|
|
curblkno = ItemPointerGetBlockNumber(&(item->bti_itup.t_tid));
|
|
if (curblkno == blkno)
|
|
return (offnum);
|
|
}
|
|
|
|
return (InvalidOffsetNumber);
|
|
}
|
|
|
|
/*
|
|
* _bt_pgaddtup() -- add a tuple to a particular page in the index.
|
|
*
|
|
* This routine adds the tuple to the page as requested. It does
|
|
* not affect pin/lock status, but you'd better have a write lock
|
|
* and pin on the target buffer! Don't forget to write and release
|
|
* the buffer afterwards, either.
|
|
*
|
|
* The main difference between this routine and a bare PageAddItem call
|
|
* is that this code knows that the leftmost data item on a non-leaf
|
|
* btree page doesn't need to have a key. Therefore, it strips such
|
|
* items down to just the item header. CAUTION: this works ONLY if
|
|
* we insert the items in order, so that the given itup_off does
|
|
* represent the final position of the item!
|
|
*/
|
|
static void
|
|
_bt_pgaddtup(Relation rel,
|
|
Page page,
|
|
Size itemsize,
|
|
BTItem btitem,
|
|
OffsetNumber itup_off,
|
|
const char *where)
|
|
{
|
|
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
|
|
BTItemData truncitem;
|
|
|
|
if (!P_ISLEAF(opaque) && itup_off == P_FIRSTDATAKEY(opaque))
|
|
{
|
|
memcpy(&truncitem, btitem, sizeof(BTItemData));
|
|
truncitem.bti_itup.t_info = sizeof(BTItemData);
|
|
btitem = &truncitem;
|
|
itemsize = sizeof(BTItemData);
|
|
}
|
|
|
|
if (PageAddItem(page, (Item) btitem, itemsize, itup_off,
|
|
LP_USED) == InvalidOffsetNumber)
|
|
elog(STOP, "btree: failed to add item to the %s for %s",
|
|
where, RelationGetRelationName(rel));
|
|
}
|
|
|
|
/*
|
|
* _bt_isequal - used in _bt_doinsert in check for duplicates.
|
|
*
|
|
* This is very similar to _bt_compare, except for NULL handling.
|
|
* Rule is simple: NOT_NULL not equal NULL, NULL not_equal NULL too.
|
|
*/
|
|
static bool
|
|
_bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
|
|
int keysz, ScanKey scankey)
|
|
{
|
|
BTItem btitem;
|
|
IndexTuple itup;
|
|
int i;
|
|
|
|
/* Better be comparing to a leaf item */
|
|
Assert(P_ISLEAF((BTPageOpaque) PageGetSpecialPointer(page)));
|
|
|
|
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
|
|
itup = &(btitem->bti_itup);
|
|
|
|
for (i = 1; i <= keysz; i++)
|
|
{
|
|
ScanKey entry = &scankey[i - 1];
|
|
AttrNumber attno;
|
|
Datum datum;
|
|
bool isNull;
|
|
int32 result;
|
|
|
|
attno = entry->sk_attno;
|
|
Assert(attno == i);
|
|
datum = index_getattr(itup, attno, itupdesc, &isNull);
|
|
|
|
/* NULLs are never equal to anything */
|
|
if (entry->sk_flags & SK_ISNULL || isNull)
|
|
return false;
|
|
|
|
result = DatumGetInt32(FunctionCall2(&entry->sk_func,
|
|
entry->sk_argument,
|
|
datum));
|
|
|
|
if (result != 0)
|
|
return false;
|
|
}
|
|
|
|
/* if we get here, the keys are equal */
|
|
return true;
|
|
}
|