1079 lines
29 KiB
C
1079 lines
29 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeIndexscan.c
|
|
* Routines to support indexes and indexed scans of relations
|
|
*
|
|
* Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.40 1999/07/16 04:58:50 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecInsertIndexTuples inserts tuples into indices on result relation
|
|
*
|
|
* ExecIndexScan scans a relation using indices
|
|
* ExecIndexNext using index to retrieve next tuple
|
|
* ExecInitIndexScan creates and initializes state info.
|
|
* ExecIndexReScan rescans the indexed relation.
|
|
* ExecEndIndexScan releases all storage.
|
|
* ExecIndexMarkPos marks scan position.
|
|
* ExecIndexRestrPos restores scan position.
|
|
*
|
|
* NOTES
|
|
* the code supporting ExecInsertIndexTuples should be
|
|
* collected and merged with the genam stuff.
|
|
*
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/executor.h"
|
|
#include "executor/nodeIndexscan.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/parsetree.h"
|
|
|
|
/* ----------------
|
|
* Misc stuff to move to executor.h soon -cim 6/5/90
|
|
* ----------------
|
|
*/
|
|
#define NO_OP 0
|
|
#define LEFT_OP 1
|
|
#define RIGHT_OP 2
|
|
|
|
static TupleTableSlot *IndexNext(IndexScan *node);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* IndexNext
|
|
*
|
|
* Retrieve a tuple from the IndexScan node's currentRelation
|
|
* using the indices in the IndexScanState information.
|
|
*
|
|
* note: the old code mentions 'Primary indices'. to my knowledge
|
|
* we only support a single secondary index. -cim 9/11/89
|
|
*
|
|
* old comments:
|
|
* retrieve a tuple from relation using the indices given.
|
|
* The indices are used in the order they appear in 'indices'.
|
|
* The indices may be primary or secondary indices:
|
|
* * primary index -- scan the relation 'relID' using keys supplied.
|
|
* * secondary index -- scan the index relation to get the 'tid' for
|
|
* a tuple in the relation 'relID'.
|
|
* If the current index(pointed by 'indexPtr') fails to return a
|
|
* tuple, the next index in the indices is used.
|
|
*
|
|
* bug fix so that it should retrieve on a null scan key.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
IndexNext(IndexScan *node)
|
|
{
|
|
EState *estate;
|
|
CommonScanState *scanstate;
|
|
IndexScanState *indexstate;
|
|
ScanDirection direction;
|
|
Snapshot snapshot;
|
|
IndexScanDescPtr scanDescs;
|
|
IndexScanDesc scandesc;
|
|
Relation heapRelation;
|
|
RetrieveIndexResult result;
|
|
HeapTuple tuple;
|
|
TupleTableSlot *slot;
|
|
Buffer buffer = InvalidBuffer;
|
|
int numIndices;
|
|
|
|
bool bBackward;
|
|
int indexNumber;
|
|
|
|
/* ----------------
|
|
* extract necessary information from index scan node
|
|
* ----------------
|
|
*/
|
|
estate = node->scan.plan.state;
|
|
direction = estate->es_direction;
|
|
snapshot = estate->es_snapshot;
|
|
scanstate = node->scan.scanstate;
|
|
indexstate = node->indxstate;
|
|
scanDescs = indexstate->iss_ScanDescs;
|
|
heapRelation = scanstate->css_currentRelation;
|
|
numIndices = indexstate->iss_NumIndices;
|
|
slot = scanstate->css_ScanTupleSlot;
|
|
|
|
/*
|
|
* Check if we are evaluating PlanQual for tuple of this relation.
|
|
* Additional checking is not good, but no other way for now. We could
|
|
* introduce new nodes for this case and handle IndexScan --> NewNode
|
|
* switching in Init/ReScan plan...
|
|
*/
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
|
|
{
|
|
int iptr;
|
|
|
|
slot->ttc_buffer = InvalidBuffer;
|
|
slot->ttc_shouldFree = false;
|
|
if (estate->es_evTupleNull[node->scan.scanrelid - 1])
|
|
{
|
|
slot->val = NULL; /* must not free tuple! */
|
|
return (slot);
|
|
}
|
|
slot->val = estate->es_evTuple[node->scan.scanrelid - 1];
|
|
for (iptr = 0; iptr < numIndices; iptr++)
|
|
{
|
|
scanstate->cstate.cs_ExprContext->ecxt_scantuple = slot;
|
|
if (ExecQual(nth(iptr, node->indxqualorig),
|
|
scanstate->cstate.cs_ExprContext))
|
|
break;
|
|
}
|
|
if (iptr == numIndices) /* would not be returned by indices */
|
|
slot->val = NULL;
|
|
/* Flag for the next call that no more tuples */
|
|
estate->es_evTupleNull[node->scan.scanrelid - 1] = true;
|
|
return (slot);
|
|
}
|
|
|
|
tuple = &(indexstate->iss_htup);
|
|
|
|
/* ----------------
|
|
* ok, now that we have what we need, fetch an index tuple.
|
|
* if scanning this index succeeded then return the
|
|
* appropriate heap tuple.. else return NULL.
|
|
* ----------------
|
|
*/
|
|
bBackward = ScanDirectionIsBackward(direction);
|
|
if (bBackward)
|
|
{
|
|
indexNumber = numIndices - indexstate->iss_IndexPtr - 1;
|
|
if (indexNumber < 0)
|
|
{
|
|
indexNumber = 0;
|
|
indexstate->iss_IndexPtr = numIndices - 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((indexNumber = indexstate->iss_IndexPtr) < 0)
|
|
{
|
|
indexNumber = 0;
|
|
indexstate->iss_IndexPtr = 0;
|
|
}
|
|
}
|
|
while (indexNumber < numIndices)
|
|
{
|
|
scandesc = scanDescs[indexstate->iss_IndexPtr];
|
|
while ((result = index_getnext(scandesc, direction)) != NULL)
|
|
{
|
|
tuple->t_self = result->heap_iptr;
|
|
heap_fetch(heapRelation, snapshot, tuple, &buffer);
|
|
pfree(result);
|
|
|
|
if (tuple->t_data != NULL)
|
|
{
|
|
bool prev_matches = false;
|
|
int prev_index;
|
|
|
|
/* ----------------
|
|
* store the scanned tuple in the scan tuple slot of
|
|
* the scan state. Eventually we will only do this and not
|
|
* return a tuple. Note: we pass 'false' because tuples
|
|
* returned by amgetnext are pointers onto disk pages and
|
|
* were not created with palloc() and so should not be pfree()'d.
|
|
* ----------------
|
|
*/
|
|
ExecStoreTuple(tuple, /* tuple to store */
|
|
slot, /* slot to store in */
|
|
buffer, /* buffer associated with tuple */
|
|
false); /* don't pfree */
|
|
|
|
/*
|
|
* We must check to see if the current tuple would have
|
|
* been matched by an earlier index, so we don't double
|
|
* report it. We do this by passing the tuple through
|
|
* ExecQual and look for failure with all previous
|
|
* qualifications.
|
|
*/
|
|
for (prev_index = 0; prev_index < indexstate->iss_IndexPtr;
|
|
prev_index++)
|
|
{
|
|
scanstate->cstate.cs_ExprContext->ecxt_scantuple = slot;
|
|
if (ExecQual(nth(prev_index, node->indxqualorig),
|
|
scanstate->cstate.cs_ExprContext))
|
|
{
|
|
prev_matches = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!prev_matches)
|
|
return slot;
|
|
else
|
|
ExecClearTuple(slot);
|
|
}
|
|
if (BufferIsValid(buffer))
|
|
ReleaseBuffer(buffer);
|
|
}
|
|
if (indexNumber < numIndices)
|
|
{
|
|
indexNumber++;
|
|
if (bBackward)
|
|
indexstate->iss_IndexPtr--;
|
|
else
|
|
indexstate->iss_IndexPtr++;
|
|
}
|
|
}
|
|
/* ----------------
|
|
* if we get here it means the index scan failed so we
|
|
* are at the end of the scan..
|
|
* ----------------
|
|
*/
|
|
return ExecClearTuple(slot);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexScan(node)
|
|
*
|
|
* old comments:
|
|
* Scans the relation using primary or secondary indices and returns
|
|
* the next qualifying tuple in the direction specified.
|
|
* It calls ExecScan() and passes it the access methods which returns
|
|
* the next tuple using the indices.
|
|
*
|
|
* Conditions:
|
|
* -- the "cursor" maintained by the AMI is positioned at the tuple
|
|
* returned previously.
|
|
*
|
|
* Initial States:
|
|
* -- the relation indicated is opened for scanning so that the
|
|
* "cursor" is positioned before the first qualifying tuple.
|
|
* -- all index realtions are opened for scanning.
|
|
* -- indexPtr points to the first index.
|
|
* -- state variable ruleFlag = nil.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecIndexScan(IndexScan *node)
|
|
{
|
|
/* ----------------
|
|
* use IndexNext as access method
|
|
* ----------------
|
|
*/
|
|
return ExecScan(&node->scan, IndexNext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexReScan(node)
|
|
*
|
|
* Recalculates the value of the scan keys whose value depends on
|
|
* information known at runtime and rescans the indexed relation.
|
|
* Updating the scan key was formerly done separately in
|
|
* ExecUpdateIndexScanKeys. Integrating it into ReScan
|
|
* makes rescans of indices and
|
|
* relations/general streams more uniform.
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexReScan(IndexScan *node, ExprContext *exprCtxt, Plan *parent)
|
|
{
|
|
EState *estate;
|
|
IndexScanState *indexstate;
|
|
ScanDirection direction;
|
|
IndexScanDescPtr scanDescs;
|
|
ScanKey *scanKeys;
|
|
IndexScanDesc scan;
|
|
ScanKey skey;
|
|
int numIndices;
|
|
int i;
|
|
|
|
Pointer *runtimeKeyInfo;
|
|
int *numScanKeys;
|
|
List *indxqual;
|
|
List *qual;
|
|
int n_keys;
|
|
ScanKey scan_keys;
|
|
int *run_keys;
|
|
int j;
|
|
Expr *clause;
|
|
Node *scanexpr;
|
|
Datum scanvalue;
|
|
bool isNull;
|
|
bool isDone;
|
|
|
|
indexstate = node->indxstate;
|
|
estate = node->scan.plan.state;
|
|
direction = estate->es_direction;
|
|
numIndices = indexstate->iss_NumIndices;
|
|
scanDescs = indexstate->iss_ScanDescs;
|
|
scanKeys = indexstate->iss_ScanKeys;
|
|
runtimeKeyInfo = (Pointer *) indexstate->iss_RuntimeKeyInfo;
|
|
indxqual = node->indxqual;
|
|
numScanKeys = indexstate->iss_NumScanKeys;
|
|
indexstate->iss_IndexPtr = -1;
|
|
|
|
/* If this is re-scanning of PlanQual ... */
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
|
|
{
|
|
estate->es_evTupleNull[node->scan.scanrelid - 1] = false;
|
|
return;
|
|
}
|
|
|
|
/* it's possible in subselects */
|
|
if (exprCtxt == NULL)
|
|
exprCtxt = node->scan.scanstate->cstate.cs_ExprContext;
|
|
|
|
node->scan.scanstate->cstate.cs_ExprContext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
|
|
|
|
/*
|
|
* get the index qualifications and recalculate the appropriate values
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
qual = nth(i, indxqual);
|
|
n_keys = numScanKeys[i];
|
|
scan_keys = (ScanKey) scanKeys[i];
|
|
|
|
if (runtimeKeyInfo)
|
|
{
|
|
run_keys = (int *) runtimeKeyInfo[i];
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
|
|
/*
|
|
* If we have a run-time key, then extract the run-time
|
|
* expression and evaluate it with respect to the current
|
|
* outer tuple. We then stick the result into the scan
|
|
* key.
|
|
*/
|
|
if (run_keys[j] != NO_OP)
|
|
{
|
|
clause = nth(j, qual);
|
|
scanexpr = (run_keys[j] == RIGHT_OP) ?
|
|
(Node *) get_rightop(clause) : (Node *) get_leftop(clause);
|
|
|
|
/*
|
|
* pass in isDone but ignore it. We don't iterate in
|
|
* quals
|
|
*/
|
|
scanvalue = (Datum)
|
|
ExecEvalExpr(scanexpr, exprCtxt, &isNull, &isDone);
|
|
scan_keys[j].sk_argument = scanvalue;
|
|
if (isNull)
|
|
scan_keys[j].sk_flags |= SK_ISNULL;
|
|
else
|
|
scan_keys[j].sk_flags &= ~SK_ISNULL;
|
|
}
|
|
}
|
|
}
|
|
scan = scanDescs[i];
|
|
skey = scanKeys[i];
|
|
index_rescan(scan, direction, skey);
|
|
}
|
|
/* ----------------
|
|
* perhaps return something meaningful
|
|
* ----------------
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndIndexScan
|
|
*
|
|
* old comments
|
|
* Releases any storage allocated through C routines.
|
|
* Returns nothing.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndIndexScan(IndexScan *node)
|
|
{
|
|
CommonScanState *scanstate;
|
|
IndexScanState *indexstate;
|
|
Pointer *runtimeKeyInfo;
|
|
ScanKey *scanKeys;
|
|
List *indxqual;
|
|
int *numScanKeys;
|
|
int numIndices;
|
|
int i;
|
|
|
|
scanstate = node->scan.scanstate;
|
|
indexstate = node->indxstate;
|
|
indxqual = node->indxqual;
|
|
runtimeKeyInfo = (Pointer *) indexstate->iss_RuntimeKeyInfo;
|
|
|
|
/* ----------------
|
|
* extract information from the node
|
|
* ----------------
|
|
*/
|
|
numIndices = indexstate->iss_NumIndices;
|
|
scanKeys = indexstate->iss_ScanKeys;
|
|
numScanKeys = indexstate->iss_NumScanKeys;
|
|
|
|
/* ----------------
|
|
* Free the projection info and the scan attribute info
|
|
*
|
|
* Note: we don't ExecFreeResultType(scanstate)
|
|
* because the rule manager depends on the tupType
|
|
* returned by ExecMain(). So for now, this
|
|
* is freed at end-transaction time. -cim 6/2/91
|
|
* ----------------
|
|
*/
|
|
ExecFreeProjectionInfo(&scanstate->cstate);
|
|
|
|
/* ----------------
|
|
* close the heap and index relations
|
|
* ----------------
|
|
*/
|
|
ExecCloseR((Plan *) node);
|
|
|
|
/* ----------------
|
|
* free the scan keys used in scanning the indices
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
if (scanKeys[i] != NULL)
|
|
pfree(scanKeys[i]);
|
|
}
|
|
pfree(scanKeys);
|
|
pfree(numScanKeys);
|
|
|
|
if (runtimeKeyInfo)
|
|
{
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
List *qual;
|
|
int n_keys;
|
|
|
|
qual = nth(i, indxqual);
|
|
n_keys = length(qual);
|
|
if (n_keys > 0)
|
|
pfree(runtimeKeyInfo[i]);
|
|
}
|
|
pfree(runtimeKeyInfo);
|
|
}
|
|
|
|
/* ----------------
|
|
* clear out tuple table slots
|
|
* ----------------
|
|
*/
|
|
ExecClearTuple(scanstate->cstate.cs_ResultTupleSlot);
|
|
ExecClearTuple(scanstate->css_ScanTupleSlot);
|
|
/* ExecClearTuple(scanstate->css_RawTupleSlot); */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexMarkPos
|
|
*
|
|
* old comments
|
|
* Marks scan position by marking the current index.
|
|
* Returns nothing.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexMarkPos(IndexScan *node)
|
|
{
|
|
IndexScanState *indexstate;
|
|
IndexScanDescPtr indexScanDescs;
|
|
IndexScanDesc scanDesc;
|
|
int indexPtr;
|
|
|
|
indexstate = node->indxstate;
|
|
indexPtr = indexstate->iss_MarkIndexPtr = indexstate->iss_IndexPtr;
|
|
indexScanDescs = indexstate->iss_ScanDescs;
|
|
scanDesc = indexScanDescs[indexPtr];
|
|
|
|
#ifdef NOT_USED
|
|
IndexScanMarkPosition(scanDesc);
|
|
#endif
|
|
index_markpos(scanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexRestrPos
|
|
*
|
|
* old comments
|
|
* Restores scan position by restoring the current index.
|
|
* Returns nothing.
|
|
*
|
|
* XXX Assumes previously marked scan position belongs to current index
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexRestrPos(IndexScan *node)
|
|
{
|
|
IndexScanState *indexstate;
|
|
IndexScanDescPtr indexScanDescs;
|
|
IndexScanDesc scanDesc;
|
|
int indexPtr;
|
|
|
|
indexstate = node->indxstate;
|
|
indexPtr = indexstate->iss_IndexPtr = indexstate->iss_MarkIndexPtr;
|
|
indexScanDescs = indexstate->iss_ScanDescs;
|
|
scanDesc = indexScanDescs[indexPtr];
|
|
|
|
#ifdef NOT_USED
|
|
IndexScanRestorePosition(scanDesc);
|
|
#endif
|
|
index_restrpos(scanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitIndexScan
|
|
*
|
|
* Initializes the index scan's state information, creates
|
|
* scan keys, and opens the base and index relations.
|
|
*
|
|
* Note: index scans have 2 sets of state information because
|
|
* we have to keep track of the base relation and the
|
|
* index relations.
|
|
*
|
|
* old comments
|
|
* Creates the run-time state information for the node and
|
|
* sets the relation id to contain relevant decriptors.
|
|
*
|
|
* Parameters:
|
|
* node: IndexNode node produced by the planner.
|
|
* estate: the execution state initialized in InitPlan.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
bool
|
|
ExecInitIndexScan(IndexScan *node, EState *estate, Plan *parent)
|
|
{
|
|
IndexScanState *indexstate;
|
|
CommonScanState *scanstate;
|
|
List *indxqual;
|
|
List *indxid;
|
|
int i;
|
|
int numIndices;
|
|
int indexPtr;
|
|
ScanKey *scanKeys;
|
|
int *numScanKeys;
|
|
RelationPtr relationDescs;
|
|
IndexScanDescPtr scanDescs;
|
|
Pointer *runtimeKeyInfo;
|
|
bool have_runtime_keys;
|
|
List *rangeTable;
|
|
RangeTblEntry *rtentry;
|
|
Index relid;
|
|
Oid reloid;
|
|
|
|
Relation currentRelation;
|
|
HeapScanDesc currentScanDesc;
|
|
ScanDirection direction;
|
|
int baseid;
|
|
|
|
List *execParam = NULL;
|
|
|
|
/* ----------------
|
|
* assign execution state to node
|
|
* ----------------
|
|
*/
|
|
node->scan.plan.state = estate;
|
|
|
|
/* --------------------------------
|
|
* Part 1) initialize scan state
|
|
*
|
|
* create new CommonScanState for node
|
|
* --------------------------------
|
|
*/
|
|
scanstate = makeNode(CommonScanState);
|
|
/*
|
|
scanstate->ss_ProcOuterFlag = false;
|
|
scanstate->ss_OldRelId = 0;
|
|
*/
|
|
|
|
node->scan.scanstate = scanstate;
|
|
|
|
/* ----------------
|
|
* assign node's base_id .. we don't use AssignNodeBaseid() because
|
|
* the increment is done later on after we assign the index scan's
|
|
* scanstate. see below.
|
|
* ----------------
|
|
*/
|
|
baseid = estate->es_BaseId;
|
|
/* scanstate->csstate.cstate.bnode.base_id = baseid; */
|
|
scanstate->cstate.cs_base_id = baseid;
|
|
|
|
/* ----------------
|
|
* create expression context for node
|
|
* ----------------
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->cstate);
|
|
|
|
#define INDEXSCAN_NSLOTS 3
|
|
/* ----------------
|
|
* tuple table initialization
|
|
* ----------------
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &scanstate->cstate);
|
|
ExecInitScanTupleSlot(estate, scanstate);
|
|
/* ExecInitRawTupleSlot(estate, scanstate); */
|
|
|
|
/* ----------------
|
|
* initialize projection info. result type comes from scan desc
|
|
* below..
|
|
* ----------------
|
|
*/
|
|
ExecAssignProjectionInfo((Plan *) node, &scanstate->cstate);
|
|
|
|
/* --------------------------------
|
|
* Part 2) initialize index scan state
|
|
*
|
|
* create new IndexScanState for node
|
|
* --------------------------------
|
|
*/
|
|
indexstate = makeNode(IndexScanState);
|
|
indexstate->iss_NumIndices = 0;
|
|
indexstate->iss_IndexPtr = -1;
|
|
indexstate->iss_ScanKeys = NULL;
|
|
indexstate->iss_NumScanKeys = NULL;
|
|
indexstate->iss_RuntimeKeyInfo = NULL;
|
|
indexstate->iss_RelationDescs = NULL;
|
|
indexstate->iss_ScanDescs = NULL;
|
|
|
|
node->indxstate = indexstate;
|
|
|
|
/* ----------------
|
|
* assign base id to index scan state also
|
|
* ----------------
|
|
*/
|
|
indexstate->cstate.cs_base_id = baseid;
|
|
baseid++;
|
|
estate->es_BaseId = baseid;
|
|
|
|
/* ----------------
|
|
* get the index node information
|
|
* ----------------
|
|
*/
|
|
indxid = node->indxid;
|
|
indxqual = node->indxqual;
|
|
numIndices = length(indxid);
|
|
indexPtr = -1;
|
|
|
|
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
|
|
|
|
/* ----------------
|
|
* scanKeys is used to keep track of the ScanKey's. This is needed
|
|
* because a single scan may use several indices and each index has
|
|
* its own ScanKey.
|
|
* ----------------
|
|
*/
|
|
numScanKeys = (int *) palloc(numIndices * sizeof(int));
|
|
scanKeys = (ScanKey *) palloc(numIndices * sizeof(ScanKey));
|
|
relationDescs = (RelationPtr) palloc(numIndices * sizeof(Relation));
|
|
scanDescs = (IndexScanDescPtr) palloc(numIndices * sizeof(IndexScanDesc));
|
|
|
|
/* ----------------
|
|
* initialize runtime key info.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = false;
|
|
runtimeKeyInfo = (Pointer *)
|
|
palloc(numIndices * sizeof(Pointer));
|
|
|
|
/* ----------------
|
|
* build the index scan keys from the index qualification
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
int j;
|
|
List *qual;
|
|
int n_keys;
|
|
ScanKey scan_keys;
|
|
int *run_keys;
|
|
|
|
qual = nth(i, indxqual);
|
|
n_keys = length(qual);
|
|
scan_keys = (n_keys <= 0) ? NULL :
|
|
(ScanKey) palloc(n_keys * sizeof(ScanKeyData));
|
|
run_keys = (n_keys <= 0) ? NULL :
|
|
(int *) palloc(n_keys * sizeof(int));
|
|
|
|
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
|
|
|
|
/* ----------------
|
|
* for each opclause in the given qual,
|
|
* convert each qual's opclause into a single scan key
|
|
* ----------------
|
|
*/
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
Expr *clause; /* one part of index qual */
|
|
Oper *op; /* operator used in scan.. */
|
|
Node *leftop; /* expr on lhs of operator */
|
|
Node *rightop;/* expr on rhs ... */
|
|
bits16 flags = 0;
|
|
|
|
int scanvar;/* which var identifies varattno */
|
|
AttrNumber varattno = 0; /* att number used in scan */
|
|
Oid opid; /* operator id used in scan */
|
|
Datum scanvalue = 0; /* value used in scan (if const) */
|
|
|
|
/* ----------------
|
|
* extract clause information from the qualification
|
|
* ----------------
|
|
*/
|
|
clause = nth(j, qual);
|
|
|
|
op = (Oper *) clause->oper;
|
|
if (!IsA(op, Oper))
|
|
elog(ERROR, "ExecInitIndexScan: op not an Oper!");
|
|
|
|
opid = op->opid;
|
|
|
|
/* ----------------
|
|
* Here we figure out the contents of the index qual.
|
|
* The usual case is (op var const) or (op const var)
|
|
* which means we form a scan key for the attribute
|
|
* listed in the var node and use the value of the const.
|
|
*
|
|
* If we don't have a const node, then it means that
|
|
* one of the var nodes refers to the "scan" tuple and
|
|
* is used to determine which attribute to scan, and the
|
|
* other expression is used to calculate the value used in
|
|
* scanning the index.
|
|
*
|
|
* This means our index scan's scan key is a function of
|
|
* information obtained during the execution of the plan
|
|
* in which case we need to recalculate the index scan key
|
|
* at run time.
|
|
*
|
|
* Hence, we set have_runtime_keys to true and then set
|
|
* the appropriate flag in run_keys to LEFT_OP or RIGHT_OP.
|
|
* The corresponding scan keys are recomputed at run time.
|
|
* ----------------
|
|
*/
|
|
|
|
scanvar = NO_OP;
|
|
|
|
/* ----------------
|
|
* determine information in leftop
|
|
* ----------------
|
|
*/
|
|
leftop = (Node *) get_leftop(clause);
|
|
|
|
if (IsA(leftop, Var) &&var_is_rel((Var *) leftop))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a "rel-var", then it means
|
|
* that it is a var node which tells us which
|
|
* attribute to use for our scan key.
|
|
* ----------------
|
|
*/
|
|
varattno = ((Var *) leftop)->varattno;
|
|
scanvar = LEFT_OP;
|
|
}
|
|
else if (IsA(leftop, Const))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a const node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
run_keys[j] = NO_OP;
|
|
scanvalue = ((Const *) leftop)->constvalue;
|
|
}
|
|
else if (IsA(leftop, Param))
|
|
{
|
|
bool isnull;
|
|
|
|
/* ----------------
|
|
* if the leftop is a Param node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
|
|
/* Life was so easy before ... subselects */
|
|
if (((Param *) leftop)->paramkind == PARAM_EXEC)
|
|
{
|
|
have_runtime_keys = true;
|
|
run_keys[j] = LEFT_OP;
|
|
execParam = lappendi(execParam, ((Param *) leftop)->paramid);
|
|
}
|
|
else
|
|
{
|
|
scanvalue = ExecEvalParam((Param *) leftop,
|
|
scanstate->cstate.cs_ExprContext,
|
|
&isnull);
|
|
if (isnull)
|
|
flags |= SK_ISNULL;
|
|
|
|
run_keys[j] = NO_OP;
|
|
}
|
|
}
|
|
else if (leftop != NULL &&
|
|
is_funcclause(leftop) &&
|
|
var_is_rel(lfirst(((Expr *) leftop)->args)))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a func node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* Since functional indices have only one attribute
|
|
* the attno must always be set to 1.
|
|
* ----------------
|
|
*/
|
|
varattno = 1;
|
|
scanvar = LEFT_OP;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* ----------------
|
|
* otherwise, the leftop contains information usable
|
|
* at runtime to figure out the value to place in our
|
|
* scan key.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = true;
|
|
run_keys[j] = LEFT_OP;
|
|
scanvalue = Int32GetDatum((int32) true);
|
|
}
|
|
|
|
/* ----------------
|
|
* now determine information in rightop
|
|
* ----------------
|
|
*/
|
|
rightop = (Node *) get_rightop(clause);
|
|
|
|
if (IsA(rightop, Var) &&var_is_rel((Var *) rightop))
|
|
{
|
|
/* ----------------
|
|
* here we make sure only one op identifies the
|
|
* scan-attribute...
|
|
* ----------------
|
|
*/
|
|
if (scanvar == LEFT_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"both left and right op's are rel-vars");
|
|
|
|
/* ----------------
|
|
* if the rightop is a "rel-var", then it means
|
|
* that it is a var node which tells us which
|
|
* attribute to use for our scan key.
|
|
* ----------------
|
|
*/
|
|
varattno = ((Var *) rightop)->varattno;
|
|
scanvar = RIGHT_OP;
|
|
|
|
}
|
|
else if (IsA(rightop, Const))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a const node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
run_keys[j] = NO_OP;
|
|
scanvalue = ((Const *) rightop)->constvalue;
|
|
}
|
|
else if (IsA(rightop, Param))
|
|
{
|
|
bool isnull;
|
|
|
|
/* ----------------
|
|
* if the rightop is a Param node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
|
|
/* Life was so easy before ... subselects */
|
|
if (((Param *) rightop)->paramkind == PARAM_EXEC)
|
|
{
|
|
have_runtime_keys = true;
|
|
run_keys[j] = RIGHT_OP;
|
|
execParam = lappendi(execParam, ((Param *) rightop)->paramid);
|
|
}
|
|
else
|
|
{
|
|
scanvalue = ExecEvalParam((Param *) rightop,
|
|
scanstate->cstate.cs_ExprContext,
|
|
&isnull);
|
|
if (isnull)
|
|
flags |= SK_ISNULL;
|
|
|
|
run_keys[j] = NO_OP;
|
|
}
|
|
}
|
|
else if (rightop != NULL &&
|
|
is_funcclause(rightop) &&
|
|
var_is_rel(lfirst(((Expr *) rightop)->args)))
|
|
{
|
|
/* ----------------
|
|
* if the rightop is a func node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* Since functional indices have only one attribute
|
|
* the attno must always be set to 1.
|
|
* ----------------
|
|
*/
|
|
if (scanvar == LEFT_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"both left and right ops are rel-vars");
|
|
|
|
varattno = 1;
|
|
scanvar = RIGHT_OP;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* ----------------
|
|
* otherwise, the leftop contains information usable
|
|
* at runtime to figure out the value to place in our
|
|
* scan key.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = true;
|
|
run_keys[j] = RIGHT_OP;
|
|
scanvalue = Int32GetDatum((int32) true);
|
|
}
|
|
|
|
/* ----------------
|
|
* now check that at least one op tells us the scan
|
|
* attribute...
|
|
* ----------------
|
|
*/
|
|
if (scanvar == NO_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"neither leftop nor rightop refer to scan relation");
|
|
|
|
/* ----------------
|
|
* initialize the scan key's fields appropriately
|
|
* ----------------
|
|
*/
|
|
ScanKeyEntryInitialize(&scan_keys[j],
|
|
flags,
|
|
varattno, /* attribute number to
|
|
* scan */
|
|
(RegProcedure) opid, /* reg proc to use */
|
|
(Datum) scanvalue); /* constant */
|
|
}
|
|
|
|
/* ----------------
|
|
* store the key information into our array.
|
|
* ----------------
|
|
*/
|
|
numScanKeys[i] = n_keys;
|
|
scanKeys[i] = scan_keys;
|
|
runtimeKeyInfo[i] = (Pointer) run_keys;
|
|
}
|
|
|
|
indexstate->iss_NumIndices = numIndices;
|
|
indexstate->iss_IndexPtr = indexPtr;
|
|
indexstate->iss_ScanKeys = scanKeys;
|
|
indexstate->iss_NumScanKeys = numScanKeys;
|
|
|
|
/* ----------------
|
|
* If all of our keys have the form (op var const) , then we have no
|
|
* runtime keys so we store NULL in the runtime key info.
|
|
* Otherwise runtime key info contains an array of pointers
|
|
* (one for each index) to arrays of flags (one for each key)
|
|
* which indicate that the qual needs to be evaluated at runtime.
|
|
* -cim 10/24/89
|
|
* ----------------
|
|
*/
|
|
if (have_runtime_keys)
|
|
indexstate->iss_RuntimeKeyInfo = (Pointer) runtimeKeyInfo;
|
|
else
|
|
indexstate->iss_RuntimeKeyInfo = NULL;
|
|
|
|
/* ----------------
|
|
* get the range table and direction information
|
|
* from the execution state (these are needed to
|
|
* open the relations).
|
|
* ----------------
|
|
*/
|
|
rangeTable = estate->es_range_table;
|
|
direction = estate->es_direction;
|
|
|
|
/* ----------------
|
|
* open the base relation
|
|
* ----------------
|
|
*/
|
|
relid = node->scan.scanrelid;
|
|
rtentry = rt_fetch(relid, rangeTable);
|
|
reloid = rtentry->relid;
|
|
|
|
ExecOpenScanR(reloid, /* relation */
|
|
0, /* nkeys */
|
|
(ScanKey) NULL, /* scan key */
|
|
0, /* is index */
|
|
direction, /* scan direction */
|
|
estate->es_snapshot, /* */
|
|
¤tRelation, /* return: rel desc */
|
|
(Pointer *) ¤tScanDesc); /* return: scan desc */
|
|
|
|
scanstate->css_currentRelation = currentRelation;
|
|
scanstate->css_currentScanDesc = currentScanDesc;
|
|
|
|
|
|
/* ----------------
|
|
* get the scan type from the relation descriptor.
|
|
* ----------------
|
|
*/
|
|
ExecAssignScanType(scanstate, RelationGetDescr(currentRelation));
|
|
ExecAssignResultTypeFromTL((Plan *) node, &scanstate->cstate);
|
|
|
|
/* ----------------
|
|
* index scans don't have subtrees..
|
|
* ----------------
|
|
*/
|
|
/* scanstate->ss_ProcOuterFlag = false; */
|
|
|
|
/* ----------------
|
|
* open the index relations and initialize
|
|
* relation and scan descriptors.
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
Oid indexOid;
|
|
|
|
indexOid = (Oid) nthi(i, indxid);
|
|
|
|
if (indexOid != 0)
|
|
{
|
|
ExecOpenScanR(indexOid, /* relation */
|
|
numScanKeys[i], /* nkeys */
|
|
scanKeys[i], /* scan key */
|
|
true, /* is index */
|
|
direction, /* scan direction */
|
|
estate->es_snapshot,
|
|
&(relationDescs[i]), /* return: rel desc */
|
|
(Pointer *) &(scanDescs[i]));
|
|
/* return: scan desc */
|
|
}
|
|
}
|
|
|
|
indexstate->iss_RelationDescs = relationDescs;
|
|
indexstate->iss_ScanDescs = scanDescs;
|
|
|
|
indexstate->cstate.cs_TupFromTlist = false;
|
|
|
|
/*
|
|
* if there are some PARAM_EXEC in skankeys then force index rescan on
|
|
* first scan.
|
|
*/
|
|
((Plan *) node)->chgParam = execParam;
|
|
|
|
/* ----------------
|
|
* all done.
|
|
* ----------------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
int
|
|
ExecCountSlotsIndexScan(IndexScan *node)
|
|
{
|
|
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
|
|
ExecCountSlotsNode(innerPlan((Plan *) node)) + INDEXSCAN_NSLOTS;
|
|
}
|