64d0b8b05f
version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
567 lines
19 KiB
Plaintext
567 lines
19 KiB
Plaintext
/*
|
|
* tablefunc
|
|
*
|
|
* Sample to demonstrate C functions which return setof scalar
|
|
* and setof composite.
|
|
* Joe Conway <mail@joeconway.com>
|
|
*
|
|
* Copyright 2002 by PostgreSQL Global Development Group
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for any purpose, without fee, and without a written agreement
|
|
* is hereby granted, provided that the above copyright notice and this
|
|
* paragraph and the following two paragraphs appear in all copies.
|
|
*
|
|
* IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
|
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
|
|
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
|
|
* DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
|
|
* ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
|
|
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
*/
|
|
Version 0.1 (20 July, 2002):
|
|
First release
|
|
|
|
Release Notes:
|
|
|
|
Version 0.1
|
|
- initial release
|
|
|
|
Installation:
|
|
Place these files in a directory called 'tablefunc' under 'contrib' in the
|
|
PostgreSQL source tree. Then run:
|
|
|
|
make
|
|
make install
|
|
|
|
You can use tablefunc.sql to create the functions in your database of choice, e.g.
|
|
|
|
psql -U postgres template1 < tablefunc.sql
|
|
|
|
installs following functions into database template1:
|
|
|
|
normal_rand(int numvals, float8 mean, float8 stddev, int seed)
|
|
- returns a set of normally distributed float8 values
|
|
|
|
crosstabN(text sql)
|
|
- returns a set of row_name plus N category value columns
|
|
- crosstab2(), crosstab3(), and crosstab4() are defined for you,
|
|
but you can create additional crosstab functions per the instructions
|
|
in the documentation below.
|
|
|
|
crosstab(text sql, N int)
|
|
- returns a set of row_name plus N category value columns
|
|
- requires anonymous composite type syntax in the FROM clause. See
|
|
the instructions in the documentation below.
|
|
|
|
connectby(text relname, text keyid_fld, text parent_keyid_fld,
|
|
text start_with, int max_depth [, text branch_delim])
|
|
- returns keyid, parent_keyid, level, and an optional branch string
|
|
- requires anonymous composite type syntax in the FROM clause. See
|
|
the instructions in the documentation below.
|
|
|
|
Documentation
|
|
==================================================================
|
|
Name
|
|
|
|
normal_rand(int, float8, float8, int) - returns a set of normally
|
|
distributed float8 values
|
|
|
|
Synopsis
|
|
|
|
normal_rand(int numvals, float8 mean, float8 stddev, int seed)
|
|
|
|
Inputs
|
|
|
|
numvals
|
|
the number of random values to be returned from the function
|
|
|
|
mean
|
|
the mean of the normal distribution of values
|
|
|
|
stddev
|
|
the standard deviation of the normal distribution of values
|
|
|
|
seed
|
|
a seed value for the pseudo-random number generator
|
|
|
|
Outputs
|
|
|
|
Returns setof float8, where the returned set of random values are normally
|
|
distributed (Gaussian distribution)
|
|
|
|
Example usage
|
|
|
|
test=# SELECT * FROM
|
|
test=# normal_rand(1000, 5, 3, EXTRACT(SECONDS FROM CURRENT_TIME(0))::int);
|
|
normal_rand
|
|
----------------------
|
|
1.56556322244898
|
|
9.10040991424657
|
|
5.36957140345079
|
|
-0.369151492880995
|
|
0.283600703686639
|
|
.
|
|
.
|
|
.
|
|
4.82992125404908
|
|
9.71308014517282
|
|
2.49639286969028
|
|
(1000 rows)
|
|
|
|
Returns 1000 values with a mean of 5 and a standard deviation of 3.
|
|
|
|
==================================================================
|
|
Name
|
|
|
|
crosstabN(text) - returns a set of row_name plus N category value columns
|
|
|
|
Synopsis
|
|
|
|
crosstabN(text sql)
|
|
|
|
Inputs
|
|
|
|
sql
|
|
|
|
A SQL statement which produces the source set of data. The SQL statement
|
|
must return one row_name column, one category column, and one value
|
|
column.
|
|
|
|
e.g. provided sql must produce a set something like:
|
|
|
|
row_name cat value
|
|
----------+-------+-------
|
|
row1 cat1 val1
|
|
row1 cat2 val2
|
|
row1 cat3 val3
|
|
row1 cat4 val4
|
|
row2 cat1 val5
|
|
row2 cat2 val6
|
|
row2 cat3 val7
|
|
row2 cat4 val8
|
|
|
|
Outputs
|
|
|
|
Returns setof tablefunc_crosstab_N, which is defined by:
|
|
|
|
CREATE VIEW tablefunc_crosstab_N AS
|
|
SELECT
|
|
''::TEXT AS row_name,
|
|
''::TEXT AS category_1,
|
|
''::TEXT AS category_2,
|
|
.
|
|
.
|
|
.
|
|
''::TEXT AS category_N;
|
|
|
|
for the default installed functions, where N is 2, 3, or 4.
|
|
|
|
e.g. the provided crosstab2 function produces a set something like:
|
|
<== values columns ==>
|
|
row_name category_1 category_2
|
|
---------+------------+------------
|
|
row1 val1 val2
|
|
row2 val5 val6
|
|
|
|
Notes
|
|
|
|
1. The sql result must be ordered by 1,2.
|
|
|
|
2. The number of values columns depends on the tuple description
|
|
of the function's declared return type.
|
|
|
|
3. Missing values (i.e. not enough adjacent rows of same row_name to
|
|
fill the number of result values columns) are filled in with nulls.
|
|
|
|
4. Extra values (i.e. too many adjacent rows of same row_name to fill
|
|
the number of result values columns) are skipped.
|
|
|
|
5. Rows with all nulls in the values columns are skipped.
|
|
|
|
6. The installed defaults are for illustration purposes. You
|
|
can create your own return types and functions based on the
|
|
crosstab() function of the installed library.
|
|
|
|
The return type must have a first column that matches the data
|
|
type of the sql set used as its source. The subsequent category
|
|
columns must have the same data type as the value column of the
|
|
sql result set.
|
|
|
|
Create a VIEW to define your return type, similar to the VIEWS
|
|
in the provided installation script. Then define a unique function
|
|
name accepting one text parameter and returning setof your_view_name.
|
|
For example, if your source data produces row_names that are TEXT,
|
|
and values that are FLOAT8, and you want 5 category columns:
|
|
|
|
CREATE VIEW my_crosstab_float8_5_cols AS
|
|
SELECT
|
|
''::TEXT AS row_name,
|
|
0::FLOAT8 AS category_1,
|
|
0::FLOAT8 AS category_2,
|
|
0::FLOAT8 AS category_3,
|
|
0::FLOAT8 AS category_4,
|
|
0::FLOAT8 AS category_5;
|
|
|
|
CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
|
|
RETURNS setof my_crosstab_float8_5_cols
|
|
AS '$libdir/tablefunc','crosstab' LANGUAGE 'c' STABLE STRICT;
|
|
|
|
Example usage
|
|
|
|
create table ct(id serial, rowclass text, rowid text, attribute text, value text);
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att1','val1');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att2','val2');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att3','val3');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att4','val4');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att1','val5');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att2','val6');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att3','val7');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att4','val8');
|
|
|
|
select * from crosstab3(
|
|
'select rowid, attribute, value
|
|
from ct
|
|
where rowclass = ''group1''
|
|
and (attribute = ''att2'' or attribute = ''att3'') order by 1,2;');
|
|
|
|
row_name | category_1 | category_2 | category_3
|
|
----------+------------+------------+------------
|
|
test1 | val2 | val3 |
|
|
test2 | val6 | val7 |
|
|
(2 rows)
|
|
|
|
==================================================================
|
|
Name
|
|
|
|
crosstab(text, int) - returns a set of row_name
|
|
plus N category value columns
|
|
|
|
Synopsis
|
|
|
|
crosstab(text sql, int N)
|
|
|
|
Inputs
|
|
|
|
sql
|
|
|
|
A SQL statement which produces the source set of data. The SQL statement
|
|
must return one row_name column, one category column, and one value
|
|
column.
|
|
|
|
e.g. provided sql must produce a set something like:
|
|
|
|
row_name cat value
|
|
----------+-------+-------
|
|
row1 cat1 val1
|
|
row1 cat2 val2
|
|
row1 cat3 val3
|
|
row1 cat4 val4
|
|
row2 cat1 val5
|
|
row2 cat2 val6
|
|
row2 cat3 val7
|
|
row2 cat4 val8
|
|
|
|
N
|
|
|
|
number of category value columns
|
|
|
|
Outputs
|
|
|
|
Returns setof record, which must defined with a column definition
|
|
in the FROM clause of the SELECT statement, e.g.:
|
|
|
|
SELECT *
|
|
FROM crosstab(sql, 2) AS ct(row_name text, category_1 text, category_2 text);
|
|
|
|
the example crosstab function produces a set something like:
|
|
<== values columns ==>
|
|
row_name category_1 category_2
|
|
---------+------------+------------
|
|
row1 val1 val2
|
|
row2 val5 val6
|
|
|
|
Notes
|
|
|
|
1. The sql result must be ordered by 1,2.
|
|
|
|
2. The number of values columns is determined at run-time. The
|
|
column definition provided in the FROM clause must provide for
|
|
N + 1 columns of the proper data types.
|
|
|
|
3. Missing values (i.e. not enough adjacent rows of same row_name to
|
|
fill the number of result values columns) are filled in with nulls.
|
|
|
|
4. Extra values (i.e. too many adjacent rows of same row_name to fill
|
|
the number of result values columns) are skipped.
|
|
|
|
5. Rows with all nulls in the values columns are skipped.
|
|
|
|
|
|
Example usage
|
|
|
|
create table ct(id serial, rowclass text, rowid text, attribute text, value text);
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att1','val1');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att2','val2');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att3','val3');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test1','att4','val4');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att1','val5');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att2','val6');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att3','val7');
|
|
insert into ct(rowclass, rowid, attribute, value) values('group1','test2','att4','val8');
|
|
|
|
SELECT *
|
|
FROM crosstab(
|
|
'select rowid, attribute, value
|
|
from ct
|
|
where rowclass = ''group1''
|
|
and (attribute = ''att2'' or attribute = ''att3'') order by 1,2;', 3)
|
|
AS ct(row_name text, category_1 text, category_2 text, category_3 text);
|
|
|
|
row_name | category_1 | category_2 | category_3
|
|
----------+------------+------------+------------
|
|
test1 | val2 | val3 |
|
|
test2 | val6 | val7 |
|
|
(2 rows)
|
|
|
|
==================================================================
|
|
Name
|
|
|
|
crosstab(text, text) - returns a set of row_name, extra, and
|
|
category value columns
|
|
|
|
Synopsis
|
|
|
|
crosstab(text source_sql, text category_sql)
|
|
|
|
Inputs
|
|
|
|
source_sql
|
|
|
|
A SQL statement which produces the source set of data. The SQL statement
|
|
must return one row_name column, one category column, and one value
|
|
column. It may also have one or more "extra" columns.
|
|
|
|
The row_name column must be first. The category and value columns
|
|
must be the last two columns, in that order. "extra" columns must be
|
|
columns 2 through (N - 2), where N is the total number of columns.
|
|
|
|
The "extra" columns are assumed to be the same for all rows with the
|
|
same row_name. The values returned are copied from the first row
|
|
with a given row_name and subsequent values of these columns are ignored
|
|
until row_name changes.
|
|
|
|
e.g. source_sql must produce a set something like:
|
|
SELECT row_name, extra_col, cat, value FROM foo;
|
|
|
|
row_name extra_col cat value
|
|
----------+------------+-----+---------
|
|
row1 extra1 cat1 val1
|
|
row1 extra1 cat2 val2
|
|
row1 extra1 cat4 val4
|
|
row2 extra2 cat1 val5
|
|
row2 extra2 cat2 val6
|
|
row2 extra2 cat3 val7
|
|
row2 extra2 cat4 val8
|
|
|
|
category_sql
|
|
|
|
A SQL statement which produces the distinct set of categories. The SQL
|
|
statement must return one category column only. category_sql must produce
|
|
at least one result row or an error will be generated. category_sql
|
|
must not produce duplicate categories or an error will be generated.
|
|
|
|
e.g. SELECT DISTINCT cat FROM foo;
|
|
|
|
cat
|
|
-------
|
|
cat1
|
|
cat2
|
|
cat3
|
|
cat4
|
|
|
|
Outputs
|
|
|
|
Returns setof record, which must be defined with a column definition
|
|
in the FROM clause of the SELECT statement, e.g.:
|
|
|
|
SELECT * FROM crosstab(source_sql, cat_sql)
|
|
AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);
|
|
|
|
the example crosstab function produces a set something like:
|
|
<== values columns ==>
|
|
row_name extra cat1 cat2 cat3 cat4
|
|
---------+-------+------+------+------+------
|
|
row1 extra1 val1 val2 val4
|
|
row2 extra2 val5 val6 val7 val8
|
|
|
|
Notes
|
|
|
|
1. source_sql must be ordered by row_name (column 1).
|
|
|
|
2. The number of values columns is determined at run-time. The
|
|
column definition provided in the FROM clause must provide for
|
|
the correct number of columns of the proper data types.
|
|
|
|
3. Missing values (i.e. not enough adjacent rows of same row_name to
|
|
fill the number of result values columns) are filled in with nulls.
|
|
|
|
4. Extra values (i.e. source rows with category not found in category_sql
|
|
result) are skipped.
|
|
|
|
5. Rows with a null row_name column are skipped.
|
|
|
|
|
|
Example usage
|
|
|
|
create table cth(id serial, rowid text, rowdt timestamp, attribute text, val text);
|
|
insert into cth values(DEFAULT,'test1','01 March 2003','temperature','42');
|
|
insert into cth values(DEFAULT,'test1','01 March 2003','test_result','PASS');
|
|
insert into cth values(DEFAULT,'test1','01 March 2003','volts','2.6987');
|
|
insert into cth values(DEFAULT,'test2','02 March 2003','temperature','53');
|
|
insert into cth values(DEFAULT,'test2','02 March 2003','test_result','FAIL');
|
|
insert into cth values(DEFAULT,'test2','02 March 2003','test_startdate','01 March 2003');
|
|
insert into cth values(DEFAULT,'test2','02 March 2003','volts','3.1234');
|
|
|
|
SELECT * FROM crosstab
|
|
(
|
|
'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
|
|
'SELECT DISTINCT attribute FROM cth ORDER BY 1'
|
|
)
|
|
AS
|
|
(
|
|
rowid text,
|
|
rowdt timestamp,
|
|
temperature int4,
|
|
test_result text,
|
|
test_startdate timestamp,
|
|
volts float8
|
|
);
|
|
rowid | rowdt | temperature | test_result | test_startdate | volts
|
|
-------+--------------------------+-------------+-------------+--------------------------+--------
|
|
test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS | | 2.6987
|
|
test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00 2003 | 3.1234
|
|
(2 rows)
|
|
|
|
==================================================================
|
|
Name
|
|
|
|
connectby(text, text, text, text, int[, text]) - returns a set
|
|
representing a hierarchy (tree structure)
|
|
|
|
Synopsis
|
|
|
|
connectby(text relname, text keyid_fld, text parent_keyid_fld,
|
|
text start_with, int max_depth [, text branch_delim])
|
|
|
|
Inputs
|
|
|
|
relname
|
|
|
|
Name of the source relation
|
|
|
|
keyid_fld
|
|
|
|
Name of the key field
|
|
|
|
parent_keyid_fld
|
|
|
|
Name of the key_parent field
|
|
|
|
start_with
|
|
|
|
root value of the tree input as a text value regardless of keyid_fld type
|
|
|
|
max_depth
|
|
|
|
zero (0) for unlimited depth, otherwise restrict level to this depth
|
|
|
|
branch_delim
|
|
|
|
If optional branch value is desired, this string is used as the delimiter.
|
|
When not provided, a default value of '~' is used for internal
|
|
recursion detection only, and no "branch" field is returned.
|
|
|
|
Outputs
|
|
|
|
Returns setof record, which must defined with a column definition
|
|
in the FROM clause of the SELECT statement, e.g.:
|
|
|
|
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
|
|
AS t(keyid text, parent_keyid text, level int, branch text);
|
|
|
|
- or -
|
|
|
|
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
|
|
AS t(keyid text, parent_keyid text, level int);
|
|
|
|
Notes
|
|
|
|
1. keyid and parent_keyid must be the same data type
|
|
|
|
2. The column definition *must* include a third column of type INT4 for
|
|
the level value output
|
|
|
|
3. If the branch field is not desired, omit both the branch_delim input
|
|
parameter *and* the branch field in the query column definition. Note
|
|
that when branch_delim is not provided, a default value of '~' is used
|
|
for branch_delim for internal recursion detection, even though the branch
|
|
field is not returned.
|
|
|
|
4. If the branch field is desired, it must be the fourth column in the query
|
|
column definition, and it must be type TEXT.
|
|
|
|
5. The parameters representing table and field names must include double
|
|
quotes if the names are mixed-case or contain special characters.
|
|
|
|
|
|
Example usage
|
|
|
|
CREATE TABLE connectby_tree(keyid text, parent_keyid text);
|
|
|
|
INSERT INTO connectby_tree VALUES('row1',NULL);
|
|
INSERT INTO connectby_tree VALUES('row2','row1');
|
|
INSERT INTO connectby_tree VALUES('row3','row1');
|
|
INSERT INTO connectby_tree VALUES('row4','row2');
|
|
INSERT INTO connectby_tree VALUES('row5','row2');
|
|
INSERT INTO connectby_tree VALUES('row6','row4');
|
|
INSERT INTO connectby_tree VALUES('row7','row3');
|
|
INSERT INTO connectby_tree VALUES('row8','row6');
|
|
INSERT INTO connectby_tree VALUES('row9','row5');
|
|
|
|
-- with branch
|
|
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
|
|
AS t(keyid text, parent_keyid text, level int, branch text);
|
|
keyid | parent_keyid | level | branch
|
|
-------+--------------+-------+---------------------
|
|
row2 | | 0 | row2
|
|
row4 | row2 | 1 | row2~row4
|
|
row6 | row4 | 2 | row2~row4~row6
|
|
row8 | row6 | 3 | row2~row4~row6~row8
|
|
row5 | row2 | 1 | row2~row5
|
|
row9 | row5 | 2 | row2~row5~row9
|
|
(6 rows)
|
|
|
|
-- without branch
|
|
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
|
|
AS t(keyid text, parent_keyid text, level int);
|
|
keyid | parent_keyid | level
|
|
-------+--------------+-------
|
|
row2 | | 0
|
|
row4 | row2 | 1
|
|
row6 | row4 | 2
|
|
row8 | row6 | 3
|
|
row5 | row2 | 1
|
|
row9 | row5 | 2
|
|
(6 rows)
|
|
|
|
==================================================================
|
|
-- Joe Conway
|
|
|