
An oversight of 3a8a1f3254b. Reported-by: Tender Wang <tndrwang@gmail.com> Author: Tender Wang <tndrwang@gmail.com> Backpatch-through: 16
4885 lines
137 KiB
C
4885 lines
137 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_expr.c
|
|
* handle expressions in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/parser/parse_expr.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/dbcommands.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_collate.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_func.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_target.h"
|
|
#include "parser/parse_type.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/date.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/jsonb.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/timestamp.h"
|
|
#include "utils/xml.h"
|
|
|
|
/* GUC parameters */
|
|
bool Transform_null_equals = false;
|
|
|
|
|
|
static Node *transformExprRecurse(ParseState *pstate, Node *expr);
|
|
static Node *transformParamRef(ParseState *pstate, ParamRef *pref);
|
|
static Node *transformAExprOp(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprIn(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprBetween(ParseState *pstate, A_Expr *a);
|
|
static Node *transformMergeSupportFunc(ParseState *pstate, MergeSupportFunc *f);
|
|
static Node *transformBoolExpr(ParseState *pstate, BoolExpr *a);
|
|
static Node *transformFuncCall(ParseState *pstate, FuncCall *fn);
|
|
static Node *transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref);
|
|
static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c);
|
|
static Node *transformSubLink(ParseState *pstate, SubLink *sublink);
|
|
static Node *transformArrayExpr(ParseState *pstate, A_ArrayExpr *a,
|
|
Oid array_type, Oid element_type, int32 typmod);
|
|
static Node *transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault);
|
|
static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c);
|
|
static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m);
|
|
static Node *transformSQLValueFunction(ParseState *pstate,
|
|
SQLValueFunction *svf);
|
|
static Node *transformXmlExpr(ParseState *pstate, XmlExpr *x);
|
|
static Node *transformXmlSerialize(ParseState *pstate, XmlSerialize *xs);
|
|
static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b);
|
|
static Node *transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr);
|
|
static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref);
|
|
static Node *transformWholeRowRef(ParseState *pstate,
|
|
ParseNamespaceItem *nsitem,
|
|
int sublevels_up, int location);
|
|
static Node *transformIndirection(ParseState *pstate, A_Indirection *ind);
|
|
static Node *transformTypeCast(ParseState *pstate, TypeCast *tc);
|
|
static Node *transformCollateClause(ParseState *pstate, CollateClause *c);
|
|
static Node *transformJsonObjectConstructor(ParseState *pstate,
|
|
JsonObjectConstructor *ctor);
|
|
static Node *transformJsonArrayConstructor(ParseState *pstate,
|
|
JsonArrayConstructor *ctor);
|
|
static Node *transformJsonArrayQueryConstructor(ParseState *pstate,
|
|
JsonArrayQueryConstructor *ctor);
|
|
static Node *transformJsonObjectAgg(ParseState *pstate, JsonObjectAgg *agg);
|
|
static Node *transformJsonArrayAgg(ParseState *pstate, JsonArrayAgg *agg);
|
|
static Node *transformJsonIsPredicate(ParseState *pstate, JsonIsPredicate *pred);
|
|
static Node *transformJsonParseExpr(ParseState *pstate, JsonParseExpr *jsexpr);
|
|
static Node *transformJsonScalarExpr(ParseState *pstate, JsonScalarExpr *jsexpr);
|
|
static Node *transformJsonSerializeExpr(ParseState *pstate,
|
|
JsonSerializeExpr *expr);
|
|
static Node *transformJsonFuncExpr(ParseState *pstate, JsonFuncExpr *func);
|
|
static void transformJsonPassingArgs(ParseState *pstate, const char *constructName,
|
|
JsonFormatType format, List *args,
|
|
List **passing_values, List **passing_names);
|
|
static JsonBehavior *transformJsonBehavior(ParseState *pstate, JsonBehavior *behavior,
|
|
JsonBehaviorType default_behavior,
|
|
JsonReturning *returning);
|
|
static Node *GetJsonBehaviorConst(JsonBehaviorType btype, int location);
|
|
static Node *make_row_comparison_op(ParseState *pstate, List *opname,
|
|
List *largs, List *rargs, int location);
|
|
static Node *make_row_distinct_op(ParseState *pstate, List *opname,
|
|
RowExpr *lrow, RowExpr *rrow, int location);
|
|
static Expr *make_distinct_op(ParseState *pstate, List *opname,
|
|
Node *ltree, Node *rtree, int location);
|
|
static Node *make_nulltest_from_distinct(ParseState *pstate,
|
|
A_Expr *distincta, Node *arg);
|
|
|
|
|
|
/*
|
|
* transformExpr -
|
|
* Analyze and transform expressions. Type checking and type casting is
|
|
* done here. This processing converts the raw grammar output into
|
|
* expression trees with fully determined semantics.
|
|
*/
|
|
Node *
|
|
transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
|
|
{
|
|
Node *result;
|
|
ParseExprKind sv_expr_kind;
|
|
|
|
/* Save and restore identity of expression type we're parsing */
|
|
Assert(exprKind != EXPR_KIND_NONE);
|
|
sv_expr_kind = pstate->p_expr_kind;
|
|
pstate->p_expr_kind = exprKind;
|
|
|
|
result = transformExprRecurse(pstate, expr);
|
|
|
|
pstate->p_expr_kind = sv_expr_kind;
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformExprRecurse(ParseState *pstate, Node *expr)
|
|
{
|
|
Node *result;
|
|
|
|
if (expr == NULL)
|
|
return NULL;
|
|
|
|
/* Guard against stack overflow due to overly complex expressions */
|
|
check_stack_depth();
|
|
|
|
switch (nodeTag(expr))
|
|
{
|
|
case T_ColumnRef:
|
|
result = transformColumnRef(pstate, (ColumnRef *) expr);
|
|
break;
|
|
|
|
case T_ParamRef:
|
|
result = transformParamRef(pstate, (ParamRef *) expr);
|
|
break;
|
|
|
|
case T_A_Const:
|
|
result = (Node *) make_const(pstate, (A_Const *) expr);
|
|
break;
|
|
|
|
case T_A_Indirection:
|
|
result = transformIndirection(pstate, (A_Indirection *) expr);
|
|
break;
|
|
|
|
case T_A_ArrayExpr:
|
|
result = transformArrayExpr(pstate, (A_ArrayExpr *) expr,
|
|
InvalidOid, InvalidOid, -1);
|
|
break;
|
|
|
|
case T_TypeCast:
|
|
result = transformTypeCast(pstate, (TypeCast *) expr);
|
|
break;
|
|
|
|
case T_CollateClause:
|
|
result = transformCollateClause(pstate, (CollateClause *) expr);
|
|
break;
|
|
|
|
case T_A_Expr:
|
|
{
|
|
A_Expr *a = (A_Expr *) expr;
|
|
|
|
switch (a->kind)
|
|
{
|
|
case AEXPR_OP:
|
|
result = transformAExprOp(pstate, a);
|
|
break;
|
|
case AEXPR_OP_ANY:
|
|
result = transformAExprOpAny(pstate, a);
|
|
break;
|
|
case AEXPR_OP_ALL:
|
|
result = transformAExprOpAll(pstate, a);
|
|
break;
|
|
case AEXPR_DISTINCT:
|
|
case AEXPR_NOT_DISTINCT:
|
|
result = transformAExprDistinct(pstate, a);
|
|
break;
|
|
case AEXPR_NULLIF:
|
|
result = transformAExprNullIf(pstate, a);
|
|
break;
|
|
case AEXPR_IN:
|
|
result = transformAExprIn(pstate, a);
|
|
break;
|
|
case AEXPR_LIKE:
|
|
case AEXPR_ILIKE:
|
|
case AEXPR_SIMILAR:
|
|
/* we can transform these just like AEXPR_OP */
|
|
result = transformAExprOp(pstate, a);
|
|
break;
|
|
case AEXPR_BETWEEN:
|
|
case AEXPR_NOT_BETWEEN:
|
|
case AEXPR_BETWEEN_SYM:
|
|
case AEXPR_NOT_BETWEEN_SYM:
|
|
result = transformAExprBetween(pstate, a);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized A_Expr kind: %d", a->kind);
|
|
result = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case T_BoolExpr:
|
|
result = transformBoolExpr(pstate, (BoolExpr *) expr);
|
|
break;
|
|
|
|
case T_FuncCall:
|
|
result = transformFuncCall(pstate, (FuncCall *) expr);
|
|
break;
|
|
|
|
case T_MultiAssignRef:
|
|
result = transformMultiAssignRef(pstate, (MultiAssignRef *) expr);
|
|
break;
|
|
|
|
case T_GroupingFunc:
|
|
result = transformGroupingFunc(pstate, (GroupingFunc *) expr);
|
|
break;
|
|
|
|
case T_MergeSupportFunc:
|
|
result = transformMergeSupportFunc(pstate,
|
|
(MergeSupportFunc *) expr);
|
|
break;
|
|
|
|
case T_NamedArgExpr:
|
|
{
|
|
NamedArgExpr *na = (NamedArgExpr *) expr;
|
|
|
|
na->arg = (Expr *) transformExprRecurse(pstate, (Node *) na->arg);
|
|
result = expr;
|
|
break;
|
|
}
|
|
|
|
case T_SubLink:
|
|
result = transformSubLink(pstate, (SubLink *) expr);
|
|
break;
|
|
|
|
case T_CaseExpr:
|
|
result = transformCaseExpr(pstate, (CaseExpr *) expr);
|
|
break;
|
|
|
|
case T_RowExpr:
|
|
result = transformRowExpr(pstate, (RowExpr *) expr, false);
|
|
break;
|
|
|
|
case T_CoalesceExpr:
|
|
result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr);
|
|
break;
|
|
|
|
case T_MinMaxExpr:
|
|
result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr);
|
|
break;
|
|
|
|
case T_SQLValueFunction:
|
|
result = transformSQLValueFunction(pstate,
|
|
(SQLValueFunction *) expr);
|
|
break;
|
|
|
|
case T_XmlExpr:
|
|
result = transformXmlExpr(pstate, (XmlExpr *) expr);
|
|
break;
|
|
|
|
case T_XmlSerialize:
|
|
result = transformXmlSerialize(pstate, (XmlSerialize *) expr);
|
|
break;
|
|
|
|
case T_NullTest:
|
|
{
|
|
NullTest *n = (NullTest *) expr;
|
|
|
|
n->arg = (Expr *) transformExprRecurse(pstate, (Node *) n->arg);
|
|
/* the argument can be any type, so don't coerce it */
|
|
n->argisrow = type_is_rowtype(exprType((Node *) n->arg));
|
|
result = expr;
|
|
break;
|
|
}
|
|
|
|
case T_BooleanTest:
|
|
result = transformBooleanTest(pstate, (BooleanTest *) expr);
|
|
break;
|
|
|
|
case T_CurrentOfExpr:
|
|
result = transformCurrentOfExpr(pstate, (CurrentOfExpr *) expr);
|
|
break;
|
|
|
|
/*
|
|
* In all places where DEFAULT is legal, the caller should have
|
|
* processed it rather than passing it to transformExpr().
|
|
*/
|
|
case T_SetToDefault:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("DEFAULT is not allowed in this context"),
|
|
parser_errposition(pstate,
|
|
((SetToDefault *) expr)->location)));
|
|
break;
|
|
|
|
/*
|
|
* CaseTestExpr doesn't require any processing; it is only
|
|
* injected into parse trees in a fully-formed state.
|
|
*
|
|
* Ordinarily we should not see a Var here, but it is convenient
|
|
* for transformJoinUsingClause() to create untransformed operator
|
|
* trees containing already-transformed Vars. The best
|
|
* alternative would be to deconstruct and reconstruct column
|
|
* references, which seems expensively pointless. So allow it.
|
|
*/
|
|
case T_CaseTestExpr:
|
|
case T_Var:
|
|
{
|
|
result = (Node *) expr;
|
|
break;
|
|
}
|
|
|
|
case T_JsonObjectConstructor:
|
|
result = transformJsonObjectConstructor(pstate, (JsonObjectConstructor *) expr);
|
|
break;
|
|
|
|
case T_JsonArrayConstructor:
|
|
result = transformJsonArrayConstructor(pstate, (JsonArrayConstructor *) expr);
|
|
break;
|
|
|
|
case T_JsonArrayQueryConstructor:
|
|
result = transformJsonArrayQueryConstructor(pstate, (JsonArrayQueryConstructor *) expr);
|
|
break;
|
|
|
|
case T_JsonObjectAgg:
|
|
result = transformJsonObjectAgg(pstate, (JsonObjectAgg *) expr);
|
|
break;
|
|
|
|
case T_JsonArrayAgg:
|
|
result = transformJsonArrayAgg(pstate, (JsonArrayAgg *) expr);
|
|
break;
|
|
|
|
case T_JsonIsPredicate:
|
|
result = transformJsonIsPredicate(pstate, (JsonIsPredicate *) expr);
|
|
break;
|
|
|
|
case T_JsonParseExpr:
|
|
result = transformJsonParseExpr(pstate, (JsonParseExpr *) expr);
|
|
break;
|
|
|
|
case T_JsonScalarExpr:
|
|
result = transformJsonScalarExpr(pstate, (JsonScalarExpr *) expr);
|
|
break;
|
|
|
|
case T_JsonSerializeExpr:
|
|
result = transformJsonSerializeExpr(pstate, (JsonSerializeExpr *) expr);
|
|
break;
|
|
|
|
case T_JsonFuncExpr:
|
|
result = transformJsonFuncExpr(pstate, (JsonFuncExpr *) expr);
|
|
break;
|
|
|
|
default:
|
|
/* should not reach here */
|
|
elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
|
|
result = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* helper routine for delivering "column does not exist" error message
|
|
*
|
|
* (Usually we don't have to work this hard, but the general case of field
|
|
* selection from an arbitrary node needs it.)
|
|
*/
|
|
static void
|
|
unknown_attribute(ParseState *pstate, Node *relref, const char *attname,
|
|
int location)
|
|
{
|
|
RangeTblEntry *rte;
|
|
|
|
if (IsA(relref, Var) &&
|
|
((Var *) relref)->varattno == InvalidAttrNumber)
|
|
{
|
|
/* Reference the RTE by alias not by actual table name */
|
|
rte = GetRTEByRangeTablePosn(pstate,
|
|
((Var *) relref)->varno,
|
|
((Var *) relref)->varlevelsup);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column %s.%s does not exist",
|
|
rte->eref->aliasname, attname),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
else
|
|
{
|
|
/* Have to do it by reference to the type of the expression */
|
|
Oid relTypeId = exprType(relref);
|
|
|
|
if (ISCOMPLEX(relTypeId))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column \"%s\" not found in data type %s",
|
|
attname, format_type_be(relTypeId)),
|
|
parser_errposition(pstate, location)));
|
|
else if (relTypeId == RECORDOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("could not identify column \"%s\" in record data type",
|
|
attname),
|
|
parser_errposition(pstate, location)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("column notation .%s applied to type %s, "
|
|
"which is not a composite type",
|
|
attname, format_type_be(relTypeId)),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
}
|
|
|
|
static Node *
|
|
transformIndirection(ParseState *pstate, A_Indirection *ind)
|
|
{
|
|
Node *last_srf = pstate->p_last_srf;
|
|
Node *result = transformExprRecurse(pstate, ind->arg);
|
|
List *subscripts = NIL;
|
|
int location = exprLocation(result);
|
|
ListCell *i;
|
|
|
|
/*
|
|
* We have to split any field-selection operations apart from
|
|
* subscripting. Adjacent A_Indices nodes have to be treated as a single
|
|
* multidimensional subscript operation.
|
|
*/
|
|
foreach(i, ind->indirection)
|
|
{
|
|
Node *n = lfirst(i);
|
|
|
|
if (IsA(n, A_Indices))
|
|
subscripts = lappend(subscripts, n);
|
|
else if (IsA(n, A_Star))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("row expansion via \"*\" is not supported here"),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
else
|
|
{
|
|
Node *newresult;
|
|
|
|
Assert(IsA(n, String));
|
|
|
|
/* process subscripts before this field selection */
|
|
if (subscripts)
|
|
result = (Node *) transformContainerSubscripts(pstate,
|
|
result,
|
|
exprType(result),
|
|
exprTypmod(result),
|
|
subscripts,
|
|
false);
|
|
subscripts = NIL;
|
|
|
|
newresult = ParseFuncOrColumn(pstate,
|
|
list_make1(n),
|
|
list_make1(result),
|
|
last_srf,
|
|
NULL,
|
|
false,
|
|
location);
|
|
if (newresult == NULL)
|
|
unknown_attribute(pstate, result, strVal(n), location);
|
|
result = newresult;
|
|
}
|
|
}
|
|
/* process trailing subscripts, if any */
|
|
if (subscripts)
|
|
result = (Node *) transformContainerSubscripts(pstate,
|
|
result,
|
|
exprType(result),
|
|
exprTypmod(result),
|
|
subscripts,
|
|
false);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Transform a ColumnRef.
|
|
*
|
|
* If you find yourself changing this code, see also ExpandColumnRefStar.
|
|
*/
|
|
static Node *
|
|
transformColumnRef(ParseState *pstate, ColumnRef *cref)
|
|
{
|
|
Node *node = NULL;
|
|
char *nspname = NULL;
|
|
char *relname = NULL;
|
|
char *colname = NULL;
|
|
ParseNamespaceItem *nsitem;
|
|
int levels_up;
|
|
enum
|
|
{
|
|
CRERR_NO_COLUMN,
|
|
CRERR_NO_RTE,
|
|
CRERR_WRONG_DB,
|
|
CRERR_TOO_MANY
|
|
} crerr = CRERR_NO_COLUMN;
|
|
const char *err;
|
|
|
|
/*
|
|
* Check to see if the column reference is in an invalid place within the
|
|
* query. We allow column references in most places, except in default
|
|
* expressions and partition bound expressions.
|
|
*/
|
|
err = NULL;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
case EXPR_KIND_WHERE:
|
|
case EXPR_KIND_POLICY:
|
|
case EXPR_KIND_HAVING:
|
|
case EXPR_KIND_FILTER:
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
case EXPR_KIND_WINDOW_FRAME_GROUPS:
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
case EXPR_KIND_MERGE_WHEN:
|
|
case EXPR_KIND_GROUP_BY:
|
|
case EXPR_KIND_ORDER_BY:
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
case EXPR_KIND_RETURNING:
|
|
case EXPR_KIND_MERGE_RETURNING:
|
|
case EXPR_KIND_VALUES:
|
|
case EXPR_KIND_VALUES_SINGLE:
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
case EXPR_KIND_STATS_EXPRESSION:
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
case EXPR_KIND_PARTITION_EXPRESSION:
|
|
case EXPR_KIND_CALL_ARGUMENT:
|
|
case EXPR_KIND_COPY_WHERE:
|
|
case EXPR_KIND_GENERATED_COLUMN:
|
|
case EXPR_KIND_CYCLE_MARK:
|
|
/* okay */
|
|
break;
|
|
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
err = _("cannot use column reference in DEFAULT expression");
|
|
break;
|
|
case EXPR_KIND_PARTITION_BOUND:
|
|
err = _("cannot use column reference in partition bound expression");
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, cref->location)));
|
|
|
|
/*
|
|
* Give the PreParseColumnRefHook, if any, first shot. If it returns
|
|
* non-null then that's all, folks.
|
|
*/
|
|
if (pstate->p_pre_columnref_hook != NULL)
|
|
{
|
|
node = pstate->p_pre_columnref_hook(pstate, cref);
|
|
if (node != NULL)
|
|
return node;
|
|
}
|
|
|
|
/*----------
|
|
* The allowed syntaxes are:
|
|
*
|
|
* A First try to resolve as unqualified column name;
|
|
* if no luck, try to resolve as unqualified table name (A.*).
|
|
* A.B A is an unqualified table name; B is either a
|
|
* column or function name (trying column name first).
|
|
* A.B.C schema A, table B, col or func name C.
|
|
* A.B.C.D catalog A, schema B, table C, col or func D.
|
|
* A.* A is an unqualified table name; means whole-row value.
|
|
* A.B.* whole-row value of table B in schema A.
|
|
* A.B.C.* whole-row value of table C in schema B in catalog A.
|
|
*
|
|
* We do not need to cope with bare "*"; that will only be accepted by
|
|
* the grammar at the top level of a SELECT list, and transformTargetList
|
|
* will take care of it before it ever gets here. Also, "A.*" etc will
|
|
* be expanded by transformTargetList if they appear at SELECT top level,
|
|
* so here we are only going to see them as function or operator inputs.
|
|
*
|
|
* Currently, if a catalog name is given then it must equal the current
|
|
* database name; we check it here and then discard it.
|
|
*----------
|
|
*/
|
|
switch (list_length(cref->fields))
|
|
{
|
|
case 1:
|
|
{
|
|
Node *field1 = (Node *) linitial(cref->fields);
|
|
|
|
colname = strVal(field1);
|
|
|
|
/* Try to identify as an unqualified column */
|
|
node = colNameToVar(pstate, colname, false, cref->location);
|
|
|
|
if (node == NULL)
|
|
{
|
|
/*
|
|
* Not known as a column of any range-table entry.
|
|
*
|
|
* Try to find the name as a relation. Note that only
|
|
* relations already entered into the rangetable will be
|
|
* recognized.
|
|
*
|
|
* This is a hack for backwards compatibility with
|
|
* PostQUEL-inspired syntax. The preferred form now is
|
|
* "rel.*".
|
|
*/
|
|
nsitem = refnameNamespaceItem(pstate, NULL, colname,
|
|
cref->location,
|
|
&levels_up);
|
|
if (nsitem)
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
Node *field1 = (Node *) linitial(cref->fields);
|
|
Node *field2 = (Node *) lsecond(cref->fields);
|
|
|
|
relname = strVal(field1);
|
|
|
|
/* Locate the referenced nsitem */
|
|
nsitem = refnameNamespaceItem(pstate, nspname, relname,
|
|
cref->location,
|
|
&levels_up);
|
|
if (nsitem == NULL)
|
|
{
|
|
crerr = CRERR_NO_RTE;
|
|
break;
|
|
}
|
|
|
|
/* Whole-row reference? */
|
|
if (IsA(field2, A_Star))
|
|
{
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
colname = strVal(field2);
|
|
|
|
/* Try to identify as a column of the nsitem */
|
|
node = scanNSItemForColumn(pstate, nsitem, levels_up, colname,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/* Try it as a function call on the whole row */
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(colname)),
|
|
list_make1(node),
|
|
pstate->p_last_srf,
|
|
NULL,
|
|
false,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
Node *field1 = (Node *) linitial(cref->fields);
|
|
Node *field2 = (Node *) lsecond(cref->fields);
|
|
Node *field3 = (Node *) lthird(cref->fields);
|
|
|
|
nspname = strVal(field1);
|
|
relname = strVal(field2);
|
|
|
|
/* Locate the referenced nsitem */
|
|
nsitem = refnameNamespaceItem(pstate, nspname, relname,
|
|
cref->location,
|
|
&levels_up);
|
|
if (nsitem == NULL)
|
|
{
|
|
crerr = CRERR_NO_RTE;
|
|
break;
|
|
}
|
|
|
|
/* Whole-row reference? */
|
|
if (IsA(field3, A_Star))
|
|
{
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
colname = strVal(field3);
|
|
|
|
/* Try to identify as a column of the nsitem */
|
|
node = scanNSItemForColumn(pstate, nsitem, levels_up, colname,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/* Try it as a function call on the whole row */
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(colname)),
|
|
list_make1(node),
|
|
pstate->p_last_srf,
|
|
NULL,
|
|
false,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
Node *field1 = (Node *) linitial(cref->fields);
|
|
Node *field2 = (Node *) lsecond(cref->fields);
|
|
Node *field3 = (Node *) lthird(cref->fields);
|
|
Node *field4 = (Node *) lfourth(cref->fields);
|
|
char *catname;
|
|
|
|
catname = strVal(field1);
|
|
nspname = strVal(field2);
|
|
relname = strVal(field3);
|
|
|
|
/*
|
|
* We check the catalog name and then ignore it.
|
|
*/
|
|
if (strcmp(catname, get_database_name(MyDatabaseId)) != 0)
|
|
{
|
|
crerr = CRERR_WRONG_DB;
|
|
break;
|
|
}
|
|
|
|
/* Locate the referenced nsitem */
|
|
nsitem = refnameNamespaceItem(pstate, nspname, relname,
|
|
cref->location,
|
|
&levels_up);
|
|
if (nsitem == NULL)
|
|
{
|
|
crerr = CRERR_NO_RTE;
|
|
break;
|
|
}
|
|
|
|
/* Whole-row reference? */
|
|
if (IsA(field4, A_Star))
|
|
{
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
colname = strVal(field4);
|
|
|
|
/* Try to identify as a column of the nsitem */
|
|
node = scanNSItemForColumn(pstate, nsitem, levels_up, colname,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/* Try it as a function call on the whole row */
|
|
node = transformWholeRowRef(pstate, nsitem, levels_up,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(colname)),
|
|
list_make1(node),
|
|
pstate->p_last_srf,
|
|
NULL,
|
|
false,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
crerr = CRERR_TOO_MANY; /* too many dotted names */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now give the PostParseColumnRefHook, if any, a chance. We pass the
|
|
* translation-so-far so that it can throw an error if it wishes in the
|
|
* case that it has a conflicting interpretation of the ColumnRef. (If it
|
|
* just translates anyway, we'll throw an error, because we can't undo
|
|
* whatever effects the preceding steps may have had on the pstate.) If it
|
|
* returns NULL, use the standard translation, or throw a suitable error
|
|
* if there is none.
|
|
*/
|
|
if (pstate->p_post_columnref_hook != NULL)
|
|
{
|
|
Node *hookresult;
|
|
|
|
hookresult = pstate->p_post_columnref_hook(pstate, cref, node);
|
|
if (node == NULL)
|
|
node = hookresult;
|
|
else if (hookresult != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_AMBIGUOUS_COLUMN),
|
|
errmsg("column reference \"%s\" is ambiguous",
|
|
NameListToString(cref->fields)),
|
|
parser_errposition(pstate, cref->location)));
|
|
}
|
|
|
|
/*
|
|
* Throw error if no translation found.
|
|
*/
|
|
if (node == NULL)
|
|
{
|
|
switch (crerr)
|
|
{
|
|
case CRERR_NO_COLUMN:
|
|
errorMissingColumn(pstate, relname, colname, cref->location);
|
|
break;
|
|
case CRERR_NO_RTE:
|
|
errorMissingRTE(pstate, makeRangeVar(nspname, relname,
|
|
cref->location));
|
|
break;
|
|
case CRERR_WRONG_DB:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cross-database references are not implemented: %s",
|
|
NameListToString(cref->fields)),
|
|
parser_errposition(pstate, cref->location)));
|
|
break;
|
|
case CRERR_TOO_MANY:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("improper qualified name (too many dotted names): %s",
|
|
NameListToString(cref->fields)),
|
|
parser_errposition(pstate, cref->location)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static Node *
|
|
transformParamRef(ParseState *pstate, ParamRef *pref)
|
|
{
|
|
Node *result;
|
|
|
|
/*
|
|
* The core parser knows nothing about Params. If a hook is supplied,
|
|
* call it. If not, or if the hook returns NULL, throw a generic error.
|
|
*/
|
|
if (pstate->p_paramref_hook != NULL)
|
|
result = pstate->p_paramref_hook(pstate, pref);
|
|
else
|
|
result = NULL;
|
|
|
|
if (result == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_PARAMETER),
|
|
errmsg("there is no parameter $%d", pref->number),
|
|
parser_errposition(pstate, pref->location)));
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Test whether an a_expr is a plain NULL constant or not */
|
|
static bool
|
|
exprIsNullConstant(Node *arg)
|
|
{
|
|
if (arg && IsA(arg, A_Const))
|
|
{
|
|
A_Const *con = (A_Const *) arg;
|
|
|
|
if (con->isnull)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOp(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = a->lexpr;
|
|
Node *rexpr = a->rexpr;
|
|
Node *result;
|
|
|
|
/*
|
|
* Special-case "foo = NULL" and "NULL = foo" for compatibility with
|
|
* standards-broken products (like Microsoft's). Turn these into IS NULL
|
|
* exprs. (If either side is a CaseTestExpr, then the expression was
|
|
* generated internally from a CASE-WHEN expression, and
|
|
* transform_null_equals does not apply.)
|
|
*/
|
|
if (Transform_null_equals &&
|
|
list_length(a->name) == 1 &&
|
|
strcmp(strVal(linitial(a->name)), "=") == 0 &&
|
|
(exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)) &&
|
|
(!IsA(lexpr, CaseTestExpr) && !IsA(rexpr, CaseTestExpr)))
|
|
{
|
|
NullTest *n = makeNode(NullTest);
|
|
|
|
n->nulltesttype = IS_NULL;
|
|
n->location = a->location;
|
|
|
|
if (exprIsNullConstant(lexpr))
|
|
n->arg = (Expr *) rexpr;
|
|
else
|
|
n->arg = (Expr *) lexpr;
|
|
|
|
result = transformExprRecurse(pstate, (Node *) n);
|
|
}
|
|
else if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, SubLink) &&
|
|
((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK)
|
|
{
|
|
/*
|
|
* Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the
|
|
* grammar did this, but now that a row construct is allowed anywhere
|
|
* in expressions, it's easier to do it here.
|
|
*/
|
|
SubLink *s = (SubLink *) rexpr;
|
|
|
|
s->subLinkType = ROWCOMPARE_SUBLINK;
|
|
s->testexpr = lexpr;
|
|
s->operName = a->name;
|
|
s->location = a->location;
|
|
result = transformExprRecurse(pstate, (Node *) s);
|
|
}
|
|
else if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, RowExpr))
|
|
{
|
|
/* ROW() op ROW() is handled specially */
|
|
lexpr = transformExprRecurse(pstate, lexpr);
|
|
rexpr = transformExprRecurse(pstate, rexpr);
|
|
|
|
result = make_row_comparison_op(pstate,
|
|
a->name,
|
|
castNode(RowExpr, lexpr)->args,
|
|
castNode(RowExpr, rexpr)->args,
|
|
a->location);
|
|
}
|
|
else
|
|
{
|
|
/* Ordinary scalar operator */
|
|
Node *last_srf = pstate->p_last_srf;
|
|
|
|
lexpr = transformExprRecurse(pstate, lexpr);
|
|
rexpr = transformExprRecurse(pstate, rexpr);
|
|
|
|
result = (Node *) make_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
last_srf,
|
|
a->location);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOpAny(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExprRecurse(pstate, a->lexpr);
|
|
Node *rexpr = transformExprRecurse(pstate, a->rexpr);
|
|
|
|
return (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
true,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOpAll(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExprRecurse(pstate, a->lexpr);
|
|
Node *rexpr = transformExprRecurse(pstate, a->rexpr);
|
|
|
|
return (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
false,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
static Node *
|
|
transformAExprDistinct(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = a->lexpr;
|
|
Node *rexpr = a->rexpr;
|
|
Node *result;
|
|
|
|
/*
|
|
* If either input is an undecorated NULL literal, transform to a NullTest
|
|
* on the other input. That's simpler to process than a full DistinctExpr,
|
|
* and it avoids needing to require that the datatype have an = operator.
|
|
*/
|
|
if (exprIsNullConstant(rexpr))
|
|
return make_nulltest_from_distinct(pstate, a, lexpr);
|
|
if (exprIsNullConstant(lexpr))
|
|
return make_nulltest_from_distinct(pstate, a, rexpr);
|
|
|
|
lexpr = transformExprRecurse(pstate, lexpr);
|
|
rexpr = transformExprRecurse(pstate, rexpr);
|
|
|
|
if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, RowExpr))
|
|
{
|
|
/* ROW() op ROW() is handled specially */
|
|
result = make_row_distinct_op(pstate, a->name,
|
|
(RowExpr *) lexpr,
|
|
(RowExpr *) rexpr,
|
|
a->location);
|
|
}
|
|
else
|
|
{
|
|
/* Ordinary scalar operator */
|
|
result = (Node *) make_distinct_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
/*
|
|
* If it's NOT DISTINCT, we first build a DistinctExpr and then stick a
|
|
* NOT on top.
|
|
*/
|
|
if (a->kind == AEXPR_NOT_DISTINCT)
|
|
result = (Node *) makeBoolExpr(NOT_EXPR,
|
|
list_make1(result),
|
|
a->location);
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprNullIf(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExprRecurse(pstate, a->lexpr);
|
|
Node *rexpr = transformExprRecurse(pstate, a->rexpr);
|
|
OpExpr *result;
|
|
|
|
result = (OpExpr *) make_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
pstate->p_last_srf,
|
|
a->location);
|
|
|
|
/*
|
|
* The comparison operator itself should yield boolean ...
|
|
*/
|
|
if (result->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
/* translator: %s is name of a SQL construct, eg NULLIF */
|
|
errmsg("%s requires = operator to yield boolean", "NULLIF"),
|
|
parser_errposition(pstate, a->location)));
|
|
if (result->opretset)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
/* translator: %s is name of a SQL construct, eg NULLIF */
|
|
errmsg("%s must not return a set", "NULLIF"),
|
|
parser_errposition(pstate, a->location)));
|
|
|
|
/*
|
|
* ... but the NullIfExpr will yield the first operand's type.
|
|
*/
|
|
result->opresulttype = exprType((Node *) linitial(result->args));
|
|
|
|
/*
|
|
* We rely on NullIfExpr and OpExpr being the same struct
|
|
*/
|
|
NodeSetTag(result, T_NullIfExpr);
|
|
|
|
return (Node *) result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprIn(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *result = NULL;
|
|
Node *lexpr;
|
|
List *rexprs;
|
|
List *rvars;
|
|
List *rnonvars;
|
|
bool useOr;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* If the operator is <>, combine with AND not OR.
|
|
*/
|
|
if (strcmp(strVal(linitial(a->name)), "<>") == 0)
|
|
useOr = false;
|
|
else
|
|
useOr = true;
|
|
|
|
/*
|
|
* We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only
|
|
* possible if there is a suitable array type available. If not, we fall
|
|
* back to a boolean condition tree with multiple copies of the lefthand
|
|
* expression. Also, any IN-list items that contain Vars are handled as
|
|
* separate boolean conditions, because that gives the planner more scope
|
|
* for optimization on such clauses.
|
|
*
|
|
* First step: transform all the inputs, and detect whether any contain
|
|
* Vars.
|
|
*/
|
|
lexpr = transformExprRecurse(pstate, a->lexpr);
|
|
rexprs = rvars = rnonvars = NIL;
|
|
foreach(l, (List *) a->rexpr)
|
|
{
|
|
Node *rexpr = transformExprRecurse(pstate, lfirst(l));
|
|
|
|
rexprs = lappend(rexprs, rexpr);
|
|
if (contain_vars_of_level(rexpr, 0))
|
|
rvars = lappend(rvars, rexpr);
|
|
else
|
|
rnonvars = lappend(rnonvars, rexpr);
|
|
}
|
|
|
|
/*
|
|
* ScalarArrayOpExpr is only going to be useful if there's more than one
|
|
* non-Var righthand item.
|
|
*/
|
|
if (list_length(rnonvars) > 1)
|
|
{
|
|
List *allexprs;
|
|
Oid scalar_type;
|
|
Oid array_type;
|
|
|
|
/*
|
|
* Try to select a common type for the array elements. Note that
|
|
* since the LHS' type is first in the list, it will be preferred when
|
|
* there is doubt (eg, when all the RHS items are unknown literals).
|
|
*
|
|
* Note: use list_concat here not lcons, to avoid damaging rnonvars.
|
|
*/
|
|
allexprs = list_concat(list_make1(lexpr), rnonvars);
|
|
scalar_type = select_common_type(pstate, allexprs, NULL, NULL);
|
|
|
|
/* We have to verify that the selected type actually works */
|
|
if (OidIsValid(scalar_type) &&
|
|
!verify_common_type(scalar_type, allexprs))
|
|
scalar_type = InvalidOid;
|
|
|
|
/*
|
|
* Do we have an array type to use? Aside from the case where there
|
|
* isn't one, we don't risk using ScalarArrayOpExpr when the common
|
|
* type is RECORD, because the RowExpr comparison logic below can cope
|
|
* with some cases of non-identical row types.
|
|
*/
|
|
if (OidIsValid(scalar_type) && scalar_type != RECORDOID)
|
|
array_type = get_array_type(scalar_type);
|
|
else
|
|
array_type = InvalidOid;
|
|
if (array_type != InvalidOid)
|
|
{
|
|
/*
|
|
* OK: coerce all the right-hand non-Var inputs to the common type
|
|
* and build an ArrayExpr for them.
|
|
*/
|
|
List *aexprs;
|
|
ArrayExpr *newa;
|
|
|
|
aexprs = NIL;
|
|
foreach(l, rnonvars)
|
|
{
|
|
Node *rexpr = (Node *) lfirst(l);
|
|
|
|
rexpr = coerce_to_common_type(pstate, rexpr,
|
|
scalar_type,
|
|
"IN");
|
|
aexprs = lappend(aexprs, rexpr);
|
|
}
|
|
newa = makeNode(ArrayExpr);
|
|
newa->array_typeid = array_type;
|
|
/* array_collid will be set by parse_collate.c */
|
|
newa->element_typeid = scalar_type;
|
|
newa->elements = aexprs;
|
|
newa->multidims = false;
|
|
newa->location = -1;
|
|
|
|
result = (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
useOr,
|
|
lexpr,
|
|
(Node *) newa,
|
|
a->location);
|
|
|
|
/* Consider only the Vars (if any) in the loop below */
|
|
rexprs = rvars;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must do it the hard way, ie, with a boolean expression tree.
|
|
*/
|
|
foreach(l, rexprs)
|
|
{
|
|
Node *rexpr = (Node *) lfirst(l);
|
|
Node *cmp;
|
|
|
|
if (IsA(lexpr, RowExpr) &&
|
|
IsA(rexpr, RowExpr))
|
|
{
|
|
/* ROW() op ROW() is handled specially */
|
|
cmp = make_row_comparison_op(pstate,
|
|
a->name,
|
|
copyObject(((RowExpr *) lexpr)->args),
|
|
((RowExpr *) rexpr)->args,
|
|
a->location);
|
|
}
|
|
else
|
|
{
|
|
/* Ordinary scalar operator */
|
|
cmp = (Node *) make_op(pstate,
|
|
a->name,
|
|
copyObject(lexpr),
|
|
rexpr,
|
|
pstate->p_last_srf,
|
|
a->location);
|
|
}
|
|
|
|
cmp = coerce_to_boolean(pstate, cmp, "IN");
|
|
if (result == NULL)
|
|
result = cmp;
|
|
else
|
|
result = (Node *) makeBoolExpr(useOr ? OR_EXPR : AND_EXPR,
|
|
list_make2(result, cmp),
|
|
a->location);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprBetween(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *aexpr;
|
|
Node *bexpr;
|
|
Node *cexpr;
|
|
Node *result;
|
|
Node *sub1;
|
|
Node *sub2;
|
|
List *args;
|
|
|
|
/* Deconstruct A_Expr into three subexprs */
|
|
aexpr = a->lexpr;
|
|
args = castNode(List, a->rexpr);
|
|
Assert(list_length(args) == 2);
|
|
bexpr = (Node *) linitial(args);
|
|
cexpr = (Node *) lsecond(args);
|
|
|
|
/*
|
|
* Build the equivalent comparison expression. Make copies of
|
|
* multiply-referenced subexpressions for safety. (XXX this is really
|
|
* wrong since it results in multiple runtime evaluations of what may be
|
|
* volatile expressions ...)
|
|
*
|
|
* Ideally we would not use hard-wired operators here but instead use
|
|
* opclasses. However, mixed data types and other issues make this
|
|
* difficult:
|
|
* http://archives.postgresql.org/pgsql-hackers/2008-08/msg01142.php
|
|
*/
|
|
switch (a->kind)
|
|
{
|
|
case AEXPR_BETWEEN:
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=",
|
|
aexpr, bexpr,
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, "<=",
|
|
copyObject(aexpr), cexpr,
|
|
a->location));
|
|
result = (Node *) makeBoolExpr(AND_EXPR, args, a->location);
|
|
break;
|
|
case AEXPR_NOT_BETWEEN:
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<",
|
|
aexpr, bexpr,
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, ">",
|
|
copyObject(aexpr), cexpr,
|
|
a->location));
|
|
result = (Node *) makeBoolExpr(OR_EXPR, args, a->location);
|
|
break;
|
|
case AEXPR_BETWEEN_SYM:
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=",
|
|
aexpr, bexpr,
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, "<=",
|
|
copyObject(aexpr), cexpr,
|
|
a->location));
|
|
sub1 = (Node *) makeBoolExpr(AND_EXPR, args, a->location);
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=",
|
|
copyObject(aexpr), copyObject(cexpr),
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, "<=",
|
|
copyObject(aexpr), copyObject(bexpr),
|
|
a->location));
|
|
sub2 = (Node *) makeBoolExpr(AND_EXPR, args, a->location);
|
|
args = list_make2(sub1, sub2);
|
|
result = (Node *) makeBoolExpr(OR_EXPR, args, a->location);
|
|
break;
|
|
case AEXPR_NOT_BETWEEN_SYM:
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<",
|
|
aexpr, bexpr,
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, ">",
|
|
copyObject(aexpr), cexpr,
|
|
a->location));
|
|
sub1 = (Node *) makeBoolExpr(OR_EXPR, args, a->location);
|
|
args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<",
|
|
copyObject(aexpr), copyObject(cexpr),
|
|
a->location),
|
|
makeSimpleA_Expr(AEXPR_OP, ">",
|
|
copyObject(aexpr), copyObject(bexpr),
|
|
a->location));
|
|
sub2 = (Node *) makeBoolExpr(OR_EXPR, args, a->location);
|
|
args = list_make2(sub1, sub2);
|
|
result = (Node *) makeBoolExpr(AND_EXPR, args, a->location);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized A_Expr kind: %d", a->kind);
|
|
result = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
return transformExprRecurse(pstate, result);
|
|
}
|
|
|
|
static Node *
|
|
transformMergeSupportFunc(ParseState *pstate, MergeSupportFunc *f)
|
|
{
|
|
/*
|
|
* All we need to do is check that we're in the RETURNING list of a MERGE
|
|
* command. If so, we just return the node as-is.
|
|
*/
|
|
if (pstate->p_expr_kind != EXPR_KIND_MERGE_RETURNING)
|
|
{
|
|
ParseState *parent_pstate = pstate->parentParseState;
|
|
|
|
while (parent_pstate &&
|
|
parent_pstate->p_expr_kind != EXPR_KIND_MERGE_RETURNING)
|
|
parent_pstate = parent_pstate->parentParseState;
|
|
|
|
if (!parent_pstate)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("MERGE_ACTION() can only be used in the RETURNING list of a MERGE command"),
|
|
parser_errposition(pstate, f->location));
|
|
}
|
|
|
|
return (Node *) f;
|
|
}
|
|
|
|
static Node *
|
|
transformBoolExpr(ParseState *pstate, BoolExpr *a)
|
|
{
|
|
List *args = NIL;
|
|
const char *opname;
|
|
ListCell *lc;
|
|
|
|
switch (a->boolop)
|
|
{
|
|
case AND_EXPR:
|
|
opname = "AND";
|
|
break;
|
|
case OR_EXPR:
|
|
opname = "OR";
|
|
break;
|
|
case NOT_EXPR:
|
|
opname = "NOT";
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized boolop: %d", (int) a->boolop);
|
|
opname = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
foreach(lc, a->args)
|
|
{
|
|
Node *arg = (Node *) lfirst(lc);
|
|
|
|
arg = transformExprRecurse(pstate, arg);
|
|
arg = coerce_to_boolean(pstate, arg, opname);
|
|
args = lappend(args, arg);
|
|
}
|
|
|
|
return (Node *) makeBoolExpr(a->boolop, args, a->location);
|
|
}
|
|
|
|
static Node *
|
|
transformFuncCall(ParseState *pstate, FuncCall *fn)
|
|
{
|
|
Node *last_srf = pstate->p_last_srf;
|
|
List *targs;
|
|
ListCell *args;
|
|
|
|
/* Transform the list of arguments ... */
|
|
targs = NIL;
|
|
foreach(args, fn->args)
|
|
{
|
|
targs = lappend(targs, transformExprRecurse(pstate,
|
|
(Node *) lfirst(args)));
|
|
}
|
|
|
|
/*
|
|
* When WITHIN GROUP is used, we treat its ORDER BY expressions as
|
|
* additional arguments to the function, for purposes of function lookup
|
|
* and argument type coercion. So, transform each such expression and add
|
|
* them to the targs list. We don't explicitly mark where each argument
|
|
* came from, but ParseFuncOrColumn can tell what's what by reference to
|
|
* list_length(fn->agg_order).
|
|
*/
|
|
if (fn->agg_within_group)
|
|
{
|
|
Assert(fn->agg_order != NIL);
|
|
foreach(args, fn->agg_order)
|
|
{
|
|
SortBy *arg = (SortBy *) lfirst(args);
|
|
|
|
targs = lappend(targs, transformExpr(pstate, arg->node,
|
|
EXPR_KIND_ORDER_BY));
|
|
}
|
|
}
|
|
|
|
/* ... and hand off to ParseFuncOrColumn */
|
|
return ParseFuncOrColumn(pstate,
|
|
fn->funcname,
|
|
targs,
|
|
last_srf,
|
|
fn,
|
|
false,
|
|
fn->location);
|
|
}
|
|
|
|
static Node *
|
|
transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref)
|
|
{
|
|
SubLink *sublink;
|
|
RowExpr *rexpr;
|
|
Query *qtree;
|
|
TargetEntry *tle;
|
|
|
|
/* We should only see this in first-stage processing of UPDATE tlists */
|
|
Assert(pstate->p_expr_kind == EXPR_KIND_UPDATE_SOURCE);
|
|
|
|
/* We only need to transform the source if this is the first column */
|
|
if (maref->colno == 1)
|
|
{
|
|
/*
|
|
* For now, we only allow EXPR SubLinks and RowExprs as the source of
|
|
* an UPDATE multiassignment. This is sufficient to cover interesting
|
|
* cases; at worst, someone would have to write (SELECT * FROM expr)
|
|
* to expand a composite-returning expression of another form.
|
|
*/
|
|
if (IsA(maref->source, SubLink) &&
|
|
((SubLink *) maref->source)->subLinkType == EXPR_SUBLINK)
|
|
{
|
|
/* Relabel it as a MULTIEXPR_SUBLINK */
|
|
sublink = (SubLink *) maref->source;
|
|
sublink->subLinkType = MULTIEXPR_SUBLINK;
|
|
/* And transform it */
|
|
sublink = (SubLink *) transformExprRecurse(pstate,
|
|
(Node *) sublink);
|
|
|
|
qtree = castNode(Query, sublink->subselect);
|
|
|
|
/* Check subquery returns required number of columns */
|
|
if (count_nonjunk_tlist_entries(qtree->targetList) != maref->ncolumns)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("number of columns does not match number of values"),
|
|
parser_errposition(pstate, sublink->location)));
|
|
|
|
/*
|
|
* Build a resjunk tlist item containing the MULTIEXPR SubLink,
|
|
* and add it to pstate->p_multiassign_exprs, whence it will later
|
|
* get appended to the completed targetlist. We needn't worry
|
|
* about selecting a resno for it; transformUpdateStmt will do
|
|
* that.
|
|
*/
|
|
tle = makeTargetEntry((Expr *) sublink, 0, NULL, true);
|
|
pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs,
|
|
tle);
|
|
|
|
/*
|
|
* Assign a unique-within-this-targetlist ID to the MULTIEXPR
|
|
* SubLink. We can just use its position in the
|
|
* p_multiassign_exprs list.
|
|
*/
|
|
sublink->subLinkId = list_length(pstate->p_multiassign_exprs);
|
|
}
|
|
else if (IsA(maref->source, RowExpr))
|
|
{
|
|
/* Transform the RowExpr, allowing SetToDefault items */
|
|
rexpr = (RowExpr *) transformRowExpr(pstate,
|
|
(RowExpr *) maref->source,
|
|
true);
|
|
|
|
/* Check it returns required number of columns */
|
|
if (list_length(rexpr->args) != maref->ncolumns)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("number of columns does not match number of values"),
|
|
parser_errposition(pstate, rexpr->location)));
|
|
|
|
/*
|
|
* Temporarily append it to p_multiassign_exprs, so we can get it
|
|
* back when we come back here for additional columns.
|
|
*/
|
|
tle = makeTargetEntry((Expr *) rexpr, 0, NULL, true);
|
|
pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs,
|
|
tle);
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("source for a multiple-column UPDATE item must be a sub-SELECT or ROW() expression"),
|
|
parser_errposition(pstate, exprLocation(maref->source))));
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Second or later column in a multiassignment. Re-fetch the
|
|
* transformed SubLink or RowExpr, which we assume is still the last
|
|
* entry in p_multiassign_exprs.
|
|
*/
|
|
Assert(pstate->p_multiassign_exprs != NIL);
|
|
tle = (TargetEntry *) llast(pstate->p_multiassign_exprs);
|
|
}
|
|
|
|
/*
|
|
* Emit the appropriate output expression for the current column
|
|
*/
|
|
if (IsA(tle->expr, SubLink))
|
|
{
|
|
Param *param;
|
|
|
|
sublink = (SubLink *) tle->expr;
|
|
Assert(sublink->subLinkType == MULTIEXPR_SUBLINK);
|
|
qtree = castNode(Query, sublink->subselect);
|
|
|
|
/* Build a Param representing the current subquery output column */
|
|
tle = (TargetEntry *) list_nth(qtree->targetList, maref->colno - 1);
|
|
Assert(!tle->resjunk);
|
|
|
|
param = makeNode(Param);
|
|
param->paramkind = PARAM_MULTIEXPR;
|
|
param->paramid = (sublink->subLinkId << 16) | maref->colno;
|
|
param->paramtype = exprType((Node *) tle->expr);
|
|
param->paramtypmod = exprTypmod((Node *) tle->expr);
|
|
param->paramcollid = exprCollation((Node *) tle->expr);
|
|
param->location = exprLocation((Node *) tle->expr);
|
|
|
|
return (Node *) param;
|
|
}
|
|
|
|
if (IsA(tle->expr, RowExpr))
|
|
{
|
|
Node *result;
|
|
|
|
rexpr = (RowExpr *) tle->expr;
|
|
|
|
/* Just extract and return the next element of the RowExpr */
|
|
result = (Node *) list_nth(rexpr->args, maref->colno - 1);
|
|
|
|
/*
|
|
* If we're at the last column, delete the RowExpr from
|
|
* p_multiassign_exprs; we don't need it anymore, and don't want it in
|
|
* the finished UPDATE tlist. We assume this is still the last entry
|
|
* in p_multiassign_exprs.
|
|
*/
|
|
if (maref->colno == maref->ncolumns)
|
|
pstate->p_multiassign_exprs =
|
|
list_delete_last(pstate->p_multiassign_exprs);
|
|
|
|
return result;
|
|
}
|
|
|
|
elog(ERROR, "unexpected expr type in multiassign list");
|
|
return NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
static Node *
|
|
transformCaseExpr(ParseState *pstate, CaseExpr *c)
|
|
{
|
|
CaseExpr *newc = makeNode(CaseExpr);
|
|
Node *last_srf = pstate->p_last_srf;
|
|
Node *arg;
|
|
CaseTestExpr *placeholder;
|
|
List *newargs;
|
|
List *resultexprs;
|
|
ListCell *l;
|
|
Node *defresult;
|
|
Oid ptype;
|
|
|
|
/* transform the test expression, if any */
|
|
arg = transformExprRecurse(pstate, (Node *) c->arg);
|
|
|
|
/* generate placeholder for test expression */
|
|
if (arg)
|
|
{
|
|
/*
|
|
* If test expression is an untyped literal, force it to text. We have
|
|
* to do something now because we won't be able to do this coercion on
|
|
* the placeholder. This is not as flexible as what was done in 7.4
|
|
* and before, but it's good enough to handle the sort of silly coding
|
|
* commonly seen.
|
|
*/
|
|
if (exprType(arg) == UNKNOWNOID)
|
|
arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE");
|
|
|
|
/*
|
|
* Run collation assignment on the test expression so that we know
|
|
* what collation to mark the placeholder with. In principle we could
|
|
* leave it to parse_collate.c to do that later, but propagating the
|
|
* result to the CaseTestExpr would be unnecessarily complicated.
|
|
*/
|
|
assign_expr_collations(pstate, arg);
|
|
|
|
placeholder = makeNode(CaseTestExpr);
|
|
placeholder->typeId = exprType(arg);
|
|
placeholder->typeMod = exprTypmod(arg);
|
|
placeholder->collation = exprCollation(arg);
|
|
}
|
|
else
|
|
placeholder = NULL;
|
|
|
|
newc->arg = (Expr *) arg;
|
|
|
|
/* transform the list of arguments */
|
|
newargs = NIL;
|
|
resultexprs = NIL;
|
|
foreach(l, c->args)
|
|
{
|
|
CaseWhen *w = lfirst_node(CaseWhen, l);
|
|
CaseWhen *neww = makeNode(CaseWhen);
|
|
Node *warg;
|
|
|
|
warg = (Node *) w->expr;
|
|
if (placeholder)
|
|
{
|
|
/* shorthand form was specified, so expand... */
|
|
warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=",
|
|
(Node *) placeholder,
|
|
warg,
|
|
w->location);
|
|
}
|
|
neww->expr = (Expr *) transformExprRecurse(pstate, warg);
|
|
|
|
neww->expr = (Expr *) coerce_to_boolean(pstate,
|
|
(Node *) neww->expr,
|
|
"CASE/WHEN");
|
|
|
|
warg = (Node *) w->result;
|
|
neww->result = (Expr *) transformExprRecurse(pstate, warg);
|
|
neww->location = w->location;
|
|
|
|
newargs = lappend(newargs, neww);
|
|
resultexprs = lappend(resultexprs, neww->result);
|
|
}
|
|
|
|
newc->args = newargs;
|
|
|
|
/* transform the default clause */
|
|
defresult = (Node *) c->defresult;
|
|
if (defresult == NULL)
|
|
{
|
|
A_Const *n = makeNode(A_Const);
|
|
|
|
n->isnull = true;
|
|
n->location = -1;
|
|
defresult = (Node *) n;
|
|
}
|
|
newc->defresult = (Expr *) transformExprRecurse(pstate, defresult);
|
|
|
|
/*
|
|
* Note: default result is considered the most significant type in
|
|
* determining preferred type. This is how the code worked before, but it
|
|
* seems a little bogus to me --- tgl
|
|
*/
|
|
resultexprs = lcons(newc->defresult, resultexprs);
|
|
|
|
ptype = select_common_type(pstate, resultexprs, "CASE", NULL);
|
|
Assert(OidIsValid(ptype));
|
|
newc->casetype = ptype;
|
|
/* casecollid will be set by parse_collate.c */
|
|
|
|
/* Convert default result clause, if necessary */
|
|
newc->defresult = (Expr *)
|
|
coerce_to_common_type(pstate,
|
|
(Node *) newc->defresult,
|
|
ptype,
|
|
"CASE/ELSE");
|
|
|
|
/* Convert when-clause results, if necessary */
|
|
foreach(l, newc->args)
|
|
{
|
|
CaseWhen *w = (CaseWhen *) lfirst(l);
|
|
|
|
w->result = (Expr *)
|
|
coerce_to_common_type(pstate,
|
|
(Node *) w->result,
|
|
ptype,
|
|
"CASE/WHEN");
|
|
}
|
|
|
|
/* if any subexpression contained a SRF, complain */
|
|
if (pstate->p_last_srf != last_srf)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
errmsg("set-returning functions are not allowed in %s",
|
|
"CASE"),
|
|
errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
|
|
parser_errposition(pstate,
|
|
exprLocation(pstate->p_last_srf))));
|
|
|
|
newc->location = c->location;
|
|
|
|
return (Node *) newc;
|
|
}
|
|
|
|
static Node *
|
|
transformSubLink(ParseState *pstate, SubLink *sublink)
|
|
{
|
|
Node *result = (Node *) sublink;
|
|
Query *qtree;
|
|
const char *err;
|
|
|
|
/*
|
|
* Check to see if the sublink is in an invalid place within the query. We
|
|
* allow sublinks everywhere in SELECT/INSERT/UPDATE/DELETE/MERGE, but
|
|
* generally not in utility statements.
|
|
*/
|
|
err = NULL;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
/* Accept sublink here; caller must throw error if wanted */
|
|
break;
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
case EXPR_KIND_WHERE:
|
|
case EXPR_KIND_POLICY:
|
|
case EXPR_KIND_HAVING:
|
|
case EXPR_KIND_FILTER:
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
case EXPR_KIND_WINDOW_FRAME_GROUPS:
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
case EXPR_KIND_MERGE_WHEN:
|
|
case EXPR_KIND_GROUP_BY:
|
|
case EXPR_KIND_ORDER_BY:
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
case EXPR_KIND_RETURNING:
|
|
case EXPR_KIND_MERGE_RETURNING:
|
|
case EXPR_KIND_VALUES:
|
|
case EXPR_KIND_VALUES_SINGLE:
|
|
case EXPR_KIND_CYCLE_MARK:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
err = _("cannot use subquery in check constraint");
|
|
break;
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
err = _("cannot use subquery in DEFAULT expression");
|
|
break;
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
err = _("cannot use subquery in index expression");
|
|
break;
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
err = _("cannot use subquery in index predicate");
|
|
break;
|
|
case EXPR_KIND_STATS_EXPRESSION:
|
|
err = _("cannot use subquery in statistics expression");
|
|
break;
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
err = _("cannot use subquery in transform expression");
|
|
break;
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
err = _("cannot use subquery in EXECUTE parameter");
|
|
break;
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
err = _("cannot use subquery in trigger WHEN condition");
|
|
break;
|
|
case EXPR_KIND_PARTITION_BOUND:
|
|
err = _("cannot use subquery in partition bound");
|
|
break;
|
|
case EXPR_KIND_PARTITION_EXPRESSION:
|
|
err = _("cannot use subquery in partition key expression");
|
|
break;
|
|
case EXPR_KIND_CALL_ARGUMENT:
|
|
err = _("cannot use subquery in CALL argument");
|
|
break;
|
|
case EXPR_KIND_COPY_WHERE:
|
|
err = _("cannot use subquery in COPY FROM WHERE condition");
|
|
break;
|
|
case EXPR_KIND_GENERATED_COLUMN:
|
|
err = _("cannot use subquery in column generation expression");
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, sublink->location)));
|
|
|
|
pstate->p_hasSubLinks = true;
|
|
|
|
/*
|
|
* OK, let's transform the sub-SELECT.
|
|
*/
|
|
qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false, true);
|
|
|
|
/*
|
|
* Check that we got a SELECT. Anything else should be impossible given
|
|
* restrictions of the grammar, but check anyway.
|
|
*/
|
|
if (!IsA(qtree, Query) ||
|
|
qtree->commandType != CMD_SELECT)
|
|
elog(ERROR, "unexpected non-SELECT command in SubLink");
|
|
|
|
sublink->subselect = (Node *) qtree;
|
|
|
|
if (sublink->subLinkType == EXISTS_SUBLINK)
|
|
{
|
|
/*
|
|
* EXISTS needs no test expression or combining operator. These fields
|
|
* should be null already, but make sure.
|
|
*/
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
}
|
|
else if (sublink->subLinkType == EXPR_SUBLINK ||
|
|
sublink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
/*
|
|
* Make sure the subselect delivers a single column (ignoring resjunk
|
|
* targets).
|
|
*/
|
|
if (count_nonjunk_tlist_entries(qtree->targetList) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery must return only one column"),
|
|
parser_errposition(pstate, sublink->location)));
|
|
|
|
/*
|
|
* EXPR and ARRAY need no test expression or combining operator. These
|
|
* fields should be null already, but make sure.
|
|
*/
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
}
|
|
else if (sublink->subLinkType == MULTIEXPR_SUBLINK)
|
|
{
|
|
/* Same as EXPR case, except no restriction on number of columns */
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
}
|
|
else
|
|
{
|
|
/* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */
|
|
Node *lefthand;
|
|
List *left_list;
|
|
List *right_list;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* If the source was "x IN (select)", convert to "x = ANY (select)".
|
|
*/
|
|
if (sublink->operName == NIL)
|
|
sublink->operName = list_make1(makeString("="));
|
|
|
|
/*
|
|
* Transform lefthand expression, and convert to a list
|
|
*/
|
|
lefthand = transformExprRecurse(pstate, sublink->testexpr);
|
|
if (lefthand && IsA(lefthand, RowExpr))
|
|
left_list = ((RowExpr *) lefthand)->args;
|
|
else
|
|
left_list = list_make1(lefthand);
|
|
|
|
/*
|
|
* Build a list of PARAM_SUBLINK nodes representing the output columns
|
|
* of the subquery.
|
|
*/
|
|
right_list = NIL;
|
|
foreach(l, qtree->targetList)
|
|
{
|
|
TargetEntry *tent = (TargetEntry *) lfirst(l);
|
|
Param *param;
|
|
|
|
if (tent->resjunk)
|
|
continue;
|
|
|
|
param = makeNode(Param);
|
|
param->paramkind = PARAM_SUBLINK;
|
|
param->paramid = tent->resno;
|
|
param->paramtype = exprType((Node *) tent->expr);
|
|
param->paramtypmod = exprTypmod((Node *) tent->expr);
|
|
param->paramcollid = exprCollation((Node *) tent->expr);
|
|
param->location = -1;
|
|
|
|
right_list = lappend(right_list, param);
|
|
}
|
|
|
|
/*
|
|
* We could rely on make_row_comparison_op to complain if the list
|
|
* lengths differ, but we prefer to generate a more specific error
|
|
* message.
|
|
*/
|
|
if (list_length(left_list) < list_length(right_list))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery has too many columns"),
|
|
parser_errposition(pstate, sublink->location)));
|
|
if (list_length(left_list) > list_length(right_list))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery has too few columns"),
|
|
parser_errposition(pstate, sublink->location)));
|
|
|
|
/*
|
|
* Identify the combining operator(s) and generate a suitable
|
|
* row-comparison expression.
|
|
*/
|
|
sublink->testexpr = make_row_comparison_op(pstate,
|
|
sublink->operName,
|
|
left_list,
|
|
right_list,
|
|
sublink->location);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* transformArrayExpr
|
|
*
|
|
* If the caller specifies the target type, the resulting array will
|
|
* be of exactly that type. Otherwise we try to infer a common type
|
|
* for the elements using select_common_type().
|
|
*/
|
|
static Node *
|
|
transformArrayExpr(ParseState *pstate, A_ArrayExpr *a,
|
|
Oid array_type, Oid element_type, int32 typmod)
|
|
{
|
|
ArrayExpr *newa = makeNode(ArrayExpr);
|
|
List *newelems = NIL;
|
|
List *newcoercedelems = NIL;
|
|
ListCell *element;
|
|
Oid coerce_type;
|
|
bool coerce_hard;
|
|
|
|
/*
|
|
* Transform the element expressions
|
|
*
|
|
* Assume that the array is one-dimensional unless we find an array-type
|
|
* element expression.
|
|
*/
|
|
newa->multidims = false;
|
|
foreach(element, a->elements)
|
|
{
|
|
Node *e = (Node *) lfirst(element);
|
|
Node *newe;
|
|
|
|
/*
|
|
* If an element is itself an A_ArrayExpr, recurse directly so that we
|
|
* can pass down any target type we were given.
|
|
*/
|
|
if (IsA(e, A_ArrayExpr))
|
|
{
|
|
newe = transformArrayExpr(pstate,
|
|
(A_ArrayExpr *) e,
|
|
array_type,
|
|
element_type,
|
|
typmod);
|
|
/* we certainly have an array here */
|
|
Assert(array_type == InvalidOid || array_type == exprType(newe));
|
|
newa->multidims = true;
|
|
}
|
|
else
|
|
{
|
|
newe = transformExprRecurse(pstate, e);
|
|
|
|
/*
|
|
* Check for sub-array expressions, if we haven't already found
|
|
* one.
|
|
*/
|
|
if (!newa->multidims && type_is_array(exprType(newe)))
|
|
newa->multidims = true;
|
|
}
|
|
|
|
newelems = lappend(newelems, newe);
|
|
}
|
|
|
|
/*
|
|
* Select a target type for the elements.
|
|
*
|
|
* If we haven't been given a target array type, we must try to deduce a
|
|
* common type based on the types of the individual elements present.
|
|
*/
|
|
if (OidIsValid(array_type))
|
|
{
|
|
/* Caller must ensure array_type matches element_type */
|
|
Assert(OidIsValid(element_type));
|
|
coerce_type = (newa->multidims ? array_type : element_type);
|
|
coerce_hard = true;
|
|
}
|
|
else
|
|
{
|
|
/* Can't handle an empty array without a target type */
|
|
if (newelems == NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INDETERMINATE_DATATYPE),
|
|
errmsg("cannot determine type of empty array"),
|
|
errhint("Explicitly cast to the desired type, "
|
|
"for example ARRAY[]::integer[]."),
|
|
parser_errposition(pstate, a->location)));
|
|
|
|
/* Select a common type for the elements */
|
|
coerce_type = select_common_type(pstate, newelems, "ARRAY", NULL);
|
|
|
|
if (newa->multidims)
|
|
{
|
|
array_type = coerce_type;
|
|
element_type = get_element_type(array_type);
|
|
if (!OidIsValid(element_type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find element type for data type %s",
|
|
format_type_be(array_type)),
|
|
parser_errposition(pstate, a->location)));
|
|
}
|
|
else
|
|
{
|
|
element_type = coerce_type;
|
|
array_type = get_array_type(element_type);
|
|
if (!OidIsValid(array_type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find array type for data type %s",
|
|
format_type_be(element_type)),
|
|
parser_errposition(pstate, a->location)));
|
|
}
|
|
coerce_hard = false;
|
|
}
|
|
|
|
/*
|
|
* Coerce elements to target type
|
|
*
|
|
* If the array has been explicitly cast, then the elements are in turn
|
|
* explicitly coerced.
|
|
*
|
|
* If the array's type was merely derived from the common type of its
|
|
* elements, then the elements are implicitly coerced to the common type.
|
|
* This is consistent with other uses of select_common_type().
|
|
*/
|
|
foreach(element, newelems)
|
|
{
|
|
Node *e = (Node *) lfirst(element);
|
|
Node *newe;
|
|
|
|
if (coerce_hard)
|
|
{
|
|
newe = coerce_to_target_type(pstate, e,
|
|
exprType(e),
|
|
coerce_type,
|
|
typmod,
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST,
|
|
-1);
|
|
if (newe == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast type %s to %s",
|
|
format_type_be(exprType(e)),
|
|
format_type_be(coerce_type)),
|
|
parser_errposition(pstate, exprLocation(e))));
|
|
}
|
|
else
|
|
newe = coerce_to_common_type(pstate, e,
|
|
coerce_type,
|
|
"ARRAY");
|
|
newcoercedelems = lappend(newcoercedelems, newe);
|
|
}
|
|
|
|
newa->array_typeid = array_type;
|
|
/* array_collid will be set by parse_collate.c */
|
|
newa->element_typeid = element_type;
|
|
newa->elements = newcoercedelems;
|
|
newa->location = a->location;
|
|
|
|
return (Node *) newa;
|
|
}
|
|
|
|
static Node *
|
|
transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault)
|
|
{
|
|
RowExpr *newr;
|
|
char fname[16];
|
|
int fnum;
|
|
|
|
newr = makeNode(RowExpr);
|
|
|
|
/* Transform the field expressions */
|
|
newr->args = transformExpressionList(pstate, r->args,
|
|
pstate->p_expr_kind, allowDefault);
|
|
|
|
/* Disallow more columns than will fit in a tuple */
|
|
if (list_length(newr->args) > MaxTupleAttributeNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_COLUMNS),
|
|
errmsg("ROW expressions can have at most %d entries",
|
|
MaxTupleAttributeNumber),
|
|
parser_errposition(pstate, r->location)));
|
|
|
|
/* Barring later casting, we consider the type RECORD */
|
|
newr->row_typeid = RECORDOID;
|
|
newr->row_format = COERCE_IMPLICIT_CAST;
|
|
|
|
/* ROW() has anonymous columns, so invent some field names */
|
|
newr->colnames = NIL;
|
|
for (fnum = 1; fnum <= list_length(newr->args); fnum++)
|
|
{
|
|
snprintf(fname, sizeof(fname), "f%d", fnum);
|
|
newr->colnames = lappend(newr->colnames, makeString(pstrdup(fname)));
|
|
}
|
|
|
|
newr->location = r->location;
|
|
|
|
return (Node *) newr;
|
|
}
|
|
|
|
static Node *
|
|
transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c)
|
|
{
|
|
CoalesceExpr *newc = makeNode(CoalesceExpr);
|
|
Node *last_srf = pstate->p_last_srf;
|
|
List *newargs = NIL;
|
|
List *newcoercedargs = NIL;
|
|
ListCell *args;
|
|
|
|
foreach(args, c->args)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = transformExprRecurse(pstate, e);
|
|
newargs = lappend(newargs, newe);
|
|
}
|
|
|
|
newc->coalescetype = select_common_type(pstate, newargs, "COALESCE", NULL);
|
|
/* coalescecollid will be set by parse_collate.c */
|
|
|
|
/* Convert arguments if necessary */
|
|
foreach(args, newargs)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = coerce_to_common_type(pstate, e,
|
|
newc->coalescetype,
|
|
"COALESCE");
|
|
newcoercedargs = lappend(newcoercedargs, newe);
|
|
}
|
|
|
|
/* if any subexpression contained a SRF, complain */
|
|
if (pstate->p_last_srf != last_srf)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
errmsg("set-returning functions are not allowed in %s",
|
|
"COALESCE"),
|
|
errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
|
|
parser_errposition(pstate,
|
|
exprLocation(pstate->p_last_srf))));
|
|
|
|
newc->args = newcoercedargs;
|
|
newc->location = c->location;
|
|
return (Node *) newc;
|
|
}
|
|
|
|
static Node *
|
|
transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m)
|
|
{
|
|
MinMaxExpr *newm = makeNode(MinMaxExpr);
|
|
List *newargs = NIL;
|
|
List *newcoercedargs = NIL;
|
|
const char *funcname = (m->op == IS_GREATEST) ? "GREATEST" : "LEAST";
|
|
ListCell *args;
|
|
|
|
newm->op = m->op;
|
|
foreach(args, m->args)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = transformExprRecurse(pstate, e);
|
|
newargs = lappend(newargs, newe);
|
|
}
|
|
|
|
newm->minmaxtype = select_common_type(pstate, newargs, funcname, NULL);
|
|
/* minmaxcollid and inputcollid will be set by parse_collate.c */
|
|
|
|
/* Convert arguments if necessary */
|
|
foreach(args, newargs)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = coerce_to_common_type(pstate, e,
|
|
newm->minmaxtype,
|
|
funcname);
|
|
newcoercedargs = lappend(newcoercedargs, newe);
|
|
}
|
|
|
|
newm->args = newcoercedargs;
|
|
newm->location = m->location;
|
|
return (Node *) newm;
|
|
}
|
|
|
|
static Node *
|
|
transformSQLValueFunction(ParseState *pstate, SQLValueFunction *svf)
|
|
{
|
|
/*
|
|
* All we need to do is insert the correct result type and (where needed)
|
|
* validate the typmod, so we just modify the node in-place.
|
|
*/
|
|
switch (svf->op)
|
|
{
|
|
case SVFOP_CURRENT_DATE:
|
|
svf->type = DATEOID;
|
|
break;
|
|
case SVFOP_CURRENT_TIME:
|
|
svf->type = TIMETZOID;
|
|
break;
|
|
case SVFOP_CURRENT_TIME_N:
|
|
svf->type = TIMETZOID;
|
|
svf->typmod = anytime_typmod_check(true, svf->typmod);
|
|
break;
|
|
case SVFOP_CURRENT_TIMESTAMP:
|
|
svf->type = TIMESTAMPTZOID;
|
|
break;
|
|
case SVFOP_CURRENT_TIMESTAMP_N:
|
|
svf->type = TIMESTAMPTZOID;
|
|
svf->typmod = anytimestamp_typmod_check(true, svf->typmod);
|
|
break;
|
|
case SVFOP_LOCALTIME:
|
|
svf->type = TIMEOID;
|
|
break;
|
|
case SVFOP_LOCALTIME_N:
|
|
svf->type = TIMEOID;
|
|
svf->typmod = anytime_typmod_check(false, svf->typmod);
|
|
break;
|
|
case SVFOP_LOCALTIMESTAMP:
|
|
svf->type = TIMESTAMPOID;
|
|
break;
|
|
case SVFOP_LOCALTIMESTAMP_N:
|
|
svf->type = TIMESTAMPOID;
|
|
svf->typmod = anytimestamp_typmod_check(false, svf->typmod);
|
|
break;
|
|
case SVFOP_CURRENT_ROLE:
|
|
case SVFOP_CURRENT_USER:
|
|
case SVFOP_USER:
|
|
case SVFOP_SESSION_USER:
|
|
case SVFOP_CURRENT_CATALOG:
|
|
case SVFOP_CURRENT_SCHEMA:
|
|
svf->type = NAMEOID;
|
|
break;
|
|
}
|
|
|
|
return (Node *) svf;
|
|
}
|
|
|
|
static Node *
|
|
transformXmlExpr(ParseState *pstate, XmlExpr *x)
|
|
{
|
|
XmlExpr *newx;
|
|
ListCell *lc;
|
|
int i;
|
|
|
|
newx = makeNode(XmlExpr);
|
|
newx->op = x->op;
|
|
if (x->name)
|
|
newx->name = map_sql_identifier_to_xml_name(x->name, false, false);
|
|
else
|
|
newx->name = NULL;
|
|
newx->xmloption = x->xmloption;
|
|
newx->type = XMLOID; /* this just marks the node as transformed */
|
|
newx->typmod = -1;
|
|
newx->location = x->location;
|
|
|
|
/*
|
|
* gram.y built the named args as a list of ResTarget. Transform each,
|
|
* and break the names out as a separate list.
|
|
*/
|
|
newx->named_args = NIL;
|
|
newx->arg_names = NIL;
|
|
|
|
foreach(lc, x->named_args)
|
|
{
|
|
ResTarget *r = lfirst_node(ResTarget, lc);
|
|
Node *expr;
|
|
char *argname;
|
|
|
|
expr = transformExprRecurse(pstate, r->val);
|
|
|
|
if (r->name)
|
|
argname = map_sql_identifier_to_xml_name(r->name, false, false);
|
|
else if (IsA(r->val, ColumnRef))
|
|
argname = map_sql_identifier_to_xml_name(FigureColname(r->val),
|
|
true, false);
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
x->op == IS_XMLELEMENT
|
|
? errmsg("unnamed XML attribute value must be a column reference")
|
|
: errmsg("unnamed XML element value must be a column reference"),
|
|
parser_errposition(pstate, r->location)));
|
|
argname = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
/* reject duplicate argnames in XMLELEMENT only */
|
|
if (x->op == IS_XMLELEMENT)
|
|
{
|
|
ListCell *lc2;
|
|
|
|
foreach(lc2, newx->arg_names)
|
|
{
|
|
if (strcmp(argname, strVal(lfirst(lc2))) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("XML attribute name \"%s\" appears more than once",
|
|
argname),
|
|
parser_errposition(pstate, r->location)));
|
|
}
|
|
}
|
|
|
|
newx->named_args = lappend(newx->named_args, expr);
|
|
newx->arg_names = lappend(newx->arg_names, makeString(argname));
|
|
}
|
|
|
|
/* The other arguments are of varying types depending on the function */
|
|
newx->args = NIL;
|
|
i = 0;
|
|
foreach(lc, x->args)
|
|
{
|
|
Node *e = (Node *) lfirst(lc);
|
|
Node *newe;
|
|
|
|
newe = transformExprRecurse(pstate, e);
|
|
switch (x->op)
|
|
{
|
|
case IS_XMLCONCAT:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLCONCAT");
|
|
break;
|
|
case IS_XMLELEMENT:
|
|
/* no coercion necessary */
|
|
break;
|
|
case IS_XMLFOREST:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLFOREST");
|
|
break;
|
|
case IS_XMLPARSE:
|
|
if (i == 0)
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLPARSE");
|
|
else
|
|
newe = coerce_to_boolean(pstate, newe, "XMLPARSE");
|
|
break;
|
|
case IS_XMLPI:
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLPI");
|
|
break;
|
|
case IS_XMLROOT:
|
|
if (i == 0)
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLROOT");
|
|
else if (i == 1)
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLROOT");
|
|
else
|
|
newe = coerce_to_specific_type(pstate, newe, INT4OID,
|
|
"XMLROOT");
|
|
break;
|
|
case IS_XMLSERIALIZE:
|
|
/* not handled here */
|
|
Assert(false);
|
|
break;
|
|
case IS_DOCUMENT:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"IS DOCUMENT");
|
|
break;
|
|
}
|
|
newx->args = lappend(newx->args, newe);
|
|
i++;
|
|
}
|
|
|
|
return (Node *) newx;
|
|
}
|
|
|
|
static Node *
|
|
transformXmlSerialize(ParseState *pstate, XmlSerialize *xs)
|
|
{
|
|
Node *result;
|
|
XmlExpr *xexpr;
|
|
Oid targetType;
|
|
int32 targetTypmod;
|
|
|
|
xexpr = makeNode(XmlExpr);
|
|
xexpr->op = IS_XMLSERIALIZE;
|
|
xexpr->args = list_make1(coerce_to_specific_type(pstate,
|
|
transformExprRecurse(pstate, xs->expr),
|
|
XMLOID,
|
|
"XMLSERIALIZE"));
|
|
|
|
typenameTypeIdAndMod(pstate, xs->typeName, &targetType, &targetTypmod);
|
|
|
|
xexpr->xmloption = xs->xmloption;
|
|
xexpr->indent = xs->indent;
|
|
xexpr->location = xs->location;
|
|
/* We actually only need these to be able to parse back the expression. */
|
|
xexpr->type = targetType;
|
|
xexpr->typmod = targetTypmod;
|
|
|
|
/*
|
|
* The actual target type is determined this way. SQL allows char and
|
|
* varchar as target types. We allow anything that can be cast implicitly
|
|
* from text. This way, user-defined text-like data types automatically
|
|
* fit in.
|
|
*/
|
|
result = coerce_to_target_type(pstate, (Node *) xexpr,
|
|
TEXTOID, targetType, targetTypmod,
|
|
COERCION_IMPLICIT,
|
|
COERCE_IMPLICIT_CAST,
|
|
-1);
|
|
if (result == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast XMLSERIALIZE result to %s",
|
|
format_type_be(targetType)),
|
|
parser_errposition(pstate, xexpr->location)));
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformBooleanTest(ParseState *pstate, BooleanTest *b)
|
|
{
|
|
const char *clausename;
|
|
|
|
switch (b->booltesttype)
|
|
{
|
|
case IS_TRUE:
|
|
clausename = "IS TRUE";
|
|
break;
|
|
case IS_NOT_TRUE:
|
|
clausename = "IS NOT TRUE";
|
|
break;
|
|
case IS_FALSE:
|
|
clausename = "IS FALSE";
|
|
break;
|
|
case IS_NOT_FALSE:
|
|
clausename = "IS NOT FALSE";
|
|
break;
|
|
case IS_UNKNOWN:
|
|
clausename = "IS UNKNOWN";
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
clausename = "IS NOT UNKNOWN";
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized booltesttype: %d",
|
|
(int) b->booltesttype);
|
|
clausename = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
b->arg = (Expr *) transformExprRecurse(pstate, (Node *) b->arg);
|
|
|
|
b->arg = (Expr *) coerce_to_boolean(pstate,
|
|
(Node *) b->arg,
|
|
clausename);
|
|
|
|
return (Node *) b;
|
|
}
|
|
|
|
static Node *
|
|
transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr)
|
|
{
|
|
/* CURRENT OF can only appear at top level of UPDATE/DELETE */
|
|
Assert(pstate->p_target_nsitem != NULL);
|
|
cexpr->cvarno = pstate->p_target_nsitem->p_rtindex;
|
|
|
|
/*
|
|
* Check to see if the cursor name matches a parameter of type REFCURSOR.
|
|
* If so, replace the raw name reference with a parameter reference. (This
|
|
* is a hack for the convenience of plpgsql.)
|
|
*/
|
|
if (cexpr->cursor_name != NULL) /* in case already transformed */
|
|
{
|
|
ColumnRef *cref = makeNode(ColumnRef);
|
|
Node *node = NULL;
|
|
|
|
/* Build an unqualified ColumnRef with the given name */
|
|
cref->fields = list_make1(makeString(cexpr->cursor_name));
|
|
cref->location = -1;
|
|
|
|
/* See if there is a translation available from a parser hook */
|
|
if (pstate->p_pre_columnref_hook != NULL)
|
|
node = pstate->p_pre_columnref_hook(pstate, cref);
|
|
if (node == NULL && pstate->p_post_columnref_hook != NULL)
|
|
node = pstate->p_post_columnref_hook(pstate, cref, NULL);
|
|
|
|
/*
|
|
* XXX Should we throw an error if we get a translation that isn't a
|
|
* refcursor Param? For now it seems best to silently ignore false
|
|
* matches.
|
|
*/
|
|
if (node != NULL && IsA(node, Param))
|
|
{
|
|
Param *p = (Param *) node;
|
|
|
|
if (p->paramkind == PARAM_EXTERN &&
|
|
p->paramtype == REFCURSOROID)
|
|
{
|
|
/* Matches, so convert CURRENT OF to a param reference */
|
|
cexpr->cursor_name = NULL;
|
|
cexpr->cursor_param = p->paramid;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (Node *) cexpr;
|
|
}
|
|
|
|
/*
|
|
* Construct a whole-row reference to represent the notation "relation.*".
|
|
*/
|
|
static Node *
|
|
transformWholeRowRef(ParseState *pstate, ParseNamespaceItem *nsitem,
|
|
int sublevels_up, int location)
|
|
{
|
|
/*
|
|
* Build the appropriate referencing node. Normally this can be a
|
|
* whole-row Var, but if the nsitem is a JOIN USING alias then it contains
|
|
* only a subset of the columns of the underlying join RTE, so that will
|
|
* not work. Instead we immediately expand the reference into a RowExpr.
|
|
* Since the JOIN USING's common columns are fully determined at this
|
|
* point, there seems no harm in expanding it now rather than during
|
|
* planning.
|
|
*
|
|
* Note that if the RTE is a function returning scalar, we create just a
|
|
* plain reference to the function value, not a composite containing a
|
|
* single column. This is pretty inconsistent at first sight, but it's
|
|
* what we've done historically. One argument for it is that "rel" and
|
|
* "rel.*" mean the same thing for composite relations, so why not for
|
|
* scalar functions...
|
|
*/
|
|
if (nsitem->p_names == nsitem->p_rte->eref)
|
|
{
|
|
Var *result;
|
|
|
|
result = makeWholeRowVar(nsitem->p_rte, nsitem->p_rtindex,
|
|
sublevels_up, true);
|
|
|
|
/* location is not filled in by makeWholeRowVar */
|
|
result->location = location;
|
|
|
|
/* mark Var if it's nulled by any outer joins */
|
|
markNullableIfNeeded(pstate, result);
|
|
|
|
/* mark relation as requiring whole-row SELECT access */
|
|
markVarForSelectPriv(pstate, result);
|
|
|
|
return (Node *) result;
|
|
}
|
|
else
|
|
{
|
|
RowExpr *rowexpr;
|
|
List *fields;
|
|
|
|
/*
|
|
* We want only as many columns as are listed in p_names->colnames,
|
|
* and we should use those names not whatever possibly-aliased names
|
|
* are in the RTE. We needn't worry about marking the RTE for SELECT
|
|
* access, as the common columns are surely so marked already.
|
|
*/
|
|
expandRTE(nsitem->p_rte, nsitem->p_rtindex,
|
|
sublevels_up, location, false,
|
|
NULL, &fields);
|
|
rowexpr = makeNode(RowExpr);
|
|
rowexpr->args = list_truncate(fields,
|
|
list_length(nsitem->p_names->colnames));
|
|
rowexpr->row_typeid = RECORDOID;
|
|
rowexpr->row_format = COERCE_IMPLICIT_CAST;
|
|
rowexpr->colnames = copyObject(nsitem->p_names->colnames);
|
|
rowexpr->location = location;
|
|
|
|
/* XXX we ought to mark the row as possibly nullable */
|
|
|
|
return (Node *) rowexpr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle an explicit CAST construct.
|
|
*
|
|
* Transform the argument, look up the type name, and apply any necessary
|
|
* coercion function(s).
|
|
*/
|
|
static Node *
|
|
transformTypeCast(ParseState *pstate, TypeCast *tc)
|
|
{
|
|
Node *result;
|
|
Node *arg = tc->arg;
|
|
Node *expr;
|
|
Oid inputType;
|
|
Oid targetType;
|
|
int32 targetTypmod;
|
|
int location;
|
|
|
|
/* Look up the type name first */
|
|
typenameTypeIdAndMod(pstate, tc->typeName, &targetType, &targetTypmod);
|
|
|
|
/*
|
|
* If the subject of the typecast is an ARRAY[] construct and the target
|
|
* type is an array type, we invoke transformArrayExpr() directly so that
|
|
* we can pass down the type information. This avoids some cases where
|
|
* transformArrayExpr() might not infer the correct type. Otherwise, just
|
|
* transform the argument normally.
|
|
*/
|
|
if (IsA(arg, A_ArrayExpr))
|
|
{
|
|
Oid targetBaseType;
|
|
int32 targetBaseTypmod;
|
|
Oid elementType;
|
|
|
|
/*
|
|
* If target is a domain over array, work with the base array type
|
|
* here. Below, we'll cast the array type to the domain. In the
|
|
* usual case that the target is not a domain, the remaining steps
|
|
* will be a no-op.
|
|
*/
|
|
targetBaseTypmod = targetTypmod;
|
|
targetBaseType = getBaseTypeAndTypmod(targetType, &targetBaseTypmod);
|
|
elementType = get_element_type(targetBaseType);
|
|
if (OidIsValid(elementType))
|
|
{
|
|
expr = transformArrayExpr(pstate,
|
|
(A_ArrayExpr *) arg,
|
|
targetBaseType,
|
|
elementType,
|
|
targetBaseTypmod);
|
|
}
|
|
else
|
|
expr = transformExprRecurse(pstate, arg);
|
|
}
|
|
else
|
|
expr = transformExprRecurse(pstate, arg);
|
|
|
|
inputType = exprType(expr);
|
|
if (inputType == InvalidOid)
|
|
return expr; /* do nothing if NULL input */
|
|
|
|
/*
|
|
* Location of the coercion is preferentially the location of the :: or
|
|
* CAST symbol, but if there is none then use the location of the type
|
|
* name (this can happen in TypeName 'string' syntax, for instance).
|
|
*/
|
|
location = tc->location;
|
|
if (location < 0)
|
|
location = tc->typeName->location;
|
|
|
|
result = coerce_to_target_type(pstate, expr, inputType,
|
|
targetType, targetTypmod,
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST,
|
|
location);
|
|
if (result == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast type %s to %s",
|
|
format_type_be(inputType),
|
|
format_type_be(targetType)),
|
|
parser_coercion_errposition(pstate, location, expr)));
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Handle an explicit COLLATE clause.
|
|
*
|
|
* Transform the argument, and look up the collation name.
|
|
*/
|
|
static Node *
|
|
transformCollateClause(ParseState *pstate, CollateClause *c)
|
|
{
|
|
CollateExpr *newc;
|
|
Oid argtype;
|
|
|
|
newc = makeNode(CollateExpr);
|
|
newc->arg = (Expr *) transformExprRecurse(pstate, c->arg);
|
|
|
|
argtype = exprType((Node *) newc->arg);
|
|
|
|
/*
|
|
* The unknown type is not collatable, but coerce_type() takes care of it
|
|
* separately, so we'll let it go here.
|
|
*/
|
|
if (!type_is_collatable(argtype) && argtype != UNKNOWNOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("collations are not supported by type %s",
|
|
format_type_be(argtype)),
|
|
parser_errposition(pstate, c->location)));
|
|
|
|
newc->collOid = LookupCollation(pstate, c->collname, c->location);
|
|
newc->location = c->location;
|
|
|
|
return (Node *) newc;
|
|
}
|
|
|
|
/*
|
|
* Transform a "row compare-op row" construct
|
|
*
|
|
* The inputs are lists of already-transformed expressions.
|
|
* As with coerce_type, pstate may be NULL if no special unknown-Param
|
|
* processing is wanted.
|
|
*
|
|
* The output may be a single OpExpr, an AND or OR combination of OpExprs,
|
|
* or a RowCompareExpr. In all cases it is guaranteed to return boolean.
|
|
* The AND, OR, and RowCompareExpr cases further imply things about the
|
|
* behavior of the operators (ie, they behave as =, <>, or < <= > >=).
|
|
*/
|
|
static Node *
|
|
make_row_comparison_op(ParseState *pstate, List *opname,
|
|
List *largs, List *rargs, int location)
|
|
{
|
|
RowCompareExpr *rcexpr;
|
|
RowCompareType rctype;
|
|
List *opexprs;
|
|
List *opnos;
|
|
List *opfamilies;
|
|
ListCell *l,
|
|
*r;
|
|
List **opinfo_lists;
|
|
Bitmapset *strats;
|
|
int nopers;
|
|
int i;
|
|
|
|
nopers = list_length(largs);
|
|
if (nopers != list_length(rargs))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("unequal number of entries in row expressions"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* We can't compare zero-length rows because there is no principled basis
|
|
* for figuring out what the operator is.
|
|
*/
|
|
if (nopers == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot compare rows of zero length"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* Identify all the pairwise operators, using make_op so that behavior is
|
|
* the same as in the simple scalar case.
|
|
*/
|
|
opexprs = NIL;
|
|
forboth(l, largs, r, rargs)
|
|
{
|
|
Node *larg = (Node *) lfirst(l);
|
|
Node *rarg = (Node *) lfirst(r);
|
|
OpExpr *cmp;
|
|
|
|
cmp = castNode(OpExpr, make_op(pstate, opname, larg, rarg,
|
|
pstate->p_last_srf, location));
|
|
|
|
/*
|
|
* We don't use coerce_to_boolean here because we insist on the
|
|
* operator yielding boolean directly, not via coercion. If it
|
|
* doesn't yield bool it won't be in any index opfamilies...
|
|
*/
|
|
if (cmp->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("row comparison operator must yield type boolean, "
|
|
"not type %s",
|
|
format_type_be(cmp->opresulttype)),
|
|
parser_errposition(pstate, location)));
|
|
if (expression_returns_set((Node *) cmp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("row comparison operator must not return a set"),
|
|
parser_errposition(pstate, location)));
|
|
opexprs = lappend(opexprs, cmp);
|
|
}
|
|
|
|
/*
|
|
* If rows are length 1, just return the single operator. In this case we
|
|
* don't insist on identifying btree semantics for the operator (but we
|
|
* still require it to return boolean).
|
|
*/
|
|
if (nopers == 1)
|
|
return (Node *) linitial(opexprs);
|
|
|
|
/*
|
|
* Now we must determine which row comparison semantics (= <> < <= > >=)
|
|
* apply to this set of operators. We look for btree opfamilies
|
|
* containing the operators, and see which interpretations (strategy
|
|
* numbers) exist for each operator.
|
|
*/
|
|
opinfo_lists = (List **) palloc(nopers * sizeof(List *));
|
|
strats = NULL;
|
|
i = 0;
|
|
foreach(l, opexprs)
|
|
{
|
|
Oid opno = ((OpExpr *) lfirst(l))->opno;
|
|
Bitmapset *this_strats;
|
|
ListCell *j;
|
|
|
|
opinfo_lists[i] = get_op_btree_interpretation(opno);
|
|
|
|
/*
|
|
* convert strategy numbers into a Bitmapset to make the intersection
|
|
* calculation easy.
|
|
*/
|
|
this_strats = NULL;
|
|
foreach(j, opinfo_lists[i])
|
|
{
|
|
OpBtreeInterpretation *opinfo = lfirst(j);
|
|
|
|
this_strats = bms_add_member(this_strats, opinfo->strategy);
|
|
}
|
|
if (i == 0)
|
|
strats = this_strats;
|
|
else
|
|
strats = bms_int_members(strats, this_strats);
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* If there are multiple common interpretations, we may use any one of
|
|
* them ... this coding arbitrarily picks the lowest btree strategy
|
|
* number.
|
|
*/
|
|
i = bms_next_member(strats, -1);
|
|
if (i < 0)
|
|
{
|
|
/* No common interpretation, so fail */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("could not determine interpretation of row comparison operator %s",
|
|
strVal(llast(opname))),
|
|
errhint("Row comparison operators must be associated with btree operator families."),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
rctype = (RowCompareType) i;
|
|
|
|
/*
|
|
* For = and <> cases, we just combine the pairwise operators with AND or
|
|
* OR respectively.
|
|
*/
|
|
if (rctype == ROWCOMPARE_EQ)
|
|
return (Node *) makeBoolExpr(AND_EXPR, opexprs, location);
|
|
if (rctype == ROWCOMPARE_NE)
|
|
return (Node *) makeBoolExpr(OR_EXPR, opexprs, location);
|
|
|
|
/*
|
|
* Otherwise we need to choose exactly which opfamily to associate with
|
|
* each operator.
|
|
*/
|
|
opfamilies = NIL;
|
|
for (i = 0; i < nopers; i++)
|
|
{
|
|
Oid opfamily = InvalidOid;
|
|
ListCell *j;
|
|
|
|
foreach(j, opinfo_lists[i])
|
|
{
|
|
OpBtreeInterpretation *opinfo = lfirst(j);
|
|
|
|
if (opinfo->strategy == rctype)
|
|
{
|
|
opfamily = opinfo->opfamily_id;
|
|
break;
|
|
}
|
|
}
|
|
if (OidIsValid(opfamily))
|
|
opfamilies = lappend_oid(opfamilies, opfamily);
|
|
else /* should not happen */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("could not determine interpretation of row comparison operator %s",
|
|
strVal(llast(opname))),
|
|
errdetail("There are multiple equally-plausible candidates."),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
|
|
/*
|
|
* Now deconstruct the OpExprs and create a RowCompareExpr.
|
|
*
|
|
* Note: can't just reuse the passed largs/rargs lists, because of
|
|
* possibility that make_op inserted coercion operations.
|
|
*/
|
|
opnos = NIL;
|
|
largs = NIL;
|
|
rargs = NIL;
|
|
foreach(l, opexprs)
|
|
{
|
|
OpExpr *cmp = (OpExpr *) lfirst(l);
|
|
|
|
opnos = lappend_oid(opnos, cmp->opno);
|
|
largs = lappend(largs, linitial(cmp->args));
|
|
rargs = lappend(rargs, lsecond(cmp->args));
|
|
}
|
|
|
|
rcexpr = makeNode(RowCompareExpr);
|
|
rcexpr->rctype = rctype;
|
|
rcexpr->opnos = opnos;
|
|
rcexpr->opfamilies = opfamilies;
|
|
rcexpr->inputcollids = NIL; /* assign_expr_collations will fix this */
|
|
rcexpr->largs = largs;
|
|
rcexpr->rargs = rargs;
|
|
|
|
return (Node *) rcexpr;
|
|
}
|
|
|
|
/*
|
|
* Transform a "row IS DISTINCT FROM row" construct
|
|
*
|
|
* The input RowExprs are already transformed
|
|
*/
|
|
static Node *
|
|
make_row_distinct_op(ParseState *pstate, List *opname,
|
|
RowExpr *lrow, RowExpr *rrow,
|
|
int location)
|
|
{
|
|
Node *result = NULL;
|
|
List *largs = lrow->args;
|
|
List *rargs = rrow->args;
|
|
ListCell *l,
|
|
*r;
|
|
|
|
if (list_length(largs) != list_length(rargs))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("unequal number of entries in row expressions"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
forboth(l, largs, r, rargs)
|
|
{
|
|
Node *larg = (Node *) lfirst(l);
|
|
Node *rarg = (Node *) lfirst(r);
|
|
Node *cmp;
|
|
|
|
cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg, location);
|
|
if (result == NULL)
|
|
result = cmp;
|
|
else
|
|
result = (Node *) makeBoolExpr(OR_EXPR,
|
|
list_make2(result, cmp),
|
|
location);
|
|
}
|
|
|
|
if (result == NULL)
|
|
{
|
|
/* zero-length rows? Generate constant FALSE */
|
|
result = makeBoolConst(false, false);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* make the node for an IS DISTINCT FROM operator
|
|
*/
|
|
static Expr *
|
|
make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree,
|
|
int location)
|
|
{
|
|
Expr *result;
|
|
|
|
result = make_op(pstate, opname, ltree, rtree,
|
|
pstate->p_last_srf, location);
|
|
if (((OpExpr *) result)->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
/* translator: %s is name of a SQL construct, eg NULLIF */
|
|
errmsg("%s requires = operator to yield boolean",
|
|
"IS DISTINCT FROM"),
|
|
parser_errposition(pstate, location)));
|
|
if (((OpExpr *) result)->opretset)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
/* translator: %s is name of a SQL construct, eg NULLIF */
|
|
errmsg("%s must not return a set", "IS DISTINCT FROM"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* We rely on DistinctExpr and OpExpr being same struct
|
|
*/
|
|
NodeSetTag(result, T_DistinctExpr);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Produce a NullTest node from an IS [NOT] DISTINCT FROM NULL construct
|
|
*
|
|
* "arg" is the untransformed other argument
|
|
*/
|
|
static Node *
|
|
make_nulltest_from_distinct(ParseState *pstate, A_Expr *distincta, Node *arg)
|
|
{
|
|
NullTest *nt = makeNode(NullTest);
|
|
|
|
nt->arg = (Expr *) transformExprRecurse(pstate, arg);
|
|
/* the argument can be any type, so don't coerce it */
|
|
if (distincta->kind == AEXPR_NOT_DISTINCT)
|
|
nt->nulltesttype = IS_NULL;
|
|
else
|
|
nt->nulltesttype = IS_NOT_NULL;
|
|
/* argisrow = false is correct whether or not arg is composite */
|
|
nt->argisrow = false;
|
|
nt->location = distincta->location;
|
|
return (Node *) nt;
|
|
}
|
|
|
|
/*
|
|
* Produce a string identifying an expression by kind.
|
|
*
|
|
* Note: when practical, use a simple SQL keyword for the result. If that
|
|
* doesn't work well, check call sites to see whether custom error message
|
|
* strings are required.
|
|
*/
|
|
const char *
|
|
ParseExprKindName(ParseExprKind exprKind)
|
|
{
|
|
switch (exprKind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
return "invalid expression context";
|
|
case EXPR_KIND_OTHER:
|
|
return "extension expression";
|
|
case EXPR_KIND_JOIN_ON:
|
|
return "JOIN/ON";
|
|
case EXPR_KIND_JOIN_USING:
|
|
return "JOIN/USING";
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
return "sub-SELECT in FROM";
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
return "function in FROM";
|
|
case EXPR_KIND_WHERE:
|
|
return "WHERE";
|
|
case EXPR_KIND_POLICY:
|
|
return "POLICY";
|
|
case EXPR_KIND_HAVING:
|
|
return "HAVING";
|
|
case EXPR_KIND_FILTER:
|
|
return "FILTER";
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
return "window PARTITION BY";
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
return "window ORDER BY";
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
return "window RANGE";
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
return "window ROWS";
|
|
case EXPR_KIND_WINDOW_FRAME_GROUPS:
|
|
return "window GROUPS";
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
return "SELECT";
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
return "INSERT";
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
return "UPDATE";
|
|
case EXPR_KIND_MERGE_WHEN:
|
|
return "MERGE WHEN";
|
|
case EXPR_KIND_GROUP_BY:
|
|
return "GROUP BY";
|
|
case EXPR_KIND_ORDER_BY:
|
|
return "ORDER BY";
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
return "DISTINCT ON";
|
|
case EXPR_KIND_LIMIT:
|
|
return "LIMIT";
|
|
case EXPR_KIND_OFFSET:
|
|
return "OFFSET";
|
|
case EXPR_KIND_RETURNING:
|
|
case EXPR_KIND_MERGE_RETURNING:
|
|
return "RETURNING";
|
|
case EXPR_KIND_VALUES:
|
|
case EXPR_KIND_VALUES_SINGLE:
|
|
return "VALUES";
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
return "CHECK";
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
return "DEFAULT";
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
return "index expression";
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
return "index predicate";
|
|
case EXPR_KIND_STATS_EXPRESSION:
|
|
return "statistics expression";
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
return "USING";
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
return "EXECUTE";
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
return "WHEN";
|
|
case EXPR_KIND_PARTITION_BOUND:
|
|
return "partition bound";
|
|
case EXPR_KIND_PARTITION_EXPRESSION:
|
|
return "PARTITION BY";
|
|
case EXPR_KIND_CALL_ARGUMENT:
|
|
return "CALL";
|
|
case EXPR_KIND_COPY_WHERE:
|
|
return "WHERE";
|
|
case EXPR_KIND_GENERATED_COLUMN:
|
|
return "GENERATED AS";
|
|
case EXPR_KIND_CYCLE_MARK:
|
|
return "CYCLE";
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, we'll fall through to the "unrecognized" return.
|
|
*/
|
|
}
|
|
return "unrecognized expression kind";
|
|
}
|
|
|
|
/*
|
|
* Make string Const node from JSON encoding name.
|
|
*
|
|
* UTF8 is default encoding.
|
|
*/
|
|
static Const *
|
|
getJsonEncodingConst(JsonFormat *format)
|
|
{
|
|
JsonEncoding encoding;
|
|
const char *enc;
|
|
Name encname = palloc(sizeof(NameData));
|
|
|
|
if (!format ||
|
|
format->format_type == JS_FORMAT_DEFAULT ||
|
|
format->encoding == JS_ENC_DEFAULT)
|
|
encoding = JS_ENC_UTF8;
|
|
else
|
|
encoding = format->encoding;
|
|
|
|
switch (encoding)
|
|
{
|
|
case JS_ENC_UTF16:
|
|
enc = "UTF16";
|
|
break;
|
|
case JS_ENC_UTF32:
|
|
enc = "UTF32";
|
|
break;
|
|
case JS_ENC_UTF8:
|
|
enc = "UTF8";
|
|
break;
|
|
default:
|
|
elog(ERROR, "invalid JSON encoding: %d", encoding);
|
|
break;
|
|
}
|
|
|
|
namestrcpy(encname, enc);
|
|
|
|
return makeConst(NAMEOID, -1, InvalidOid, NAMEDATALEN,
|
|
NameGetDatum(encname), false, false);
|
|
}
|
|
|
|
/*
|
|
* Make bytea => text conversion using specified JSON format encoding.
|
|
*/
|
|
static Node *
|
|
makeJsonByteaToTextConversion(Node *expr, JsonFormat *format, int location)
|
|
{
|
|
Const *encoding = getJsonEncodingConst(format);
|
|
FuncExpr *fexpr = makeFuncExpr(F_CONVERT_FROM, TEXTOID,
|
|
list_make2(expr, encoding),
|
|
InvalidOid, InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
|
|
fexpr->location = location;
|
|
|
|
return (Node *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Transform JSON value expression using specified input JSON format or
|
|
* default format otherwise, coercing to the targettype if needed.
|
|
*
|
|
* Returned expression is either ve->raw_expr coerced to text (if needed) or
|
|
* a JsonValueExpr with formatted_expr set to the coerced copy of raw_expr
|
|
* if the specified format and the targettype requires it.
|
|
*/
|
|
static Node *
|
|
transformJsonValueExpr(ParseState *pstate, const char *constructName,
|
|
JsonValueExpr *ve, JsonFormatType default_format,
|
|
Oid targettype, bool isarg)
|
|
{
|
|
Node *expr = transformExprRecurse(pstate, (Node *) ve->raw_expr);
|
|
Node *rawexpr;
|
|
JsonFormatType format;
|
|
Oid exprtype;
|
|
int location;
|
|
char typcategory;
|
|
bool typispreferred;
|
|
|
|
if (exprType(expr) == UNKNOWNOID)
|
|
expr = coerce_to_specific_type(pstate, expr, TEXTOID, constructName);
|
|
|
|
rawexpr = expr;
|
|
exprtype = exprType(expr);
|
|
location = exprLocation(expr);
|
|
|
|
get_type_category_preferred(exprtype, &typcategory, &typispreferred);
|
|
|
|
if (ve->format->format_type != JS_FORMAT_DEFAULT)
|
|
{
|
|
if (ve->format->encoding != JS_ENC_DEFAULT && exprtype != BYTEAOID)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("JSON ENCODING clause is only allowed for bytea input type"),
|
|
parser_errposition(pstate, ve->format->location));
|
|
|
|
if (exprtype == JSONOID || exprtype == JSONBOID)
|
|
format = JS_FORMAT_DEFAULT; /* do not format json[b] types */
|
|
else
|
|
format = ve->format->format_type;
|
|
}
|
|
else if (isarg)
|
|
{
|
|
/*
|
|
* Special treatment for PASSING arguments.
|
|
*
|
|
* Pass types supported by GetJsonPathVar() / JsonItemFromDatum()
|
|
* directly without converting to json[b].
|
|
*/
|
|
switch (exprtype)
|
|
{
|
|
case BOOLOID:
|
|
case NUMERICOID:
|
|
case INT2OID:
|
|
case INT4OID:
|
|
case INT8OID:
|
|
case FLOAT4OID:
|
|
case FLOAT8OID:
|
|
case TEXTOID:
|
|
case VARCHAROID:
|
|
case DATEOID:
|
|
case TIMEOID:
|
|
case TIMETZOID:
|
|
case TIMESTAMPOID:
|
|
case TIMESTAMPTZOID:
|
|
return expr;
|
|
|
|
default:
|
|
if (typcategory == TYPCATEGORY_STRING)
|
|
return expr;
|
|
/* else convert argument to json[b] type */
|
|
break;
|
|
}
|
|
|
|
format = default_format;
|
|
}
|
|
else if (exprtype == JSONOID || exprtype == JSONBOID)
|
|
format = JS_FORMAT_DEFAULT; /* do not format json[b] types */
|
|
else
|
|
format = default_format;
|
|
|
|
if (format != JS_FORMAT_DEFAULT ||
|
|
(OidIsValid(targettype) && exprtype != targettype))
|
|
{
|
|
Node *coerced;
|
|
bool only_allow_cast = OidIsValid(targettype);
|
|
|
|
/*
|
|
* PASSING args are handled appropriately by GetJsonPathVar() /
|
|
* JsonItemFromDatum().
|
|
*/
|
|
if (!isarg &&
|
|
!only_allow_cast &&
|
|
exprtype != BYTEAOID && typcategory != TYPCATEGORY_STRING)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
ve->format->format_type == JS_FORMAT_DEFAULT ?
|
|
errmsg("cannot use non-string types with implicit FORMAT JSON clause") :
|
|
errmsg("cannot use non-string types with explicit FORMAT JSON clause"),
|
|
parser_errposition(pstate, ve->format->location >= 0 ?
|
|
ve->format->location : location));
|
|
|
|
/* Convert encoded JSON text from bytea. */
|
|
if (format == JS_FORMAT_JSON && exprtype == BYTEAOID)
|
|
{
|
|
expr = makeJsonByteaToTextConversion(expr, ve->format, location);
|
|
exprtype = TEXTOID;
|
|
}
|
|
|
|
if (!OidIsValid(targettype))
|
|
targettype = format == JS_FORMAT_JSONB ? JSONBOID : JSONOID;
|
|
|
|
/* Try to coerce to the target type. */
|
|
coerced = coerce_to_target_type(pstate, expr, exprtype,
|
|
targettype, -1,
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST,
|
|
location);
|
|
|
|
if (!coerced)
|
|
{
|
|
/* If coercion failed, use to_json()/to_jsonb() functions. */
|
|
FuncExpr *fexpr;
|
|
Oid fnoid;
|
|
|
|
/*
|
|
* Though only allow a cast when the target type is specified by
|
|
* the caller.
|
|
*/
|
|
if (only_allow_cast)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast type %s to %s",
|
|
format_type_be(exprtype),
|
|
format_type_be(targettype)),
|
|
parser_errposition(pstate, location)));
|
|
|
|
fnoid = targettype == JSONOID ? F_TO_JSON : F_TO_JSONB;
|
|
fexpr = makeFuncExpr(fnoid, targettype, list_make1(expr),
|
|
InvalidOid, InvalidOid, COERCE_EXPLICIT_CALL);
|
|
|
|
fexpr->location = location;
|
|
|
|
coerced = (Node *) fexpr;
|
|
}
|
|
|
|
if (coerced == expr)
|
|
expr = rawexpr;
|
|
else
|
|
{
|
|
ve = copyObject(ve);
|
|
ve->raw_expr = (Expr *) rawexpr;
|
|
ve->formatted_expr = (Expr *) coerced;
|
|
|
|
expr = (Node *) ve;
|
|
}
|
|
}
|
|
|
|
/* If returning a JsonValueExpr, formatted_expr must have been set. */
|
|
Assert(!IsA(expr, JsonValueExpr) ||
|
|
((JsonValueExpr *) expr)->formatted_expr != NULL);
|
|
|
|
return expr;
|
|
}
|
|
|
|
/*
|
|
* Checks specified output format for its applicability to the target type.
|
|
*/
|
|
static void
|
|
checkJsonOutputFormat(ParseState *pstate, const JsonFormat *format,
|
|
Oid targettype, bool allow_format_for_non_strings)
|
|
{
|
|
if (!allow_format_for_non_strings &&
|
|
format->format_type != JS_FORMAT_DEFAULT &&
|
|
(targettype != BYTEAOID &&
|
|
targettype != JSONOID &&
|
|
targettype != JSONBOID))
|
|
{
|
|
char typcategory;
|
|
bool typispreferred;
|
|
|
|
get_type_category_preferred(targettype, &typcategory, &typispreferred);
|
|
|
|
if (typcategory != TYPCATEGORY_STRING)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
parser_errposition(pstate, format->location),
|
|
errmsg("cannot use JSON format with non-string output types"));
|
|
}
|
|
|
|
if (format->format_type == JS_FORMAT_JSON)
|
|
{
|
|
JsonEncoding enc = format->encoding != JS_ENC_DEFAULT ?
|
|
format->encoding : JS_ENC_UTF8;
|
|
|
|
if (targettype != BYTEAOID &&
|
|
format->encoding != JS_ENC_DEFAULT)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
parser_errposition(pstate, format->location),
|
|
errmsg("cannot set JSON encoding for non-bytea output types"));
|
|
|
|
if (enc != JS_ENC_UTF8)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("unsupported JSON encoding"),
|
|
errhint("Only UTF8 JSON encoding is supported."),
|
|
parser_errposition(pstate, format->location));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transform JSON output clause.
|
|
*
|
|
* Assigns target type oid and modifier.
|
|
* Assigns default format or checks specified format for its applicability to
|
|
* the target type.
|
|
*/
|
|
static JsonReturning *
|
|
transformJsonOutput(ParseState *pstate, const JsonOutput *output,
|
|
bool allow_format)
|
|
{
|
|
JsonReturning *ret;
|
|
|
|
/* if output clause is not specified, make default clause value */
|
|
if (!output)
|
|
{
|
|
ret = makeNode(JsonReturning);
|
|
|
|
ret->format = makeJsonFormat(JS_FORMAT_DEFAULT, JS_ENC_DEFAULT, -1);
|
|
ret->typid = InvalidOid;
|
|
ret->typmod = -1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
ret = copyObject(output->returning);
|
|
|
|
typenameTypeIdAndMod(pstate, output->typeName, &ret->typid, &ret->typmod);
|
|
|
|
if (output->typeName->setof)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("returning SETOF types is not supported in SQL/JSON functions"));
|
|
|
|
if (get_typtype(ret->typid) == TYPTYPE_PSEUDO)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("returning pseudo-types is not supported in SQL/JSON functions"));
|
|
|
|
if (ret->format->format_type == JS_FORMAT_DEFAULT)
|
|
/* assign JSONB format when returning jsonb, or JSON format otherwise */
|
|
ret->format->format_type =
|
|
ret->typid == JSONBOID ? JS_FORMAT_JSONB : JS_FORMAT_JSON;
|
|
else
|
|
checkJsonOutputFormat(pstate, ret->format, ret->typid, allow_format);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Transform JSON output clause of JSON constructor functions.
|
|
*
|
|
* Derive RETURNING type, if not specified, from argument types.
|
|
*/
|
|
static JsonReturning *
|
|
transformJsonConstructorOutput(ParseState *pstate, JsonOutput *output,
|
|
List *args)
|
|
{
|
|
JsonReturning *returning = transformJsonOutput(pstate, output, true);
|
|
|
|
if (!OidIsValid(returning->typid))
|
|
{
|
|
ListCell *lc;
|
|
bool have_jsonb = false;
|
|
|
|
foreach(lc, args)
|
|
{
|
|
Node *expr = lfirst(lc);
|
|
Oid typid = exprType(expr);
|
|
|
|
have_jsonb |= typid == JSONBOID;
|
|
|
|
if (have_jsonb)
|
|
break;
|
|
}
|
|
|
|
if (have_jsonb)
|
|
{
|
|
returning->typid = JSONBOID;
|
|
returning->format->format_type = JS_FORMAT_JSONB;
|
|
}
|
|
else
|
|
{
|
|
/* XXX TEXT is default by the standard, but we return JSON */
|
|
returning->typid = JSONOID;
|
|
returning->format->format_type = JS_FORMAT_JSON;
|
|
}
|
|
|
|
returning->typmod = -1;
|
|
}
|
|
|
|
return returning;
|
|
}
|
|
|
|
/*
|
|
* Coerce json[b]-valued function expression to the output type.
|
|
*/
|
|
static Node *
|
|
coerceJsonFuncExpr(ParseState *pstate, Node *expr,
|
|
const JsonReturning *returning, bool report_error)
|
|
{
|
|
Node *res;
|
|
int location;
|
|
Oid exprtype = exprType(expr);
|
|
|
|
/* if output type is not specified or equals to function type, return */
|
|
if (!OidIsValid(returning->typid) || returning->typid == exprtype)
|
|
return expr;
|
|
|
|
location = exprLocation(expr);
|
|
|
|
if (location < 0)
|
|
location = returning->format->location;
|
|
|
|
/* special case for RETURNING bytea FORMAT json */
|
|
if (returning->format->format_type == JS_FORMAT_JSON &&
|
|
returning->typid == BYTEAOID)
|
|
{
|
|
/* encode json text into bytea using pg_convert_to() */
|
|
Node *texpr = coerce_to_specific_type(pstate, expr, TEXTOID,
|
|
"JSON_FUNCTION");
|
|
Const *enc = getJsonEncodingConst(returning->format);
|
|
FuncExpr *fexpr = makeFuncExpr(F_CONVERT_TO, BYTEAOID,
|
|
list_make2(texpr, enc),
|
|
InvalidOid, InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
|
|
fexpr->location = location;
|
|
|
|
return (Node *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* For other cases, try to coerce expression to the output type using
|
|
* assignment-level casts, erroring out if none available. This basically
|
|
* allows coercing the jsonb value to any string type (typcategory = 'S').
|
|
*
|
|
* Requesting assignment-level here means that typmod / length coercion
|
|
* assumes implicit coercion which is the behavior we want; see
|
|
* build_coercion_expression().
|
|
*/
|
|
res = coerce_to_target_type(pstate, expr, exprtype,
|
|
returning->typid, returning->typmod,
|
|
COERCION_ASSIGNMENT,
|
|
COERCE_IMPLICIT_CAST,
|
|
location);
|
|
|
|
if (!res && report_error)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast type %s to %s",
|
|
format_type_be(exprtype),
|
|
format_type_be(returning->typid)),
|
|
parser_coercion_errposition(pstate, location, expr));
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Make a JsonConstructorExpr node.
|
|
*/
|
|
static Node *
|
|
makeJsonConstructorExpr(ParseState *pstate, JsonConstructorType type,
|
|
List *args, Expr *fexpr, JsonReturning *returning,
|
|
bool unique, bool absent_on_null, int location)
|
|
{
|
|
JsonConstructorExpr *jsctor = makeNode(JsonConstructorExpr);
|
|
Node *placeholder;
|
|
Node *coercion;
|
|
|
|
jsctor->args = args;
|
|
jsctor->func = fexpr;
|
|
jsctor->type = type;
|
|
jsctor->returning = returning;
|
|
jsctor->unique = unique;
|
|
jsctor->absent_on_null = absent_on_null;
|
|
jsctor->location = location;
|
|
|
|
/*
|
|
* Coerce to the RETURNING type and format, if needed. We abuse
|
|
* CaseTestExpr here as placeholder to pass the result of either
|
|
* evaluating 'fexpr' or whatever is produced by ExecEvalJsonConstructor()
|
|
* that is of type JSON or JSONB to the coercion function.
|
|
*/
|
|
if (fexpr)
|
|
{
|
|
CaseTestExpr *cte = makeNode(CaseTestExpr);
|
|
|
|
cte->typeId = exprType((Node *) fexpr);
|
|
cte->typeMod = exprTypmod((Node *) fexpr);
|
|
cte->collation = exprCollation((Node *) fexpr);
|
|
|
|
placeholder = (Node *) cte;
|
|
}
|
|
else
|
|
{
|
|
CaseTestExpr *cte = makeNode(CaseTestExpr);
|
|
|
|
cte->typeId = returning->format->format_type == JS_FORMAT_JSONB ?
|
|
JSONBOID : JSONOID;
|
|
cte->typeMod = -1;
|
|
cte->collation = InvalidOid;
|
|
|
|
placeholder = (Node *) cte;
|
|
}
|
|
|
|
coercion = coerceJsonFuncExpr(pstate, placeholder, returning, true);
|
|
|
|
if (coercion != placeholder)
|
|
jsctor->coercion = (Expr *) coercion;
|
|
|
|
return (Node *) jsctor;
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_OBJECT() constructor.
|
|
*
|
|
* JSON_OBJECT() is transformed into a JsonConstructorExpr node of type
|
|
* JSCTOR_JSON_OBJECT. The result is coerced to the target type given
|
|
* by ctor->output.
|
|
*/
|
|
static Node *
|
|
transformJsonObjectConstructor(ParseState *pstate, JsonObjectConstructor *ctor)
|
|
{
|
|
JsonReturning *returning;
|
|
List *args = NIL;
|
|
|
|
/* transform key-value pairs, if any */
|
|
if (ctor->exprs)
|
|
{
|
|
ListCell *lc;
|
|
|
|
/* transform and append key-value arguments */
|
|
foreach(lc, ctor->exprs)
|
|
{
|
|
JsonKeyValue *kv = castNode(JsonKeyValue, lfirst(lc));
|
|
Node *key = transformExprRecurse(pstate, (Node *) kv->key);
|
|
Node *val = transformJsonValueExpr(pstate, "JSON_OBJECT()",
|
|
kv->value,
|
|
JS_FORMAT_DEFAULT,
|
|
InvalidOid, false);
|
|
|
|
args = lappend(args, key);
|
|
args = lappend(args, val);
|
|
}
|
|
}
|
|
|
|
returning = transformJsonConstructorOutput(pstate, ctor->output, args);
|
|
|
|
return makeJsonConstructorExpr(pstate, JSCTOR_JSON_OBJECT, args, NULL,
|
|
returning, ctor->unique,
|
|
ctor->absent_on_null, ctor->location);
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_ARRAY(query [FORMAT] [RETURNING] [ON NULL]) into
|
|
* (SELECT JSON_ARRAYAGG(a [FORMAT] [RETURNING] [ON NULL]) FROM (query) q(a))
|
|
*/
|
|
static Node *
|
|
transformJsonArrayQueryConstructor(ParseState *pstate,
|
|
JsonArrayQueryConstructor *ctor)
|
|
{
|
|
SubLink *sublink = makeNode(SubLink);
|
|
SelectStmt *select = makeNode(SelectStmt);
|
|
RangeSubselect *range = makeNode(RangeSubselect);
|
|
Alias *alias = makeNode(Alias);
|
|
ResTarget *target = makeNode(ResTarget);
|
|
JsonArrayAgg *agg = makeNode(JsonArrayAgg);
|
|
ColumnRef *colref = makeNode(ColumnRef);
|
|
Query *query;
|
|
ParseState *qpstate;
|
|
|
|
/* Transform query only for counting target list entries. */
|
|
qpstate = make_parsestate(pstate);
|
|
|
|
query = transformStmt(qpstate, ctor->query);
|
|
|
|
if (count_nonjunk_tlist_entries(query->targetList) != 1)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery must return only one column"),
|
|
parser_errposition(pstate, ctor->location));
|
|
|
|
free_parsestate(qpstate);
|
|
|
|
colref->fields = list_make2(makeString(pstrdup("q")),
|
|
makeString(pstrdup("a")));
|
|
colref->location = ctor->location;
|
|
|
|
/*
|
|
* No formatting necessary, so set formatted_expr to be the same as
|
|
* raw_expr.
|
|
*/
|
|
agg->arg = makeJsonValueExpr((Expr *) colref, (Expr *) colref,
|
|
ctor->format);
|
|
agg->absent_on_null = ctor->absent_on_null;
|
|
agg->constructor = makeNode(JsonAggConstructor);
|
|
agg->constructor->agg_order = NIL;
|
|
agg->constructor->output = ctor->output;
|
|
agg->constructor->location = ctor->location;
|
|
|
|
target->name = NULL;
|
|
target->indirection = NIL;
|
|
target->val = (Node *) agg;
|
|
target->location = ctor->location;
|
|
|
|
alias->aliasname = pstrdup("q");
|
|
alias->colnames = list_make1(makeString(pstrdup("a")));
|
|
|
|
range->lateral = false;
|
|
range->subquery = ctor->query;
|
|
range->alias = alias;
|
|
|
|
select->targetList = list_make1(target);
|
|
select->fromClause = list_make1(range);
|
|
|
|
sublink->subLinkType = EXPR_SUBLINK;
|
|
sublink->subLinkId = 0;
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
sublink->subselect = (Node *) select;
|
|
sublink->location = ctor->location;
|
|
|
|
return transformExprRecurse(pstate, (Node *) sublink);
|
|
}
|
|
|
|
/*
|
|
* Common code for JSON_OBJECTAGG and JSON_ARRAYAGG transformation.
|
|
*/
|
|
static Node *
|
|
transformJsonAggConstructor(ParseState *pstate, JsonAggConstructor *agg_ctor,
|
|
JsonReturning *returning, List *args,
|
|
Oid aggfnoid, Oid aggtype,
|
|
JsonConstructorType ctor_type,
|
|
bool unique, bool absent_on_null)
|
|
{
|
|
Node *node;
|
|
Expr *aggfilter;
|
|
|
|
aggfilter = agg_ctor->agg_filter ? (Expr *)
|
|
transformWhereClause(pstate, agg_ctor->agg_filter,
|
|
EXPR_KIND_FILTER, "FILTER") : NULL;
|
|
|
|
if (agg_ctor->over)
|
|
{
|
|
/* window function */
|
|
WindowFunc *wfunc = makeNode(WindowFunc);
|
|
|
|
wfunc->winfnoid = aggfnoid;
|
|
wfunc->wintype = aggtype;
|
|
/* wincollid and inputcollid will be set by parse_collate.c */
|
|
wfunc->args = args;
|
|
wfunc->aggfilter = aggfilter;
|
|
wfunc->runCondition = NIL;
|
|
/* winref will be set by transformWindowFuncCall */
|
|
wfunc->winstar = false;
|
|
wfunc->winagg = true;
|
|
wfunc->location = agg_ctor->location;
|
|
|
|
/*
|
|
* ordered aggs not allowed in windows yet
|
|
*/
|
|
if (agg_ctor->agg_order != NIL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("aggregate ORDER BY is not implemented for window functions"),
|
|
parser_errposition(pstate, agg_ctor->location));
|
|
|
|
/* parse_agg.c does additional window-func-specific processing */
|
|
transformWindowFuncCall(pstate, wfunc, agg_ctor->over);
|
|
|
|
node = (Node *) wfunc;
|
|
}
|
|
else
|
|
{
|
|
Aggref *aggref = makeNode(Aggref);
|
|
|
|
aggref->aggfnoid = aggfnoid;
|
|
aggref->aggtype = aggtype;
|
|
|
|
/* aggcollid and inputcollid will be set by parse_collate.c */
|
|
/* aggtranstype will be set by planner */
|
|
/* aggargtypes will be set by transformAggregateCall */
|
|
/* aggdirectargs and args will be set by transformAggregateCall */
|
|
/* aggorder and aggdistinct will be set by transformAggregateCall */
|
|
aggref->aggfilter = aggfilter;
|
|
aggref->aggstar = false;
|
|
aggref->aggvariadic = false;
|
|
aggref->aggkind = AGGKIND_NORMAL;
|
|
aggref->aggpresorted = false;
|
|
/* agglevelsup will be set by transformAggregateCall */
|
|
aggref->aggsplit = AGGSPLIT_SIMPLE; /* planner might change this */
|
|
aggref->aggno = -1; /* planner will set aggno and aggtransno */
|
|
aggref->aggtransno = -1;
|
|
aggref->location = agg_ctor->location;
|
|
|
|
transformAggregateCall(pstate, aggref, args, agg_ctor->agg_order, false);
|
|
|
|
node = (Node *) aggref;
|
|
}
|
|
|
|
return makeJsonConstructorExpr(pstate, ctor_type, NIL, (Expr *) node,
|
|
returning, unique, absent_on_null,
|
|
agg_ctor->location);
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_OBJECTAGG() aggregate function.
|
|
*
|
|
* JSON_OBJECTAGG() is transformed into a JsonConstructorExpr node of type
|
|
* JSCTOR_JSON_OBJECTAGG, which at runtime becomes a
|
|
* json[b]_object_agg[_unique][_strict](agg->arg->key, agg->arg->value) call
|
|
* depending on the output JSON format. The result is coerced to the target
|
|
* type given by agg->constructor->output.
|
|
*/
|
|
static Node *
|
|
transformJsonObjectAgg(ParseState *pstate, JsonObjectAgg *agg)
|
|
{
|
|
JsonReturning *returning;
|
|
Node *key;
|
|
Node *val;
|
|
List *args;
|
|
Oid aggfnoid;
|
|
Oid aggtype;
|
|
|
|
key = transformExprRecurse(pstate, (Node *) agg->arg->key);
|
|
val = transformJsonValueExpr(pstate, "JSON_OBJECTAGG()",
|
|
agg->arg->value,
|
|
JS_FORMAT_DEFAULT,
|
|
InvalidOid, false);
|
|
args = list_make2(key, val);
|
|
|
|
returning = transformJsonConstructorOutput(pstate, agg->constructor->output,
|
|
args);
|
|
|
|
if (returning->format->format_type == JS_FORMAT_JSONB)
|
|
{
|
|
if (agg->absent_on_null)
|
|
if (agg->unique)
|
|
aggfnoid = F_JSONB_OBJECT_AGG_UNIQUE_STRICT;
|
|
else
|
|
aggfnoid = F_JSONB_OBJECT_AGG_STRICT;
|
|
else if (agg->unique)
|
|
aggfnoid = F_JSONB_OBJECT_AGG_UNIQUE;
|
|
else
|
|
aggfnoid = F_JSONB_OBJECT_AGG;
|
|
|
|
aggtype = JSONBOID;
|
|
}
|
|
else
|
|
{
|
|
if (agg->absent_on_null)
|
|
if (agg->unique)
|
|
aggfnoid = F_JSON_OBJECT_AGG_UNIQUE_STRICT;
|
|
else
|
|
aggfnoid = F_JSON_OBJECT_AGG_STRICT;
|
|
else if (agg->unique)
|
|
aggfnoid = F_JSON_OBJECT_AGG_UNIQUE;
|
|
else
|
|
aggfnoid = F_JSON_OBJECT_AGG;
|
|
|
|
aggtype = JSONOID;
|
|
}
|
|
|
|
return transformJsonAggConstructor(pstate, agg->constructor, returning,
|
|
args, aggfnoid, aggtype,
|
|
JSCTOR_JSON_OBJECTAGG,
|
|
agg->unique, agg->absent_on_null);
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_ARRAYAGG() aggregate function.
|
|
*
|
|
* JSON_ARRAYAGG() is transformed into a JsonConstructorExpr node of type
|
|
* JSCTOR_JSON_ARRAYAGG, which at runtime becomes a
|
|
* json[b]_object_agg[_unique][_strict](agg->arg) call depending on the output
|
|
* JSON format. The result is coerced to the target type given by
|
|
* agg->constructor->output.
|
|
*/
|
|
static Node *
|
|
transformJsonArrayAgg(ParseState *pstate, JsonArrayAgg *agg)
|
|
{
|
|
JsonReturning *returning;
|
|
Node *arg;
|
|
Oid aggfnoid;
|
|
Oid aggtype;
|
|
|
|
arg = transformJsonValueExpr(pstate, "JSON_ARRAYAGG()", agg->arg,
|
|
JS_FORMAT_DEFAULT, InvalidOid, false);
|
|
|
|
returning = transformJsonConstructorOutput(pstate, agg->constructor->output,
|
|
list_make1(arg));
|
|
|
|
if (returning->format->format_type == JS_FORMAT_JSONB)
|
|
{
|
|
aggfnoid = agg->absent_on_null ? F_JSONB_AGG_STRICT : F_JSONB_AGG;
|
|
aggtype = JSONBOID;
|
|
}
|
|
else
|
|
{
|
|
aggfnoid = agg->absent_on_null ? F_JSON_AGG_STRICT : F_JSON_AGG;
|
|
aggtype = JSONOID;
|
|
}
|
|
|
|
return transformJsonAggConstructor(pstate, agg->constructor, returning,
|
|
list_make1(arg), aggfnoid, aggtype,
|
|
JSCTOR_JSON_ARRAYAGG,
|
|
false, agg->absent_on_null);
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_ARRAY() constructor.
|
|
*
|
|
* JSON_ARRAY() is transformed into a JsonConstructorExpr node of type
|
|
* JSCTOR_JSON_ARRAY. The result is coerced to the target type given
|
|
* by ctor->output.
|
|
*/
|
|
static Node *
|
|
transformJsonArrayConstructor(ParseState *pstate, JsonArrayConstructor *ctor)
|
|
{
|
|
JsonReturning *returning;
|
|
List *args = NIL;
|
|
|
|
/* transform element expressions, if any */
|
|
if (ctor->exprs)
|
|
{
|
|
ListCell *lc;
|
|
|
|
/* transform and append element arguments */
|
|
foreach(lc, ctor->exprs)
|
|
{
|
|
JsonValueExpr *jsval = castNode(JsonValueExpr, lfirst(lc));
|
|
Node *val = transformJsonValueExpr(pstate, "JSON_ARRAY()",
|
|
jsval, JS_FORMAT_DEFAULT,
|
|
InvalidOid, false);
|
|
|
|
args = lappend(args, val);
|
|
}
|
|
}
|
|
|
|
returning = transformJsonConstructorOutput(pstate, ctor->output, args);
|
|
|
|
return makeJsonConstructorExpr(pstate, JSCTOR_JSON_ARRAY, args, NULL,
|
|
returning, false, ctor->absent_on_null,
|
|
ctor->location);
|
|
}
|
|
|
|
static Node *
|
|
transformJsonParseArg(ParseState *pstate, Node *jsexpr, JsonFormat *format,
|
|
Oid *exprtype)
|
|
{
|
|
Node *raw_expr = transformExprRecurse(pstate, jsexpr);
|
|
Node *expr = raw_expr;
|
|
|
|
*exprtype = exprType(expr);
|
|
|
|
/* prepare input document */
|
|
if (*exprtype == BYTEAOID)
|
|
{
|
|
JsonValueExpr *jve;
|
|
|
|
expr = raw_expr;
|
|
expr = makeJsonByteaToTextConversion(expr, format, exprLocation(expr));
|
|
*exprtype = TEXTOID;
|
|
|
|
jve = makeJsonValueExpr((Expr *) raw_expr, (Expr *) expr, format);
|
|
expr = (Node *) jve;
|
|
}
|
|
else
|
|
{
|
|
char typcategory;
|
|
bool typispreferred;
|
|
|
|
get_type_category_preferred(*exprtype, &typcategory, &typispreferred);
|
|
|
|
if (*exprtype == UNKNOWNOID || typcategory == TYPCATEGORY_STRING)
|
|
{
|
|
expr = coerce_to_target_type(pstate, (Node *) expr, *exprtype,
|
|
TEXTOID, -1,
|
|
COERCION_IMPLICIT,
|
|
COERCE_IMPLICIT_CAST, -1);
|
|
*exprtype = TEXTOID;
|
|
}
|
|
|
|
if (format->encoding != JS_ENC_DEFAULT)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
parser_errposition(pstate, format->location),
|
|
errmsg("cannot use JSON FORMAT ENCODING clause for non-bytea input types")));
|
|
}
|
|
|
|
return expr;
|
|
}
|
|
|
|
/*
|
|
* Transform IS JSON predicate.
|
|
*/
|
|
static Node *
|
|
transformJsonIsPredicate(ParseState *pstate, JsonIsPredicate *pred)
|
|
{
|
|
Oid exprtype;
|
|
Node *expr = transformJsonParseArg(pstate, pred->expr, pred->format,
|
|
&exprtype);
|
|
|
|
/* make resulting expression */
|
|
if (exprtype != TEXTOID && exprtype != JSONOID && exprtype != JSONBOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot use type %s in IS JSON predicate",
|
|
format_type_be(exprtype))));
|
|
|
|
/* This intentionally(?) drops the format clause. */
|
|
return makeJsonIsPredicate(expr, NULL, pred->item_type,
|
|
pred->unique_keys, pred->location);
|
|
}
|
|
|
|
/*
|
|
* Transform the RETURNING clause of a JSON_*() expression if there is one and
|
|
* create one if not.
|
|
*/
|
|
static JsonReturning *
|
|
transformJsonReturning(ParseState *pstate, JsonOutput *output, const char *fname)
|
|
{
|
|
JsonReturning *returning;
|
|
|
|
if (output)
|
|
{
|
|
returning = transformJsonOutput(pstate, output, false);
|
|
|
|
Assert(OidIsValid(returning->typid));
|
|
|
|
if (returning->typid != JSONOID && returning->typid != JSONBOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot use RETURNING type %s in %s",
|
|
format_type_be(returning->typid), fname),
|
|
parser_errposition(pstate, output->typeName->location)));
|
|
}
|
|
else
|
|
{
|
|
/* Output type is JSON by default. */
|
|
Oid targettype = JSONOID;
|
|
JsonFormatType format = JS_FORMAT_JSON;
|
|
|
|
returning = makeNode(JsonReturning);
|
|
returning->format = makeJsonFormat(format, JS_ENC_DEFAULT, -1);
|
|
returning->typid = targettype;
|
|
returning->typmod = -1;
|
|
}
|
|
|
|
return returning;
|
|
}
|
|
|
|
/*
|
|
* Transform a JSON() expression.
|
|
*
|
|
* JSON() is transformed into a JsonConstructorExpr of type JSCTOR_JSON_PARSE,
|
|
* which validates the input expression value as JSON.
|
|
*/
|
|
static Node *
|
|
transformJsonParseExpr(ParseState *pstate, JsonParseExpr *jsexpr)
|
|
{
|
|
JsonOutput *output = jsexpr->output;
|
|
JsonReturning *returning;
|
|
Node *arg;
|
|
|
|
returning = transformJsonReturning(pstate, output, "JSON()");
|
|
|
|
if (jsexpr->unique_keys)
|
|
{
|
|
/*
|
|
* Coerce string argument to text and then to json[b] in the executor
|
|
* node with key uniqueness check.
|
|
*/
|
|
JsonValueExpr *jve = jsexpr->expr;
|
|
Oid arg_type;
|
|
|
|
arg = transformJsonParseArg(pstate, (Node *) jve->raw_expr, jve->format,
|
|
&arg_type);
|
|
|
|
if (arg_type != TEXTOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot use non-string types with WITH UNIQUE KEYS clause"),
|
|
parser_errposition(pstate, jsexpr->location)));
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Coerce argument to target type using CAST for compatibility with PG
|
|
* function-like CASTs.
|
|
*/
|
|
arg = transformJsonValueExpr(pstate, "JSON()", jsexpr->expr,
|
|
JS_FORMAT_JSON, returning->typid, false);
|
|
}
|
|
|
|
return makeJsonConstructorExpr(pstate, JSCTOR_JSON_PARSE, list_make1(arg), NULL,
|
|
returning, jsexpr->unique_keys, false,
|
|
jsexpr->location);
|
|
}
|
|
|
|
/*
|
|
* Transform a JSON_SCALAR() expression.
|
|
*
|
|
* JSON_SCALAR() is transformed into a JsonConstructorExpr of type
|
|
* JSCTOR_JSON_SCALAR, which converts the input SQL scalar value into
|
|
* a json[b] value.
|
|
*/
|
|
static Node *
|
|
transformJsonScalarExpr(ParseState *pstate, JsonScalarExpr *jsexpr)
|
|
{
|
|
Node *arg = transformExprRecurse(pstate, (Node *) jsexpr->expr);
|
|
JsonOutput *output = jsexpr->output;
|
|
JsonReturning *returning;
|
|
|
|
returning = transformJsonReturning(pstate, output, "JSON_SCALAR()");
|
|
|
|
if (exprType(arg) == UNKNOWNOID)
|
|
arg = coerce_to_specific_type(pstate, arg, TEXTOID, "JSON_SCALAR");
|
|
|
|
return makeJsonConstructorExpr(pstate, JSCTOR_JSON_SCALAR, list_make1(arg), NULL,
|
|
returning, false, false, jsexpr->location);
|
|
}
|
|
|
|
/*
|
|
* Transform a JSON_SERIALIZE() expression.
|
|
*
|
|
* JSON_SERIALIZE() is transformed into a JsonConstructorExpr of type
|
|
* JSCTOR_JSON_SERIALIZE which converts the input JSON value into a character
|
|
* or bytea string.
|
|
*/
|
|
static Node *
|
|
transformJsonSerializeExpr(ParseState *pstate, JsonSerializeExpr *expr)
|
|
{
|
|
JsonReturning *returning;
|
|
Node *arg = transformJsonValueExpr(pstate, "JSON_SERIALIZE()",
|
|
expr->expr,
|
|
JS_FORMAT_JSON,
|
|
InvalidOid, false);
|
|
|
|
if (expr->output)
|
|
{
|
|
returning = transformJsonOutput(pstate, expr->output, true);
|
|
|
|
if (returning->typid != BYTEAOID)
|
|
{
|
|
char typcategory;
|
|
bool typispreferred;
|
|
|
|
get_type_category_preferred(returning->typid, &typcategory,
|
|
&typispreferred);
|
|
if (typcategory != TYPCATEGORY_STRING)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot use RETURNING type %s in %s",
|
|
format_type_be(returning->typid),
|
|
"JSON_SERIALIZE()"),
|
|
errhint("Try returning a string type or bytea.")));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* RETURNING TEXT FORMAT JSON is by default */
|
|
returning = makeNode(JsonReturning);
|
|
returning->format = makeJsonFormat(JS_FORMAT_JSON, JS_ENC_DEFAULT, -1);
|
|
returning->typid = TEXTOID;
|
|
returning->typmod = -1;
|
|
}
|
|
|
|
return makeJsonConstructorExpr(pstate, JSCTOR_JSON_SERIALIZE, list_make1(arg),
|
|
NULL, returning, false, false, expr->location);
|
|
}
|
|
|
|
/*
|
|
* Transform JSON_VALUE, JSON_QUERY, JSON_EXISTS, JSON_TABLE functions into
|
|
* a JsonExpr node.
|
|
*/
|
|
static Node *
|
|
transformJsonFuncExpr(ParseState *pstate, JsonFuncExpr *func)
|
|
{
|
|
JsonExpr *jsexpr;
|
|
Node *path_spec;
|
|
const char *func_name = NULL;
|
|
JsonFormatType default_format;
|
|
|
|
switch (func->op)
|
|
{
|
|
case JSON_EXISTS_OP:
|
|
func_name = "JSON_EXISTS";
|
|
default_format = JS_FORMAT_DEFAULT;
|
|
break;
|
|
case JSON_QUERY_OP:
|
|
func_name = "JSON_QUERY";
|
|
default_format = JS_FORMAT_JSONB;
|
|
break;
|
|
case JSON_VALUE_OP:
|
|
func_name = "JSON_VALUE";
|
|
default_format = JS_FORMAT_DEFAULT;
|
|
break;
|
|
case JSON_TABLE_OP:
|
|
func_name = "JSON_TABLE";
|
|
default_format = JS_FORMAT_JSONB;
|
|
break;
|
|
default:
|
|
elog(ERROR, "invalid JsonFuncExpr op %d", (int) func->op);
|
|
default_format = JS_FORMAT_DEFAULT; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Even though the syntax allows it, FORMAT JSON specification in
|
|
* RETURNING is meaningless except for JSON_QUERY(). Flag if not
|
|
* JSON_QUERY().
|
|
*/
|
|
if (func->output && func->op != JSON_QUERY_OP)
|
|
{
|
|
JsonFormat *format = func->output->returning->format;
|
|
|
|
if (format->format_type != JS_FORMAT_DEFAULT ||
|
|
format->encoding != JS_ENC_DEFAULT)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("cannot specify FORMAT JSON in RETURNING clause of %s()",
|
|
func_name),
|
|
parser_errposition(pstate, format->location));
|
|
}
|
|
|
|
/* OMIT QUOTES is meaningless when strings are wrapped. */
|
|
if (func->op == JSON_QUERY_OP)
|
|
{
|
|
if (func->quotes == JS_QUOTES_OMIT &&
|
|
(func->wrapper == JSW_CONDITIONAL ||
|
|
func->wrapper == JSW_UNCONDITIONAL))
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("SQL/JSON QUOTES behavior must not be specified when WITH WRAPPER is used"),
|
|
parser_errposition(pstate, func->location));
|
|
if (func->on_empty != NULL &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_ERROR &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_NULL &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_EMPTY &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_EMPTY_ARRAY &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_EMPTY_OBJECT &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_DEFAULT)
|
|
{
|
|
if (func->column_name == NULL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior", "ON EMPTY"),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY),
|
|
second %s is a SQL/JSON function name (e.g. JSON_QUERY) */
|
|
errdetail("Only ERROR, NULL, EMPTY ARRAY, EMPTY OBJECT, or DEFAULT expression is allowed in %s for %s.",
|
|
"ON EMPTY", "JSON_QUERY()"),
|
|
parser_errposition(pstate, func->on_empty->location));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior for column \"%s\"",
|
|
"ON EMPTY", func->column_name),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errdetail("Only ERROR, NULL, EMPTY ARRAY, EMPTY OBJECT, or DEFAULT expression is allowed in %s for formatted columns.",
|
|
"ON EMPTY"),
|
|
parser_errposition(pstate, func->on_empty->location));
|
|
}
|
|
if (func->on_error != NULL &&
|
|
func->on_error->btype != JSON_BEHAVIOR_ERROR &&
|
|
func->on_error->btype != JSON_BEHAVIOR_NULL &&
|
|
func->on_error->btype != JSON_BEHAVIOR_EMPTY &&
|
|
func->on_error->btype != JSON_BEHAVIOR_EMPTY_ARRAY &&
|
|
func->on_error->btype != JSON_BEHAVIOR_EMPTY_OBJECT &&
|
|
func->on_error->btype != JSON_BEHAVIOR_DEFAULT)
|
|
{
|
|
if (func->column_name == NULL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior", "ON ERROR"),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY),
|
|
second %s is a SQL/JSON function name (e.g. JSON_QUERY) */
|
|
errdetail("Only ERROR, NULL, EMPTY ARRAY, EMPTY OBJECT, or DEFAULT expression is allowed in %s for %s.",
|
|
"ON ERROR", "JSON_QUERY()"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior for column \"%s\"",
|
|
"ON ERROR", func->column_name),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errdetail("Only ERROR, NULL, EMPTY ARRAY, EMPTY OBJECT, or DEFAULT expression is allowed in %s for formatted columns.",
|
|
"ON ERROR"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
}
|
|
}
|
|
|
|
/* Check that ON ERROR/EMPTY behavior values are valid for the function. */
|
|
if (func->op == JSON_EXISTS_OP &&
|
|
func->on_error != NULL &&
|
|
func->on_error->btype != JSON_BEHAVIOR_ERROR &&
|
|
func->on_error->btype != JSON_BEHAVIOR_TRUE &&
|
|
func->on_error->btype != JSON_BEHAVIOR_FALSE &&
|
|
func->on_error->btype != JSON_BEHAVIOR_UNKNOWN)
|
|
{
|
|
if (func->column_name == NULL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior", "ON ERROR"),
|
|
errdetail("Only ERROR, TRUE, FALSE, or UNKNOWN is allowed in %s for %s.",
|
|
"ON ERROR", "JSON_EXISTS()"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: first %s is name a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior for column \"%s\"",
|
|
"ON ERROR", func->column_name),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errdetail("Only ERROR, TRUE, FALSE, or UNKNOWN is allowed in %s for EXISTS columns.",
|
|
"ON ERROR"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
}
|
|
if (func->op == JSON_VALUE_OP)
|
|
{
|
|
if (func->on_empty != NULL &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_ERROR &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_NULL &&
|
|
func->on_empty->btype != JSON_BEHAVIOR_DEFAULT)
|
|
{
|
|
if (func->column_name == NULL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior", "ON EMPTY"),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY),
|
|
second %s is a SQL/JSON function name (e.g. JSON_QUERY) */
|
|
errdetail("Only ERROR, NULL, or DEFAULT expression is allowed in %s for %s.",
|
|
"ON EMPTY", "JSON_VALUE()"),
|
|
parser_errposition(pstate, func->on_empty->location));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior for column \"%s\"",
|
|
"ON EMPTY", func->column_name),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errdetail("Only ERROR, NULL, or DEFAULT expression is allowed in %s for scalar columns.",
|
|
"ON EMPTY"),
|
|
parser_errposition(pstate, func->on_empty->location));
|
|
}
|
|
if (func->on_error != NULL &&
|
|
func->on_error->btype != JSON_BEHAVIOR_ERROR &&
|
|
func->on_error->btype != JSON_BEHAVIOR_NULL &&
|
|
func->on_error->btype != JSON_BEHAVIOR_DEFAULT)
|
|
{
|
|
if (func->column_name == NULL)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior", "ON ERROR"),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY),
|
|
second %s is a SQL/JSON function name (e.g. JSON_QUERY) */
|
|
errdetail("Only ERROR, NULL, or DEFAULT expression is allowed in %s for %s.",
|
|
"ON ERROR", "JSON_VALUE()"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
/*- translator: first %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errmsg("invalid %s behavior for column \"%s\"",
|
|
"ON ERROR", func->column_name),
|
|
/*- translator: %s is name of a SQL/JSON clause (eg. ON EMPTY) */
|
|
errdetail("Only ERROR, NULL, or DEFAULT expression is allowed in %s for scalar columns.",
|
|
"ON ERROR"),
|
|
parser_errposition(pstate, func->on_error->location));
|
|
}
|
|
}
|
|
|
|
jsexpr = makeNode(JsonExpr);
|
|
jsexpr->location = func->location;
|
|
jsexpr->op = func->op;
|
|
jsexpr->column_name = func->column_name;
|
|
|
|
/*
|
|
* jsonpath machinery can only handle jsonb documents, so coerce the input
|
|
* if not already of jsonb type.
|
|
*/
|
|
jsexpr->formatted_expr = transformJsonValueExpr(pstate, func_name,
|
|
func->context_item,
|
|
default_format,
|
|
JSONBOID,
|
|
false);
|
|
jsexpr->format = func->context_item->format;
|
|
|
|
path_spec = transformExprRecurse(pstate, func->pathspec);
|
|
path_spec = coerce_to_target_type(pstate, path_spec, exprType(path_spec),
|
|
JSONPATHOID, -1,
|
|
COERCION_EXPLICIT, COERCE_IMPLICIT_CAST,
|
|
exprLocation(path_spec));
|
|
if (path_spec == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("JSON path expression must be of type %s, not of type %s",
|
|
"jsonpath", format_type_be(exprType(path_spec))),
|
|
parser_errposition(pstate, exprLocation(path_spec))));
|
|
jsexpr->path_spec = path_spec;
|
|
|
|
/* Transform and coerce the PASSING arguments to jsonb. */
|
|
transformJsonPassingArgs(pstate, func_name,
|
|
JS_FORMAT_JSONB,
|
|
func->passing,
|
|
&jsexpr->passing_values,
|
|
&jsexpr->passing_names);
|
|
|
|
/* Transform the JsonOutput into JsonReturning. */
|
|
jsexpr->returning = transformJsonOutput(pstate, func->output, false);
|
|
|
|
switch (func->op)
|
|
{
|
|
case JSON_EXISTS_OP:
|
|
/* JSON_EXISTS returns boolean by default. */
|
|
if (!OidIsValid(jsexpr->returning->typid))
|
|
{
|
|
jsexpr->returning->typid = BOOLOID;
|
|
jsexpr->returning->typmod = -1;
|
|
}
|
|
|
|
/* JSON_TABLE() COLUMNS can specify a non-boolean type. */
|
|
if (jsexpr->returning->typid != BOOLOID)
|
|
jsexpr->use_json_coercion = true;
|
|
|
|
jsexpr->on_error = transformJsonBehavior(pstate, func->on_error,
|
|
JSON_BEHAVIOR_FALSE,
|
|
jsexpr->returning);
|
|
break;
|
|
|
|
case JSON_QUERY_OP:
|
|
/* JSON_QUERY returns jsonb by default. */
|
|
if (!OidIsValid(jsexpr->returning->typid))
|
|
{
|
|
JsonReturning *ret = jsexpr->returning;
|
|
|
|
ret->typid = JSONBOID;
|
|
ret->typmod = -1;
|
|
}
|
|
|
|
/*
|
|
* Keep quotes on scalar strings by default, omitting them only if
|
|
* OMIT QUOTES is specified.
|
|
*/
|
|
jsexpr->omit_quotes = (func->quotes == JS_QUOTES_OMIT);
|
|
jsexpr->wrapper = func->wrapper;
|
|
|
|
/*
|
|
* Set up to coerce the result value of JsonPathValue() to the
|
|
* RETURNING type (default or user-specified), if needed. Also if
|
|
* OMIT QUOTES is specified.
|
|
*/
|
|
if (jsexpr->returning->typid != JSONBOID || jsexpr->omit_quotes)
|
|
jsexpr->use_json_coercion = true;
|
|
|
|
/* Assume NULL ON EMPTY when ON EMPTY is not specified. */
|
|
jsexpr->on_empty = transformJsonBehavior(pstate, func->on_empty,
|
|
JSON_BEHAVIOR_NULL,
|
|
jsexpr->returning);
|
|
/* Assume NULL ON ERROR when ON ERROR is not specified. */
|
|
jsexpr->on_error = transformJsonBehavior(pstate, func->on_error,
|
|
JSON_BEHAVIOR_NULL,
|
|
jsexpr->returning);
|
|
break;
|
|
|
|
case JSON_VALUE_OP:
|
|
/* JSON_VALUE returns text by default. */
|
|
if (!OidIsValid(jsexpr->returning->typid))
|
|
{
|
|
jsexpr->returning->typid = TEXTOID;
|
|
jsexpr->returning->typmod = -1;
|
|
}
|
|
|
|
/*
|
|
* Override whatever transformJsonOutput() set these to, which
|
|
* assumes that output type to be jsonb.
|
|
*/
|
|
jsexpr->returning->format->format_type = JS_FORMAT_DEFAULT;
|
|
jsexpr->returning->format->encoding = JS_ENC_DEFAULT;
|
|
|
|
/* Always omit quotes from scalar strings. */
|
|
jsexpr->omit_quotes = true;
|
|
|
|
/*
|
|
* Set up to coerce the result value of JsonPathValue() to the
|
|
* RETURNING type (default or user-specified), if needed.
|
|
*/
|
|
if (jsexpr->returning->typid != TEXTOID)
|
|
{
|
|
if (get_typtype(jsexpr->returning->typid) == TYPTYPE_DOMAIN &&
|
|
DomainHasConstraints(jsexpr->returning->typid))
|
|
jsexpr->use_json_coercion = true;
|
|
else
|
|
jsexpr->use_io_coercion = true;
|
|
}
|
|
|
|
/* Assume NULL ON EMPTY when ON EMPTY is not specified. */
|
|
jsexpr->on_empty = transformJsonBehavior(pstate, func->on_empty,
|
|
JSON_BEHAVIOR_NULL,
|
|
jsexpr->returning);
|
|
/* Assume NULL ON ERROR when ON ERROR is not specified. */
|
|
jsexpr->on_error = transformJsonBehavior(pstate, func->on_error,
|
|
JSON_BEHAVIOR_NULL,
|
|
jsexpr->returning);
|
|
break;
|
|
|
|
case JSON_TABLE_OP:
|
|
if (!OidIsValid(jsexpr->returning->typid))
|
|
{
|
|
jsexpr->returning->typid = exprType(jsexpr->formatted_expr);
|
|
jsexpr->returning->typmod = -1;
|
|
}
|
|
|
|
/*
|
|
* Assume EMPTY ARRAY ON ERROR when ON ERROR is not specified.
|
|
*
|
|
* ON EMPTY cannot be specified at the top level but it can be for
|
|
* the individual columns.
|
|
*/
|
|
jsexpr->on_error = transformJsonBehavior(pstate, func->on_error,
|
|
JSON_BEHAVIOR_EMPTY_ARRAY,
|
|
jsexpr->returning);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "invalid JsonFuncExpr op %d", (int) func->op);
|
|
break;
|
|
}
|
|
|
|
return (Node *) jsexpr;
|
|
}
|
|
|
|
/*
|
|
* Transform a SQL/JSON PASSING clause.
|
|
*/
|
|
static void
|
|
transformJsonPassingArgs(ParseState *pstate, const char *constructName,
|
|
JsonFormatType format, List *args,
|
|
List **passing_values, List **passing_names)
|
|
{
|
|
ListCell *lc;
|
|
|
|
*passing_values = NIL;
|
|
*passing_names = NIL;
|
|
|
|
foreach(lc, args)
|
|
{
|
|
JsonArgument *arg = castNode(JsonArgument, lfirst(lc));
|
|
Node *expr = transformJsonValueExpr(pstate, constructName,
|
|
arg->val, format,
|
|
InvalidOid, true);
|
|
|
|
*passing_values = lappend(*passing_values, expr);
|
|
*passing_names = lappend(*passing_names, makeString(arg->name));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recursively checks if the given expression, or its sub-node in some cases,
|
|
* is valid for using as an ON ERROR / ON EMPTY DEFAULT expression.
|
|
*/
|
|
static bool
|
|
ValidJsonBehaviorDefaultExpr(Node *expr, void *context)
|
|
{
|
|
if (expr == NULL)
|
|
return false;
|
|
|
|
switch (nodeTag(expr))
|
|
{
|
|
/* Acceptable expression nodes */
|
|
case T_Const:
|
|
case T_FuncExpr:
|
|
case T_OpExpr:
|
|
return true;
|
|
|
|
/* Acceptable iff arg of the following nodes is one of the above */
|
|
case T_CoerceViaIO:
|
|
case T_CoerceToDomain:
|
|
case T_ArrayCoerceExpr:
|
|
case T_ConvertRowtypeExpr:
|
|
case T_RelabelType:
|
|
case T_CollateExpr:
|
|
return expression_tree_walker(expr, ValidJsonBehaviorDefaultExpr,
|
|
context);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Transform a JSON BEHAVIOR clause.
|
|
*/
|
|
static JsonBehavior *
|
|
transformJsonBehavior(ParseState *pstate, JsonBehavior *behavior,
|
|
JsonBehaviorType default_behavior,
|
|
JsonReturning *returning)
|
|
{
|
|
JsonBehaviorType btype = default_behavior;
|
|
Node *expr = NULL;
|
|
bool coerce_at_runtime = false;
|
|
int location = -1;
|
|
|
|
if (behavior)
|
|
{
|
|
btype = behavior->btype;
|
|
location = behavior->location;
|
|
if (btype == JSON_BEHAVIOR_DEFAULT)
|
|
{
|
|
expr = transformExprRecurse(pstate, behavior->expr);
|
|
if (!ValidJsonBehaviorDefaultExpr(expr, NULL))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("can only specify a constant, non-aggregate function, or operator expression for DEFAULT"),
|
|
parser_errposition(pstate, exprLocation(expr))));
|
|
if (contain_var_clause(expr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("DEFAULT expression must not contain column references"),
|
|
parser_errposition(pstate, exprLocation(expr))));
|
|
if (expression_returns_set(expr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("DEFAULT expression must not return a set"),
|
|
parser_errposition(pstate, exprLocation(expr))));
|
|
}
|
|
}
|
|
|
|
if (expr == NULL && btype != JSON_BEHAVIOR_ERROR)
|
|
expr = GetJsonBehaviorConst(btype, location);
|
|
|
|
/*
|
|
* Try to coerce the expression if needed.
|
|
*
|
|
* Use runtime coercion using json_populate_type() if the expression is
|
|
* NULL, jsonb-valued, or boolean-valued (unless the target type is
|
|
* integer or domain over integer, in which case use the
|
|
* boolean-to-integer cast function).
|
|
*
|
|
* For other non-NULL expressions, try to find a cast and error out if one
|
|
* is not found.
|
|
*/
|
|
if (expr && exprType(expr) != returning->typid)
|
|
{
|
|
bool isnull = (IsA(expr, Const) && ((Const *) expr)->constisnull);
|
|
|
|
if (isnull ||
|
|
exprType(expr) == JSONBOID ||
|
|
(exprType(expr) == BOOLOID &&
|
|
getBaseType(returning->typid) != INT4OID))
|
|
{
|
|
coerce_at_runtime = true;
|
|
|
|
/*
|
|
* json_populate_type() expects to be passed a jsonb value, so gin
|
|
* up a Const containing the appropriate boolean value represented
|
|
* as jsonb, discarding the original Const containing a plain
|
|
* boolean.
|
|
*/
|
|
if (exprType(expr) == BOOLOID)
|
|
{
|
|
char *val = btype == JSON_BEHAVIOR_TRUE ? "true" : "false";
|
|
|
|
expr = (Node *) makeConst(JSONBOID, -1, InvalidOid, -1,
|
|
DirectFunctionCall1(jsonb_in,
|
|
CStringGetDatum(val)),
|
|
false, false);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Node *coerced_expr;
|
|
char typcategory = TypeCategory(returning->typid);
|
|
|
|
/*
|
|
* Use an assignment cast if coercing to a string type so that
|
|
* build_coercion_expression() assumes implicit coercion when
|
|
* coercing the typmod, so that inputs exceeding length cause an
|
|
* error instead of silent truncation.
|
|
*/
|
|
coerced_expr =
|
|
coerce_to_target_type(pstate, expr, exprType(expr),
|
|
returning->typid, returning->typmod,
|
|
(typcategory == TYPCATEGORY_STRING ||
|
|
typcategory == TYPCATEGORY_BITSTRING) ?
|
|
COERCION_ASSIGNMENT :
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST,
|
|
exprLocation((Node *) behavior));
|
|
|
|
if (coerced_expr == NULL)
|
|
{
|
|
/*
|
|
* Provide a HINT if the expression comes from a DEFAULT
|
|
* clause.
|
|
*/
|
|
if (btype == JSON_BEHAVIOR_DEFAULT)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast behavior expression of type %s to %s",
|
|
format_type_be(exprType(expr)),
|
|
format_type_be(returning->typid)),
|
|
errhint("You will need to explicitly cast the expression to type %s.",
|
|
format_type_be(returning->typid)),
|
|
parser_errposition(pstate, exprLocation(expr)));
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast behavior expression of type %s to %s",
|
|
format_type_be(exprType(expr)),
|
|
format_type_be(returning->typid)),
|
|
parser_errposition(pstate, exprLocation(expr)));
|
|
}
|
|
|
|
expr = coerced_expr;
|
|
}
|
|
}
|
|
|
|
if (behavior)
|
|
behavior->expr = expr;
|
|
else
|
|
behavior = makeJsonBehavior(btype, expr, location);
|
|
|
|
behavior->coerce = coerce_at_runtime;
|
|
|
|
return behavior;
|
|
}
|
|
|
|
/*
|
|
* Returns a Const node holding the value for the given non-ERROR
|
|
* JsonBehaviorType.
|
|
*/
|
|
static Node *
|
|
GetJsonBehaviorConst(JsonBehaviorType btype, int location)
|
|
{
|
|
Datum val = (Datum) 0;
|
|
Oid typid = JSONBOID;
|
|
int len = -1;
|
|
bool isbyval = false;
|
|
bool isnull = false;
|
|
Const *con;
|
|
|
|
switch (btype)
|
|
{
|
|
case JSON_BEHAVIOR_EMPTY_ARRAY:
|
|
val = DirectFunctionCall1(jsonb_in, CStringGetDatum("[]"));
|
|
break;
|
|
|
|
case JSON_BEHAVIOR_EMPTY_OBJECT:
|
|
val = DirectFunctionCall1(jsonb_in, CStringGetDatum("{}"));
|
|
break;
|
|
|
|
case JSON_BEHAVIOR_TRUE:
|
|
val = BoolGetDatum(true);
|
|
typid = BOOLOID;
|
|
len = sizeof(bool);
|
|
isbyval = true;
|
|
break;
|
|
|
|
case JSON_BEHAVIOR_FALSE:
|
|
val = BoolGetDatum(false);
|
|
typid = BOOLOID;
|
|
len = sizeof(bool);
|
|
isbyval = true;
|
|
break;
|
|
|
|
case JSON_BEHAVIOR_NULL:
|
|
case JSON_BEHAVIOR_UNKNOWN:
|
|
case JSON_BEHAVIOR_EMPTY:
|
|
val = (Datum) 0;
|
|
isnull = true;
|
|
typid = INT4OID;
|
|
len = sizeof(int32);
|
|
isbyval = true;
|
|
break;
|
|
|
|
/* These two behavior types are handled by the caller. */
|
|
case JSON_BEHAVIOR_DEFAULT:
|
|
case JSON_BEHAVIOR_ERROR:
|
|
Assert(false);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized SQL/JSON behavior %d", btype);
|
|
break;
|
|
}
|
|
|
|
con = makeConst(typid, -1, InvalidOid, len, val, isnull, isbyval);
|
|
con->location = location;
|
|
|
|
return (Node *) con;
|
|
}
|