2157 lines
56 KiB
C
2157 lines
56 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execMain.c
|
|
* top level executor interface routines
|
|
*
|
|
* INTERFACE ROUTINES
|
|
* ExecutorStart()
|
|
* ExecutorRun()
|
|
* ExecutorEnd()
|
|
*
|
|
* The old ExecutorMain() has been replaced by ExecutorStart(),
|
|
* ExecutorRun() and ExecutorEnd()
|
|
*
|
|
* These three procedures are the external interfaces to the executor.
|
|
* In each case, the query descriptor is required as an argument.
|
|
*
|
|
* ExecutorStart() must be called at the beginning of execution of any
|
|
* query plan and ExecutorEnd() should always be called at the end of
|
|
* execution of a plan.
|
|
*
|
|
* ExecutorRun accepts direction and count arguments that specify whether
|
|
* the plan is to be executed forwards, backwards, and for how many tuples.
|
|
*
|
|
* Portions Copyright (c) 1996-2004, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/execMain.c,v 1.236 2004/08/29 05:06:42 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "catalog/heap.h"
|
|
#include "catalog/namespace.h"
|
|
#include "commands/tablecmds.h"
|
|
#include "commands/trigger.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/execdefs.h"
|
|
#include "miscadmin.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/guc.h"
|
|
#include "utils/lsyscache.h"
|
|
|
|
|
|
typedef struct execRowMark
|
|
{
|
|
Relation relation;
|
|
Index rti;
|
|
char resname[32];
|
|
} execRowMark;
|
|
|
|
typedef struct evalPlanQual
|
|
{
|
|
Index rti;
|
|
EState *estate;
|
|
PlanState *planstate;
|
|
struct evalPlanQual *next; /* stack of active PlanQual plans */
|
|
struct evalPlanQual *free; /* list of free PlanQual plans */
|
|
} evalPlanQual;
|
|
|
|
/* decls for local routines only used within this module */
|
|
static void InitPlan(QueryDesc *queryDesc, bool explainOnly);
|
|
static void initResultRelInfo(ResultRelInfo *resultRelInfo,
|
|
Index resultRelationIndex,
|
|
List *rangeTable,
|
|
CmdType operation);
|
|
static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
|
|
CmdType operation,
|
|
long numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest);
|
|
static void ExecSelect(TupleTableSlot *slot,
|
|
DestReceiver *dest,
|
|
EState *estate);
|
|
static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
|
|
EState *estate);
|
|
static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
|
|
EState *estate);
|
|
static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
|
|
EState *estate);
|
|
static TupleTableSlot *EvalPlanQualNext(EState *estate);
|
|
static void EndEvalPlanQual(EState *estate);
|
|
static void ExecCheckRTEPerms(RangeTblEntry *rte);
|
|
static void ExecCheckXactReadOnly(Query *parsetree);
|
|
static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
|
|
evalPlanQual *priorepq);
|
|
static void EvalPlanQualStop(evalPlanQual *epq);
|
|
|
|
/* end of local decls */
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorStart
|
|
*
|
|
* This routine must be called at the beginning of any execution of any
|
|
* query plan
|
|
*
|
|
* Takes a QueryDesc previously created by CreateQueryDesc (it's not real
|
|
* clear why we bother to separate the two functions, but...). The tupDesc
|
|
* field of the QueryDesc is filled in to describe the tuples that will be
|
|
* returned, and the internal fields (estate and planstate) are set up.
|
|
*
|
|
* If useCurrentSnapshot is true, run the query with the latest available
|
|
* snapshot, instead of the normal QuerySnapshot. Also, if it's an update
|
|
* or delete query, check that the rows to be updated or deleted would be
|
|
* visible to the normal QuerySnapshot. (This is a special-case behavior
|
|
* needed for referential integrity updates in serializable transactions.
|
|
* We must check all currently-committed rows, but we want to throw a
|
|
* can't-serialize error if any rows that would need updates would not be
|
|
* visible under the normal serializable snapshot.)
|
|
*
|
|
* If explainOnly is true, we are not actually intending to run the plan,
|
|
* only to set up for EXPLAIN; so skip unwanted side-effects.
|
|
*
|
|
* NB: the CurrentMemoryContext when this is called will become the parent
|
|
* of the per-query context used for this Executor invocation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorStart(QueryDesc *queryDesc, bool useCurrentSnapshot, bool explainOnly)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks: queryDesc must not be started already */
|
|
Assert(queryDesc != NULL);
|
|
Assert(queryDesc->estate == NULL);
|
|
|
|
/*
|
|
* If the transaction is read-only, we need to check if any writes are
|
|
* planned to non-temporary tables.
|
|
*/
|
|
if (XactReadOnly && !explainOnly)
|
|
ExecCheckXactReadOnly(queryDesc->parsetree);
|
|
|
|
/*
|
|
* Build EState, switch into per-query memory context for startup.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
queryDesc->estate = estate;
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* Fill in parameters, if any, from queryDesc
|
|
*/
|
|
estate->es_param_list_info = queryDesc->params;
|
|
|
|
if (queryDesc->plantree->nParamExec > 0)
|
|
estate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
|
|
|
|
estate->es_instrument = queryDesc->doInstrument;
|
|
|
|
/*
|
|
* Make our own private copy of the current query snapshot data.
|
|
*
|
|
* This "freezes" our idea of which tuples are good and which are not for
|
|
* the life of this query, even if it outlives the current command and
|
|
* current snapshot.
|
|
*/
|
|
if (useCurrentSnapshot)
|
|
{
|
|
/* RI update/delete query --- must use an up-to-date snapshot */
|
|
estate->es_snapshot = CopyCurrentSnapshot();
|
|
/* crosscheck updates/deletes against transaction snapshot */
|
|
estate->es_crosscheck_snapshot = CopyQuerySnapshot();
|
|
}
|
|
else
|
|
{
|
|
/* normal query --- use query snapshot, no crosscheck */
|
|
estate->es_snapshot = CopyQuerySnapshot();
|
|
estate->es_crosscheck_snapshot = SnapshotAny;
|
|
}
|
|
|
|
/*
|
|
* Initialize the plan state tree
|
|
*/
|
|
InitPlan(queryDesc, explainOnly);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRun
|
|
*
|
|
* This is the main routine of the executor module. It accepts
|
|
* the query descriptor from the traffic cop and executes the
|
|
* query plan.
|
|
*
|
|
* ExecutorStart must have been called already.
|
|
*
|
|
* If direction is NoMovementScanDirection then nothing is done
|
|
* except to start up/shut down the destination. Otherwise,
|
|
* we retrieve up to 'count' tuples in the specified direction.
|
|
*
|
|
* Note: count = 0 is interpreted as no portal limit, i.e., run to
|
|
* completion.
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, long count)
|
|
{
|
|
EState *estate;
|
|
CmdType operation;
|
|
DestReceiver *dest;
|
|
TupleTableSlot *result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* extract information from the query descriptor and the query
|
|
* feature.
|
|
*/
|
|
operation = queryDesc->operation;
|
|
dest = queryDesc->dest;
|
|
|
|
/*
|
|
* startup tuple receiver
|
|
*/
|
|
estate->es_processed = 0;
|
|
estate->es_lastoid = InvalidOid;
|
|
|
|
(*dest->rStartup) (dest, operation, queryDesc->tupDesc);
|
|
|
|
/*
|
|
* run plan
|
|
*/
|
|
if (direction == NoMovementScanDirection)
|
|
result = NULL;
|
|
else
|
|
result = ExecutePlan(estate,
|
|
queryDesc->planstate,
|
|
operation,
|
|
count,
|
|
direction,
|
|
dest);
|
|
|
|
/*
|
|
* shutdown receiver
|
|
*/
|
|
(*dest->rShutdown) (dest);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorEnd
|
|
*
|
|
* This routine must be called at the end of execution of any
|
|
* query plan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/*
|
|
* Switch into per-query memory context to run ExecEndPlan
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndPlan(queryDesc->planstate, estate);
|
|
|
|
/*
|
|
* Must switch out of context before destroying it
|
|
*/
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Release EState and per-query memory context. This should release
|
|
* everything the executor has allocated.
|
|
*/
|
|
FreeExecutorState(estate);
|
|
|
|
/* Reset queryDesc fields that no longer point to anything */
|
|
queryDesc->tupDesc = NULL;
|
|
queryDesc->estate = NULL;
|
|
queryDesc->planstate = NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRewind
|
|
*
|
|
* This routine may be called on an open queryDesc to rewind it
|
|
* to the start.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorRewind(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/* It's probably not sensible to rescan updating queries */
|
|
Assert(queryDesc->operation == CMD_SELECT);
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* rescan plan
|
|
*/
|
|
ExecReScan(queryDesc->planstate, NULL);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecCheckRTPerms
|
|
* Check access permissions for all relations listed in a range table.
|
|
*/
|
|
void
|
|
ExecCheckRTPerms(List *rangeTable)
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, rangeTable)
|
|
{
|
|
RangeTblEntry *rte = lfirst(l);
|
|
|
|
ExecCheckRTEPerms(rte);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTEPerms
|
|
* Check access permissions for a single RTE.
|
|
*/
|
|
static void
|
|
ExecCheckRTEPerms(RangeTblEntry *rte)
|
|
{
|
|
AclMode requiredPerms;
|
|
Oid relOid;
|
|
AclId userid;
|
|
|
|
/*
|
|
* If it's a subquery, recursively examine its rangetable.
|
|
*/
|
|
if (rte->rtekind == RTE_SUBQUERY)
|
|
{
|
|
ExecCheckRTPerms(rte->subquery->rtable);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, only plain-relation RTEs need to be checked here.
|
|
* Function RTEs are checked by init_fcache when the function is
|
|
* prepared for execution. Join and special RTEs need no checks.
|
|
*/
|
|
if (rte->rtekind != RTE_RELATION)
|
|
return;
|
|
|
|
/*
|
|
* No work if requiredPerms is empty.
|
|
*/
|
|
requiredPerms = rte->requiredPerms;
|
|
if (requiredPerms == 0)
|
|
return;
|
|
|
|
relOid = rte->relid;
|
|
|
|
/*
|
|
* userid to check as: current user unless we have a setuid
|
|
* indication.
|
|
*
|
|
* Note: GetUserId() is presently fast enough that there's no harm in
|
|
* calling it separately for each RTE. If that stops being true, we
|
|
* could call it once in ExecCheckRTPerms and pass the userid down
|
|
* from there. But for now, no need for the extra clutter.
|
|
*/
|
|
userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
|
|
|
|
/*
|
|
* We must have *all* the requiredPerms bits, so use aclmask not
|
|
* aclcheck.
|
|
*/
|
|
if (pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL)
|
|
!= requiredPerms)
|
|
aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS,
|
|
get_rel_name(relOid));
|
|
}
|
|
|
|
/*
|
|
* Check that the query does not imply any writes to non-temp tables.
|
|
*/
|
|
static void
|
|
ExecCheckXactReadOnly(Query *parsetree)
|
|
{
|
|
ListCell *l;
|
|
|
|
/*
|
|
* CREATE TABLE AS or SELECT INTO?
|
|
*
|
|
* XXX should we allow this if the destination is temp?
|
|
*/
|
|
if (parsetree->into != NULL)
|
|
goto fail;
|
|
|
|
/* Fail if write permissions are requested on any non-temp table */
|
|
foreach(l, parsetree->rtable)
|
|
{
|
|
RangeTblEntry *rte = lfirst(l);
|
|
|
|
if (rte->rtekind == RTE_SUBQUERY)
|
|
{
|
|
ExecCheckXactReadOnly(rte->subquery);
|
|
continue;
|
|
}
|
|
|
|
if (rte->rtekind != RTE_RELATION)
|
|
continue;
|
|
|
|
if ((rte->requiredPerms & (~ACL_SELECT)) == 0)
|
|
continue;
|
|
|
|
if (isTempNamespace(get_rel_namespace(rte->relid)))
|
|
continue;
|
|
|
|
goto fail;
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
|
|
errmsg("transaction is read-only")));
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* InitPlan
|
|
*
|
|
* Initializes the query plan: open files, allocate storage
|
|
* and start up the rule manager
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
InitPlan(QueryDesc *queryDesc, bool explainOnly)
|
|
{
|
|
CmdType operation = queryDesc->operation;
|
|
Query *parseTree = queryDesc->parsetree;
|
|
Plan *plan = queryDesc->plantree;
|
|
EState *estate = queryDesc->estate;
|
|
PlanState *planstate;
|
|
List *rangeTable;
|
|
Relation intoRelationDesc;
|
|
bool do_select_into;
|
|
TupleDesc tupType;
|
|
|
|
/*
|
|
* Do permissions checks. It's sufficient to examine the query's top
|
|
* rangetable here --- subplan RTEs will be checked during
|
|
* ExecInitSubPlan().
|
|
*/
|
|
ExecCheckRTPerms(parseTree->rtable);
|
|
|
|
/*
|
|
* get information from query descriptor
|
|
*/
|
|
rangeTable = parseTree->rtable;
|
|
|
|
/*
|
|
* initialize the node's execution state
|
|
*/
|
|
estate->es_range_table = rangeTable;
|
|
|
|
/*
|
|
* if there is a result relation, initialize result relation stuff
|
|
*/
|
|
if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
|
|
{
|
|
List *resultRelations = parseTree->resultRelations;
|
|
int numResultRelations;
|
|
ResultRelInfo *resultRelInfos;
|
|
|
|
if (resultRelations != NIL)
|
|
{
|
|
/*
|
|
* Multiple result relations (due to inheritance)
|
|
* parseTree->resultRelations identifies them all
|
|
*/
|
|
ResultRelInfo *resultRelInfo;
|
|
ListCell *l;
|
|
|
|
numResultRelations = list_length(resultRelations);
|
|
resultRelInfos = (ResultRelInfo *)
|
|
palloc(numResultRelations * sizeof(ResultRelInfo));
|
|
resultRelInfo = resultRelInfos;
|
|
foreach(l, resultRelations)
|
|
{
|
|
initResultRelInfo(resultRelInfo,
|
|
lfirst_int(l),
|
|
rangeTable,
|
|
operation);
|
|
resultRelInfo++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Single result relation identified by
|
|
* parseTree->resultRelation
|
|
*/
|
|
numResultRelations = 1;
|
|
resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
|
|
initResultRelInfo(resultRelInfos,
|
|
parseTree->resultRelation,
|
|
rangeTable,
|
|
operation);
|
|
}
|
|
|
|
estate->es_result_relations = resultRelInfos;
|
|
estate->es_num_result_relations = numResultRelations;
|
|
/* Initialize to first or only result rel */
|
|
estate->es_result_relation_info = resultRelInfos;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* if no result relation, then set state appropriately
|
|
*/
|
|
estate->es_result_relations = NULL;
|
|
estate->es_num_result_relations = 0;
|
|
estate->es_result_relation_info = NULL;
|
|
}
|
|
|
|
/*
|
|
* Detect whether we're doing SELECT INTO. If so, set the force_oids
|
|
* flag appropriately so that the plan tree will be initialized with
|
|
* the correct tuple descriptors.
|
|
*/
|
|
do_select_into = false;
|
|
|
|
if (operation == CMD_SELECT && parseTree->into != NULL)
|
|
{
|
|
do_select_into = true;
|
|
estate->es_select_into = true;
|
|
estate->es_into_oids = parseTree->intoHasOids;
|
|
}
|
|
|
|
/*
|
|
* Have to lock relations selected for update
|
|
*/
|
|
estate->es_rowMark = NIL;
|
|
if (parseTree->rowMarks != NIL)
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, parseTree->rowMarks)
|
|
{
|
|
Index rti = lfirst_int(l);
|
|
Oid relid = getrelid(rti, rangeTable);
|
|
Relation relation;
|
|
execRowMark *erm;
|
|
|
|
relation = heap_open(relid, RowShareLock);
|
|
erm = (execRowMark *) palloc(sizeof(execRowMark));
|
|
erm->relation = relation;
|
|
erm->rti = rti;
|
|
snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rti);
|
|
estate->es_rowMark = lappend(estate->es_rowMark, erm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize the executor "tuple" table. We need slots for all the
|
|
* plan nodes, plus possibly output slots for the junkfilter(s). At
|
|
* this point we aren't sure if we need junkfilters, so just add slots
|
|
* for them unconditionally.
|
|
*/
|
|
{
|
|
int nSlots = ExecCountSlotsNode(plan);
|
|
|
|
if (parseTree->resultRelations != NIL)
|
|
nSlots += list_length(parseTree->resultRelations);
|
|
else
|
|
nSlots += 1;
|
|
estate->es_tupleTable = ExecCreateTupleTable(nSlots);
|
|
}
|
|
|
|
/* mark EvalPlanQual not active */
|
|
estate->es_topPlan = plan;
|
|
estate->es_evalPlanQual = NULL;
|
|
estate->es_evTupleNull = NULL;
|
|
estate->es_evTuple = NULL;
|
|
estate->es_useEvalPlan = false;
|
|
|
|
/*
|
|
* initialize the private state information for all the nodes in the
|
|
* query tree. This opens files, allocates storage and leaves us
|
|
* ready to start processing tuples.
|
|
*/
|
|
planstate = ExecInitNode(plan, estate);
|
|
|
|
/*
|
|
* Get the tuple descriptor describing the type of tuples to return.
|
|
* (this is especially important if we are creating a relation with
|
|
* "SELECT INTO")
|
|
*/
|
|
tupType = ExecGetResultType(planstate);
|
|
|
|
/*
|
|
* Initialize the junk filter if needed. SELECT and INSERT queries
|
|
* need a filter if there are any junk attrs in the tlist. INSERT and
|
|
* SELECT INTO also need a filter if the plan may return raw disk
|
|
* tuples (else heap_insert will be scribbling on the source
|
|
* relation!). UPDATE and DELETE always need a filter, since there's
|
|
* always a junk 'ctid' attribute present --- no need to look first.
|
|
*/
|
|
{
|
|
bool junk_filter_needed = false;
|
|
ListCell *tlist;
|
|
|
|
switch (operation)
|
|
{
|
|
case CMD_SELECT:
|
|
case CMD_INSERT:
|
|
foreach(tlist, plan->targetlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tlist);
|
|
|
|
if (tle->resdom->resjunk)
|
|
{
|
|
junk_filter_needed = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!junk_filter_needed &&
|
|
(operation == CMD_INSERT || do_select_into) &&
|
|
ExecMayReturnRawTuples(planstate))
|
|
junk_filter_needed = true;
|
|
break;
|
|
case CMD_UPDATE:
|
|
case CMD_DELETE:
|
|
junk_filter_needed = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (junk_filter_needed)
|
|
{
|
|
/*
|
|
* If there are multiple result relations, each one needs its
|
|
* own junk filter. Note this is only possible for
|
|
* UPDATE/DELETE, so we can't be fooled by some needing a
|
|
* filter and some not.
|
|
*/
|
|
if (parseTree->resultRelations != NIL)
|
|
{
|
|
PlanState **appendplans;
|
|
int as_nplans;
|
|
ResultRelInfo *resultRelInfo;
|
|
int i;
|
|
|
|
/* Top plan had better be an Append here. */
|
|
Assert(IsA(plan, Append));
|
|
Assert(((Append *) plan)->isTarget);
|
|
Assert(IsA(planstate, AppendState));
|
|
appendplans = ((AppendState *) planstate)->appendplans;
|
|
as_nplans = ((AppendState *) planstate)->as_nplans;
|
|
Assert(as_nplans == estate->es_num_result_relations);
|
|
resultRelInfo = estate->es_result_relations;
|
|
for (i = 0; i < as_nplans; i++)
|
|
{
|
|
PlanState *subplan = appendplans[i];
|
|
JunkFilter *j;
|
|
|
|
j = ExecInitJunkFilter(subplan->plan->targetlist,
|
|
ExecGetResultType(subplan),
|
|
ExecAllocTableSlot(estate->es_tupleTable));
|
|
resultRelInfo->ri_junkFilter = j;
|
|
resultRelInfo++;
|
|
}
|
|
|
|
/*
|
|
* Set active junkfilter too; at this point ExecInitAppend
|
|
* has already selected an active result relation...
|
|
*/
|
|
estate->es_junkFilter =
|
|
estate->es_result_relation_info->ri_junkFilter;
|
|
}
|
|
else
|
|
{
|
|
/* Normal case with just one JunkFilter */
|
|
JunkFilter *j;
|
|
|
|
j = ExecInitJunkFilter(planstate->plan->targetlist,
|
|
tupType,
|
|
ExecAllocTableSlot(estate->es_tupleTable));
|
|
estate->es_junkFilter = j;
|
|
if (estate->es_result_relation_info)
|
|
estate->es_result_relation_info->ri_junkFilter = j;
|
|
|
|
/* For SELECT, want to return the cleaned tuple type */
|
|
if (operation == CMD_SELECT)
|
|
tupType = j->jf_cleanTupType;
|
|
}
|
|
}
|
|
else
|
|
estate->es_junkFilter = NULL;
|
|
}
|
|
|
|
/*
|
|
* If doing SELECT INTO, initialize the "into" relation. We must wait
|
|
* till now so we have the "clean" result tuple type to create the new
|
|
* table from.
|
|
*
|
|
* If EXPLAIN, skip creating the "into" relation.
|
|
*/
|
|
intoRelationDesc = NULL;
|
|
|
|
if (do_select_into && !explainOnly)
|
|
{
|
|
char *intoName;
|
|
Oid namespaceId;
|
|
AclResult aclresult;
|
|
Oid intoRelationId;
|
|
TupleDesc tupdesc;
|
|
|
|
/*
|
|
* find namespace to create in, check permissions
|
|
*/
|
|
intoName = parseTree->into->relname;
|
|
namespaceId = RangeVarGetCreationNamespace(parseTree->into);
|
|
|
|
aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
|
|
ACL_CREATE);
|
|
if (aclresult != ACLCHECK_OK)
|
|
aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
|
|
get_namespace_name(namespaceId));
|
|
|
|
/*
|
|
* have to copy tupType to get rid of constraints
|
|
*/
|
|
tupdesc = CreateTupleDescCopy(tupType);
|
|
|
|
intoRelationId = heap_create_with_catalog(intoName,
|
|
namespaceId,
|
|
InvalidOid,
|
|
tupdesc,
|
|
RELKIND_RELATION,
|
|
false,
|
|
true,
|
|
0,
|
|
ONCOMMIT_NOOP,
|
|
allowSystemTableMods);
|
|
|
|
FreeTupleDesc(tupdesc);
|
|
|
|
/*
|
|
* Advance command counter so that the newly-created relation's
|
|
* catalog tuples will be visible to heap_open.
|
|
*/
|
|
CommandCounterIncrement();
|
|
|
|
/*
|
|
* If necessary, create a TOAST table for the into relation. Note
|
|
* that AlterTableCreateToastTable ends with
|
|
* CommandCounterIncrement(), so that the TOAST table will be
|
|
* visible for insertion.
|
|
*/
|
|
AlterTableCreateToastTable(intoRelationId, true);
|
|
|
|
/*
|
|
* And open the constructed table for writing.
|
|
*/
|
|
intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
|
|
}
|
|
|
|
estate->es_into_relation_descriptor = intoRelationDesc;
|
|
|
|
queryDesc->tupDesc = tupType;
|
|
queryDesc->planstate = planstate;
|
|
}
|
|
|
|
/*
|
|
* Initialize ResultRelInfo data for one result relation
|
|
*/
|
|
static void
|
|
initResultRelInfo(ResultRelInfo *resultRelInfo,
|
|
Index resultRelationIndex,
|
|
List *rangeTable,
|
|
CmdType operation)
|
|
{
|
|
Oid resultRelationOid;
|
|
Relation resultRelationDesc;
|
|
|
|
resultRelationOid = getrelid(resultRelationIndex, rangeTable);
|
|
resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
|
|
|
|
switch (resultRelationDesc->rd_rel->relkind)
|
|
{
|
|
case RELKIND_SEQUENCE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change sequence \"%s\"",
|
|
RelationGetRelationName(resultRelationDesc))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change TOAST relation \"%s\"",
|
|
RelationGetRelationName(resultRelationDesc))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change view \"%s\"",
|
|
RelationGetRelationName(resultRelationDesc))));
|
|
break;
|
|
}
|
|
|
|
MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
|
|
resultRelInfo->type = T_ResultRelInfo;
|
|
resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
|
|
resultRelInfo->ri_RelationDesc = resultRelationDesc;
|
|
resultRelInfo->ri_NumIndices = 0;
|
|
resultRelInfo->ri_IndexRelationDescs = NULL;
|
|
resultRelInfo->ri_IndexRelationInfo = NULL;
|
|
/* make a copy so as not to depend on relcache info not changing... */
|
|
resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
|
|
resultRelInfo->ri_TrigFunctions = NULL;
|
|
resultRelInfo->ri_ConstraintExprs = NULL;
|
|
resultRelInfo->ri_junkFilter = NULL;
|
|
|
|
/*
|
|
* If there are indices on the result relation, open them and save
|
|
* descriptors in the result relation info, so that we can add new
|
|
* index entries for the tuples we add/update. We need not do this
|
|
* for a DELETE, however, since deletion doesn't affect indexes.
|
|
*/
|
|
if (resultRelationDesc->rd_rel->relhasindex &&
|
|
operation != CMD_DELETE)
|
|
ExecOpenIndices(resultRelInfo);
|
|
}
|
|
|
|
/*
|
|
* ExecContextForcesOids
|
|
*
|
|
* This is pretty grotty: when doing INSERT, UPDATE, or SELECT INTO,
|
|
* we need to ensure that result tuples have space for an OID iff they are
|
|
* going to be stored into a relation that has OIDs. In other contexts
|
|
* we are free to choose whether to leave space for OIDs in result tuples
|
|
* (we generally don't want to, but we do if a physical-tlist optimization
|
|
* is possible). This routine checks the plan context and returns TRUE if the
|
|
* choice is forced, FALSE if the choice is not forced. In the TRUE case,
|
|
* *hasoids is set to the required value.
|
|
*
|
|
* One reason this is ugly is that all plan nodes in the plan tree will emit
|
|
* tuples with space for an OID, though we really only need the topmost node
|
|
* to do so. However, node types like Sort don't project new tuples but just
|
|
* return their inputs, and in those cases the requirement propagates down
|
|
* to the input node. Eventually we might make this code smart enough to
|
|
* recognize how far down the requirement really goes, but for now we just
|
|
* make all plan nodes do the same thing if the top level forces the choice.
|
|
*
|
|
* We assume that estate->es_result_relation_info is already set up to
|
|
* describe the target relation. Note that in an UPDATE that spans an
|
|
* inheritance tree, some of the target relations may have OIDs and some not.
|
|
* We have to make the decisions on a per-relation basis as we initialize
|
|
* each of the child plans of the topmost Append plan.
|
|
*
|
|
* SELECT INTO is even uglier, because we don't have the INTO relation's
|
|
* descriptor available when this code runs; we have to look aside at a
|
|
* flag set by InitPlan().
|
|
*/
|
|
bool
|
|
ExecContextForcesOids(PlanState *planstate, bool *hasoids)
|
|
{
|
|
if (planstate->state->es_select_into)
|
|
{
|
|
*hasoids = planstate->state->es_into_oids;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
ResultRelInfo *ri = planstate->state->es_result_relation_info;
|
|
|
|
if (ri != NULL)
|
|
{
|
|
Relation rel = ri->ri_RelationDesc;
|
|
|
|
if (rel != NULL)
|
|
{
|
|
*hasoids = rel->rd_rel->relhasoids;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndPlan
|
|
*
|
|
* Cleans up the query plan -- closes files and frees up storage
|
|
*
|
|
* NOTE: we are no longer very worried about freeing storage per se
|
|
* in this code; FreeExecutorState should be guaranteed to release all
|
|
* memory that needs to be released. What we are worried about doing
|
|
* is closing relations and dropping buffer pins. Thus, for example,
|
|
* tuple tables must be cleared or dropped to ensure pins are released.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndPlan(PlanState *planstate, EState *estate)
|
|
{
|
|
ResultRelInfo *resultRelInfo;
|
|
int i;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* shut down any PlanQual processing we were doing
|
|
*/
|
|
if (estate->es_evalPlanQual != NULL)
|
|
EndEvalPlanQual(estate);
|
|
|
|
/*
|
|
* shut down the node-type-specific query processing
|
|
*/
|
|
ExecEndNode(planstate);
|
|
|
|
/*
|
|
* destroy the executor "tuple" table.
|
|
*/
|
|
ExecDropTupleTable(estate->es_tupleTable, true);
|
|
estate->es_tupleTable = NULL;
|
|
|
|
/*
|
|
* close the result relation(s) if any, but hold locks until xact
|
|
* commit.
|
|
*/
|
|
resultRelInfo = estate->es_result_relations;
|
|
for (i = estate->es_num_result_relations; i > 0; i--)
|
|
{
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
resultRelInfo++;
|
|
}
|
|
|
|
/*
|
|
* close the "into" relation if necessary, again keeping lock
|
|
*/
|
|
if (estate->es_into_relation_descriptor != NULL)
|
|
heap_close(estate->es_into_relation_descriptor, NoLock);
|
|
|
|
/*
|
|
* close any relations selected FOR UPDATE, again keeping locks
|
|
*/
|
|
foreach(l, estate->es_rowMark)
|
|
{
|
|
execRowMark *erm = lfirst(l);
|
|
|
|
heap_close(erm->relation, NoLock);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutePlan
|
|
*
|
|
* processes the query plan to retrieve 'numberTuples' tuples in the
|
|
* direction specified.
|
|
*
|
|
* Retrieves all tuples if numberTuples is 0
|
|
*
|
|
* result is either a slot containing the last tuple in the case
|
|
* of a SELECT or NULL otherwise.
|
|
*
|
|
* Note: the ctid attribute is a 'junk' attribute that is removed before the
|
|
* user can see it
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecutePlan(EState *estate,
|
|
PlanState *planstate,
|
|
CmdType operation,
|
|
long numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest)
|
|
{
|
|
JunkFilter *junkfilter;
|
|
TupleTableSlot *slot;
|
|
ItemPointer tupleid = NULL;
|
|
ItemPointerData tuple_ctid;
|
|
long current_tuple_count;
|
|
TupleTableSlot *result;
|
|
|
|
/*
|
|
* initialize local variables
|
|
*/
|
|
slot = NULL;
|
|
current_tuple_count = 0;
|
|
result = NULL;
|
|
|
|
/*
|
|
* Set the direction.
|
|
*/
|
|
estate->es_direction = direction;
|
|
|
|
/*
|
|
* Process BEFORE EACH STATEMENT triggers
|
|
*/
|
|
switch (operation)
|
|
{
|
|
case CMD_UPDATE:
|
|
ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
case CMD_DELETE:
|
|
ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
case CMD_INSERT:
|
|
ExecBSInsertTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Loop until we've processed the proper number of tuples from the
|
|
* plan.
|
|
*/
|
|
|
|
for (;;)
|
|
{
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a tuple
|
|
*/
|
|
lnext: ;
|
|
if (estate->es_useEvalPlan)
|
|
{
|
|
slot = EvalPlanQualNext(estate);
|
|
if (TupIsNull(slot))
|
|
slot = ExecProcNode(planstate);
|
|
}
|
|
else
|
|
slot = ExecProcNode(planstate);
|
|
|
|
/*
|
|
* if the tuple is null, then we assume there is nothing more to
|
|
* process so we just return null...
|
|
*/
|
|
if (TupIsNull(slot))
|
|
{
|
|
result = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* if we have a junk filter, then project a new tuple with the
|
|
* junk removed.
|
|
*
|
|
* Store this new "clean" tuple in the junkfilter's resultSlot.
|
|
* (Formerly, we stored it back over the "dirty" tuple, which is
|
|
* WRONG because that tuple slot has the wrong descriptor.)
|
|
*
|
|
* Also, extract all the junk information we need.
|
|
*/
|
|
if ((junkfilter = estate->es_junkFilter) != NULL)
|
|
{
|
|
Datum datum;
|
|
HeapTuple newTuple;
|
|
bool isNull;
|
|
|
|
/*
|
|
* extract the 'ctid' junk attribute.
|
|
*/
|
|
if (operation == CMD_UPDATE || operation == CMD_DELETE)
|
|
{
|
|
if (!ExecGetJunkAttribute(junkfilter,
|
|
slot,
|
|
"ctid",
|
|
&datum,
|
|
&isNull))
|
|
elog(ERROR, "could not find junk ctid column");
|
|
|
|
/* shouldn't ever get a null result... */
|
|
if (isNull)
|
|
elog(ERROR, "ctid is NULL");
|
|
|
|
tupleid = (ItemPointer) DatumGetPointer(datum);
|
|
tuple_ctid = *tupleid; /* make sure we don't free the
|
|
* ctid!! */
|
|
tupleid = &tuple_ctid;
|
|
}
|
|
else if (estate->es_rowMark != NIL)
|
|
{
|
|
ListCell *l;
|
|
|
|
lmark: ;
|
|
foreach(l, estate->es_rowMark)
|
|
{
|
|
execRowMark *erm = lfirst(l);
|
|
Buffer buffer;
|
|
HeapTupleData tuple;
|
|
TupleTableSlot *newSlot;
|
|
int test;
|
|
|
|
if (!ExecGetJunkAttribute(junkfilter,
|
|
slot,
|
|
erm->resname,
|
|
&datum,
|
|
&isNull))
|
|
elog(ERROR, "could not find junk \"%s\" column",
|
|
erm->resname);
|
|
|
|
/* shouldn't ever get a null result... */
|
|
if (isNull)
|
|
elog(ERROR, "\"%s\" is NULL", erm->resname);
|
|
|
|
tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
|
|
test = heap_mark4update(erm->relation, &tuple, &buffer,
|
|
estate->es_snapshot->curcid);
|
|
ReleaseBuffer(buffer);
|
|
switch (test)
|
|
{
|
|
case HeapTupleSelfUpdated:
|
|
/* treat it as deleted; do not process */
|
|
goto lnext;
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
if (IsXactIsoLevelSerializable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
if (!(ItemPointerEquals(&(tuple.t_self),
|
|
(ItemPointer) DatumGetPointer(datum))))
|
|
{
|
|
newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self));
|
|
if (!(TupIsNull(newSlot)))
|
|
{
|
|
slot = newSlot;
|
|
estate->es_useEvalPlan = true;
|
|
goto lmark;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if tuple was deleted or PlanQual failed for
|
|
* updated tuple - we must not return this
|
|
* tuple!
|
|
*/
|
|
goto lnext;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized heap_mark4update status: %u",
|
|
test);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally create a new "clean" tuple with all junk attributes
|
|
* removed
|
|
*/
|
|
newTuple = ExecRemoveJunk(junkfilter, slot);
|
|
|
|
slot = ExecStoreTuple(newTuple, /* tuple to store */
|
|
junkfilter->jf_resultSlot, /* dest slot */
|
|
InvalidBuffer, /* this tuple has no
|
|
* buffer */
|
|
true); /* tuple should be pfreed */
|
|
}
|
|
|
|
/*
|
|
* now that we have a tuple, do the appropriate thing with it..
|
|
* either return it to the user, add it to a relation someplace,
|
|
* delete it from a relation, or modify some of its attributes.
|
|
*/
|
|
switch (operation)
|
|
{
|
|
case CMD_SELECT:
|
|
ExecSelect(slot, /* slot containing tuple */
|
|
dest, /* destination's tuple-receiver obj */
|
|
estate);
|
|
result = slot;
|
|
break;
|
|
|
|
case CMD_INSERT:
|
|
ExecInsert(slot, tupleid, estate);
|
|
result = NULL;
|
|
break;
|
|
|
|
case CMD_DELETE:
|
|
ExecDelete(slot, tupleid, estate);
|
|
result = NULL;
|
|
break;
|
|
|
|
case CMD_UPDATE:
|
|
ExecUpdate(slot, tupleid, estate);
|
|
result = NULL;
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized operation code: %d",
|
|
(int) operation);
|
|
result = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* check our tuple count.. if we've processed the proper number
|
|
* then quit, else loop again and process more tuples. Zero
|
|
* numberTuples means no limit.
|
|
*/
|
|
current_tuple_count++;
|
|
if (numberTuples && numberTuples == current_tuple_count)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Process AFTER EACH STATEMENT triggers
|
|
*/
|
|
switch (operation)
|
|
{
|
|
case CMD_UPDATE:
|
|
ExecASUpdateTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
case CMD_DELETE:
|
|
ExecASDeleteTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
case CMD_INSERT:
|
|
ExecASInsertTriggers(estate, estate->es_result_relation_info);
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* here, result is either a slot containing a tuple in the case of a
|
|
* SELECT or NULL otherwise.
|
|
*/
|
|
return result;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecSelect
|
|
*
|
|
* SELECTs are easy.. we just pass the tuple to the appropriate
|
|
* print function. The only complexity is when we do a
|
|
* "SELECT INTO", in which case we insert the tuple into
|
|
* the appropriate relation (note: this is a newly created relation
|
|
* so we don't need to worry about indices or locks.)
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecSelect(TupleTableSlot *slot,
|
|
DestReceiver *dest,
|
|
EState *estate)
|
|
{
|
|
HeapTuple tuple;
|
|
TupleDesc attrtype;
|
|
|
|
/*
|
|
* get the heap tuple out of the tuple table slot
|
|
*/
|
|
tuple = slot->val;
|
|
attrtype = slot->ttc_tupleDescriptor;
|
|
|
|
/*
|
|
* insert the tuple into the "into relation"
|
|
*
|
|
* XXX this probably ought to be replaced by a separate destination
|
|
*/
|
|
if (estate->es_into_relation_descriptor != NULL)
|
|
{
|
|
heap_insert(estate->es_into_relation_descriptor, tuple,
|
|
estate->es_snapshot->curcid);
|
|
IncrAppended();
|
|
}
|
|
|
|
/*
|
|
* send the tuple to the destination
|
|
*/
|
|
(*dest->receiveTuple) (tuple, attrtype, dest);
|
|
IncrRetrieved();
|
|
(estate->es_processed)++;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInsert
|
|
*
|
|
* INSERTs are trickier.. we have to insert the tuple into
|
|
* the base relation and insert appropriate tuples into the
|
|
* index relations.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecInsert(TupleTableSlot *slot,
|
|
ItemPointer tupleid,
|
|
EState *estate)
|
|
{
|
|
HeapTuple tuple;
|
|
ResultRelInfo *resultRelInfo;
|
|
Relation resultRelationDesc;
|
|
int numIndices;
|
|
Oid newId;
|
|
|
|
/*
|
|
* get the heap tuple out of the tuple table slot
|
|
*/
|
|
tuple = slot->val;
|
|
|
|
/*
|
|
* get information on the (current) result relation
|
|
*/
|
|
resultRelInfo = estate->es_result_relation_info;
|
|
resultRelationDesc = resultRelInfo->ri_RelationDesc;
|
|
|
|
/* BEFORE ROW INSERT Triggers */
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
|
|
{
|
|
HeapTuple newtuple;
|
|
|
|
newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
|
|
|
|
if (newtuple == NULL) /* "do nothing" */
|
|
return;
|
|
|
|
if (newtuple != tuple) /* modified by Trigger(s) */
|
|
{
|
|
/*
|
|
* Insert modified tuple into tuple table slot, replacing the
|
|
* original. We assume that it was allocated in per-tuple
|
|
* memory context, and therefore will go away by itself. The
|
|
* tuple table slot should not try to clear it.
|
|
*/
|
|
ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
|
|
tuple = newtuple;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the constraints of the tuple
|
|
*/
|
|
if (resultRelationDesc->rd_att->constr)
|
|
ExecConstraints(resultRelInfo, slot, estate);
|
|
|
|
/*
|
|
* insert the tuple
|
|
*/
|
|
newId = heap_insert(resultRelationDesc, tuple,
|
|
estate->es_snapshot->curcid);
|
|
|
|
IncrAppended();
|
|
(estate->es_processed)++;
|
|
estate->es_lastoid = newId;
|
|
setLastTid(&(tuple->t_self));
|
|
|
|
/*
|
|
* process indices
|
|
*
|
|
* Note: heap_insert adds a new tuple to a relation. As a side effect,
|
|
* the tupleid of the new tuple is placed in the new tuple's t_ctid
|
|
* field.
|
|
*/
|
|
numIndices = resultRelInfo->ri_NumIndices;
|
|
if (numIndices > 0)
|
|
ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
|
|
|
|
/* AFTER ROW INSERT Triggers */
|
|
ExecARInsertTriggers(estate, resultRelInfo, tuple);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecDelete
|
|
*
|
|
* DELETE is like UPDATE, we delete the tuple and its
|
|
* index tuples.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecDelete(TupleTableSlot *slot,
|
|
ItemPointer tupleid,
|
|
EState *estate)
|
|
{
|
|
ResultRelInfo *resultRelInfo;
|
|
Relation resultRelationDesc;
|
|
ItemPointerData ctid;
|
|
int result;
|
|
|
|
/*
|
|
* get information on the (current) result relation
|
|
*/
|
|
resultRelInfo = estate->es_result_relation_info;
|
|
resultRelationDesc = resultRelInfo->ri_RelationDesc;
|
|
|
|
/* BEFORE ROW DELETE Triggers */
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
|
|
{
|
|
bool dodelete;
|
|
|
|
dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
|
|
estate->es_snapshot->curcid);
|
|
|
|
if (!dodelete) /* "do nothing" */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* delete the tuple
|
|
*/
|
|
ldelete:;
|
|
result = heap_delete(resultRelationDesc, tupleid,
|
|
&ctid,
|
|
estate->es_snapshot->curcid,
|
|
estate->es_crosscheck_snapshot,
|
|
true /* wait for commit */ );
|
|
switch (result)
|
|
{
|
|
case HeapTupleSelfUpdated:
|
|
/* already deleted by self; nothing to do */
|
|
return;
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
if (IsXactIsoLevelSerializable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
else if (!(ItemPointerEquals(tupleid, &ctid)))
|
|
{
|
|
TupleTableSlot *epqslot = EvalPlanQual(estate,
|
|
resultRelInfo->ri_RangeTableIndex, &ctid);
|
|
|
|
if (!TupIsNull(epqslot))
|
|
{
|
|
*tupleid = ctid;
|
|
goto ldelete;
|
|
}
|
|
}
|
|
/* tuple already deleted; nothing to do */
|
|
return;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized heap_delete status: %u", result);
|
|
return;
|
|
}
|
|
|
|
IncrDeleted();
|
|
(estate->es_processed)++;
|
|
|
|
/*
|
|
* Note: Normally one would think that we have to delete index tuples
|
|
* associated with the heap tuple now..
|
|
*
|
|
* ... but in POSTGRES, we have no need to do this because the vacuum
|
|
* daemon automatically opens an index scan and deletes index tuples
|
|
* when it finds deleted heap tuples. -cim 9/27/89
|
|
*/
|
|
|
|
/* AFTER ROW DELETE Triggers */
|
|
ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecUpdate
|
|
*
|
|
* note: we can't run UPDATE queries with transactions
|
|
* off because UPDATEs are actually INSERTs and our
|
|
* scan will mistakenly loop forever, updating the tuple
|
|
* it just inserted.. This should be fixed but until it
|
|
* is, we don't want to get stuck in an infinite loop
|
|
* which corrupts your database..
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecUpdate(TupleTableSlot *slot,
|
|
ItemPointer tupleid,
|
|
EState *estate)
|
|
{
|
|
HeapTuple tuple;
|
|
ResultRelInfo *resultRelInfo;
|
|
Relation resultRelationDesc;
|
|
ItemPointerData ctid;
|
|
int result;
|
|
int numIndices;
|
|
|
|
/*
|
|
* abort the operation if not running transactions
|
|
*/
|
|
if (IsBootstrapProcessingMode())
|
|
elog(ERROR, "cannot UPDATE during bootstrap");
|
|
|
|
/*
|
|
* get the heap tuple out of the tuple table slot
|
|
*/
|
|
tuple = slot->val;
|
|
|
|
/*
|
|
* get information on the (current) result relation
|
|
*/
|
|
resultRelInfo = estate->es_result_relation_info;
|
|
resultRelationDesc = resultRelInfo->ri_RelationDesc;
|
|
|
|
/* BEFORE ROW UPDATE Triggers */
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
|
|
{
|
|
HeapTuple newtuple;
|
|
|
|
newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
|
|
tupleid, tuple,
|
|
estate->es_snapshot->curcid);
|
|
|
|
if (newtuple == NULL) /* "do nothing" */
|
|
return;
|
|
|
|
if (newtuple != tuple) /* modified by Trigger(s) */
|
|
{
|
|
/*
|
|
* Insert modified tuple into tuple table slot, replacing the
|
|
* original. We assume that it was allocated in per-tuple
|
|
* memory context, and therefore will go away by itself. The
|
|
* tuple table slot should not try to clear it.
|
|
*/
|
|
ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
|
|
tuple = newtuple;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the constraints of the tuple
|
|
*
|
|
* If we generate a new candidate tuple after EvalPlanQual testing, we
|
|
* must loop back here and recheck constraints. (We don't need to
|
|
* redo triggers, however. If there are any BEFORE triggers then
|
|
* trigger.c will have done mark4update to lock the correct tuple, so
|
|
* there's no need to do them again.)
|
|
*/
|
|
lreplace:;
|
|
if (resultRelationDesc->rd_att->constr)
|
|
ExecConstraints(resultRelInfo, slot, estate);
|
|
|
|
/*
|
|
* replace the heap tuple
|
|
*/
|
|
result = heap_update(resultRelationDesc, tupleid, tuple,
|
|
&ctid,
|
|
estate->es_snapshot->curcid,
|
|
estate->es_crosscheck_snapshot,
|
|
true /* wait for commit */ );
|
|
switch (result)
|
|
{
|
|
case HeapTupleSelfUpdated:
|
|
/* already deleted by self; nothing to do */
|
|
return;
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
if (IsXactIsoLevelSerializable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
else if (!(ItemPointerEquals(tupleid, &ctid)))
|
|
{
|
|
TupleTableSlot *epqslot = EvalPlanQual(estate,
|
|
resultRelInfo->ri_RangeTableIndex, &ctid);
|
|
|
|
if (!TupIsNull(epqslot))
|
|
{
|
|
*tupleid = ctid;
|
|
tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot);
|
|
slot = ExecStoreTuple(tuple,
|
|
estate->es_junkFilter->jf_resultSlot,
|
|
InvalidBuffer, true);
|
|
goto lreplace;
|
|
}
|
|
}
|
|
/* tuple already deleted; nothing to do */
|
|
return;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized heap_update status: %u", result);
|
|
return;
|
|
}
|
|
|
|
IncrReplaced();
|
|
(estate->es_processed)++;
|
|
|
|
/*
|
|
* Note: instead of having to update the old index tuples associated
|
|
* with the heap tuple, all we do is form and insert new index tuples.
|
|
* This is because UPDATEs are actually DELETEs and INSERTs and index
|
|
* tuple deletion is done automagically by the vacuum daemon. All we
|
|
* do is insert new index tuples. -cim 9/27/89
|
|
*/
|
|
|
|
/*
|
|
* process indices
|
|
*
|
|
* heap_update updates a tuple in the base relation by invalidating it
|
|
* and then inserting a new tuple to the relation. As a side effect,
|
|
* the tupleid of the new tuple is placed in the new tuple's t_ctid
|
|
* field. So we now insert index tuples using the new tupleid stored
|
|
* there.
|
|
*/
|
|
|
|
numIndices = resultRelInfo->ri_NumIndices;
|
|
if (numIndices > 0)
|
|
ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
|
|
|
|
/* AFTER ROW UPDATE Triggers */
|
|
ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
|
|
}
|
|
|
|
static const char *
|
|
ExecRelCheck(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
int ncheck = rel->rd_att->constr->num_check;
|
|
ConstrCheck *check = rel->rd_att->constr->check;
|
|
ExprContext *econtext;
|
|
MemoryContext oldContext;
|
|
List *qual;
|
|
int i;
|
|
|
|
/*
|
|
* If first time through for this result relation, build expression
|
|
* nodetrees for rel's constraint expressions. Keep them in the
|
|
* per-query memory context so they'll survive throughout the query.
|
|
*/
|
|
if (resultRelInfo->ri_ConstraintExprs == NULL)
|
|
{
|
|
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
resultRelInfo->ri_ConstraintExprs =
|
|
(List **) palloc(ncheck * sizeof(List *));
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
/* ExecQual wants implicit-AND form */
|
|
qual = make_ands_implicit(stringToNode(check[i].ccbin));
|
|
resultRelInfo->ri_ConstraintExprs[i] = (List *)
|
|
ExecPrepareExpr((Expr *) qual, estate);
|
|
}
|
|
MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating
|
|
* constraint expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* And evaluate the constraints */
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
qual = resultRelInfo->ri_ConstraintExprs[i];
|
|
|
|
/*
|
|
* NOTE: SQL92 specifies that a NULL result from a constraint
|
|
* expression is not to be treated as a failure. Therefore, tell
|
|
* ExecQual to return TRUE for NULL.
|
|
*/
|
|
if (!ExecQual(qual, econtext, true))
|
|
return check[i].ccname;
|
|
}
|
|
|
|
/* NULL result means no error */
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
ExecConstraints(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
HeapTuple tuple = slot->val;
|
|
TupleConstr *constr = rel->rd_att->constr;
|
|
|
|
Assert(constr);
|
|
|
|
if (constr->has_not_null)
|
|
{
|
|
int natts = rel->rd_att->natts;
|
|
int attrChk;
|
|
|
|
for (attrChk = 1; attrChk <= natts; attrChk++)
|
|
{
|
|
if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
|
|
heap_attisnull(tuple, attrChk))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NOT_NULL_VIOLATION),
|
|
errmsg("null value in column \"%s\" violates not-null constraint",
|
|
NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
|
|
}
|
|
}
|
|
|
|
if (constr->num_check > 0)
|
|
{
|
|
const char *failed;
|
|
|
|
if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), failed)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check a modified tuple to see if we want to process its updated version
|
|
* under READ COMMITTED rules.
|
|
*
|
|
* See backend/executor/README for some info about how this works.
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
|
|
{
|
|
evalPlanQual *epq;
|
|
EState *epqstate;
|
|
Relation relation;
|
|
HeapTupleData tuple;
|
|
HeapTuple copyTuple = NULL;
|
|
bool endNode;
|
|
|
|
Assert(rti != 0);
|
|
|
|
/*
|
|
* find relation containing target tuple
|
|
*/
|
|
if (estate->es_result_relation_info != NULL &&
|
|
estate->es_result_relation_info->ri_RangeTableIndex == rti)
|
|
relation = estate->es_result_relation_info->ri_RelationDesc;
|
|
else
|
|
{
|
|
ListCell *l;
|
|
|
|
relation = NULL;
|
|
foreach(l, estate->es_rowMark)
|
|
{
|
|
if (((execRowMark *) lfirst(l))->rti == rti)
|
|
{
|
|
relation = ((execRowMark *) lfirst(l))->relation;
|
|
break;
|
|
}
|
|
}
|
|
if (relation == NULL)
|
|
elog(ERROR, "could not find RowMark for RT index %u", rti);
|
|
}
|
|
|
|
/*
|
|
* fetch tid tuple
|
|
*
|
|
* Loop here to deal with updated or busy tuples
|
|
*/
|
|
tuple.t_self = *tid;
|
|
for (;;)
|
|
{
|
|
Buffer buffer;
|
|
|
|
if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, false, NULL))
|
|
{
|
|
TransactionId xwait = SnapshotDirty->xmax;
|
|
|
|
/* xmin should not be dirty... */
|
|
if (TransactionIdIsValid(SnapshotDirty->xmin))
|
|
elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
|
|
|
|
/*
|
|
* If tuple is being updated by other transaction then we have
|
|
* to wait for its commit/abort.
|
|
*/
|
|
if (TransactionIdIsValid(xwait))
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
XactLockTableWait(xwait);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We got tuple - now copy it for use by recheck query.
|
|
*/
|
|
copyTuple = heap_copytuple(&tuple);
|
|
ReleaseBuffer(buffer);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Oops! Invalid tuple. Have to check is it updated or deleted.
|
|
* Note that it's possible to get invalid SnapshotDirty->tid if
|
|
* tuple updated by this transaction. Have we to check this ?
|
|
*/
|
|
if (ItemPointerIsValid(&(SnapshotDirty->tid)) &&
|
|
!(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid))))
|
|
{
|
|
/* updated, so look at the updated copy */
|
|
tuple.t_self = SnapshotDirty->tid;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Deleted or updated by this transaction; forget it.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* For UPDATE/DELETE we have to return tid of actual row we're
|
|
* executing PQ for.
|
|
*/
|
|
*tid = tuple.t_self;
|
|
|
|
/*
|
|
* Need to run a recheck subquery. Find or create a PQ stack entry.
|
|
*/
|
|
epq = estate->es_evalPlanQual;
|
|
endNode = true;
|
|
|
|
if (epq != NULL && epq->rti == 0)
|
|
{
|
|
/* Top PQ stack entry is idle, so re-use it */
|
|
Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
|
|
epq->rti = rti;
|
|
endNode = false;
|
|
}
|
|
|
|
/*
|
|
* If this is request for another RTE - Ra, - then we have to check
|
|
* wasn't PlanQual requested for Ra already and if so then Ra' row was
|
|
* updated again and we have to re-start old execution for Ra and
|
|
* forget all what we done after Ra was suspended. Cool? -:))
|
|
*/
|
|
if (epq != NULL && epq->rti != rti &&
|
|
epq->estate->es_evTuple[rti - 1] != NULL)
|
|
{
|
|
do
|
|
{
|
|
evalPlanQual *oldepq;
|
|
|
|
/* stop execution */
|
|
EvalPlanQualStop(epq);
|
|
/* pop previous PlanQual from the stack */
|
|
oldepq = epq->next;
|
|
Assert(oldepq && oldepq->rti != 0);
|
|
/* push current PQ to freePQ stack */
|
|
oldepq->free = epq;
|
|
epq = oldepq;
|
|
estate->es_evalPlanQual = epq;
|
|
} while (epq->rti != rti);
|
|
}
|
|
|
|
/*
|
|
* If we are requested for another RTE then we have to suspend
|
|
* execution of current PlanQual and start execution for new one.
|
|
*/
|
|
if (epq == NULL || epq->rti != rti)
|
|
{
|
|
/* try to reuse plan used previously */
|
|
evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
|
|
|
|
if (newepq == NULL) /* first call or freePQ stack is empty */
|
|
{
|
|
newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
|
|
newepq->free = NULL;
|
|
newepq->estate = NULL;
|
|
newepq->planstate = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* recycle previously used PlanQual */
|
|
Assert(newepq->estate == NULL);
|
|
epq->free = NULL;
|
|
}
|
|
/* push current PQ to the stack */
|
|
newepq->next = epq;
|
|
epq = newepq;
|
|
estate->es_evalPlanQual = epq;
|
|
epq->rti = rti;
|
|
endNode = false;
|
|
}
|
|
|
|
Assert(epq->rti == rti);
|
|
|
|
/*
|
|
* Ok - we're requested for the same RTE. Unfortunately we still have
|
|
* to end and restart execution of the plan, because ExecReScan
|
|
* wouldn't ensure that upper plan nodes would reset themselves. We
|
|
* could make that work if insertion of the target tuple were
|
|
* integrated with the Param mechanism somehow, so that the upper plan
|
|
* nodes know that their children's outputs have changed.
|
|
*
|
|
* Note that the stack of free evalPlanQual nodes is quite useless at the
|
|
* moment, since it only saves us from pallocing/releasing the
|
|
* evalPlanQual nodes themselves. But it will be useful once we
|
|
* implement ReScan instead of end/restart for re-using PlanQual
|
|
* nodes.
|
|
*/
|
|
if (endNode)
|
|
{
|
|
/* stop execution */
|
|
EvalPlanQualStop(epq);
|
|
}
|
|
|
|
/*
|
|
* Initialize new recheck query.
|
|
*
|
|
* Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
|
|
* instead copy down changeable state from the top plan (including
|
|
* es_result_relation_info, es_junkFilter) and reset locally
|
|
* changeable state in the epq (including es_param_exec_vals,
|
|
* es_evTupleNull).
|
|
*/
|
|
EvalPlanQualStart(epq, estate, epq->next);
|
|
|
|
/*
|
|
* free old RTE' tuple, if any, and store target tuple where
|
|
* relation's scan node will see it
|
|
*/
|
|
epqstate = epq->estate;
|
|
if (epqstate->es_evTuple[rti - 1] != NULL)
|
|
heap_freetuple(epqstate->es_evTuple[rti - 1]);
|
|
epqstate->es_evTuple[rti - 1] = copyTuple;
|
|
|
|
return EvalPlanQualNext(estate);
|
|
}
|
|
|
|
static TupleTableSlot *
|
|
EvalPlanQualNext(EState *estate)
|
|
{
|
|
evalPlanQual *epq = estate->es_evalPlanQual;
|
|
MemoryContext oldcontext;
|
|
TupleTableSlot *slot;
|
|
|
|
Assert(epq->rti != 0);
|
|
|
|
lpqnext:;
|
|
oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
|
|
slot = ExecProcNode(epq->planstate);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* No more tuples for this PQ. Continue previous one.
|
|
*/
|
|
if (TupIsNull(slot))
|
|
{
|
|
evalPlanQual *oldepq;
|
|
|
|
/* stop execution */
|
|
EvalPlanQualStop(epq);
|
|
/* pop old PQ from the stack */
|
|
oldepq = epq->next;
|
|
if (oldepq == NULL)
|
|
{
|
|
/* this is the first (oldest) PQ - mark as free */
|
|
epq->rti = 0;
|
|
estate->es_useEvalPlan = false;
|
|
/* and continue Query execution */
|
|
return (NULL);
|
|
}
|
|
Assert(oldepq->rti != 0);
|
|
/* push current PQ to freePQ stack */
|
|
oldepq->free = epq;
|
|
epq = oldepq;
|
|
estate->es_evalPlanQual = epq;
|
|
goto lpqnext;
|
|
}
|
|
|
|
return (slot);
|
|
}
|
|
|
|
static void
|
|
EndEvalPlanQual(EState *estate)
|
|
{
|
|
evalPlanQual *epq = estate->es_evalPlanQual;
|
|
|
|
if (epq->rti == 0) /* plans already shutdowned */
|
|
{
|
|
Assert(epq->next == NULL);
|
|
return;
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
evalPlanQual *oldepq;
|
|
|
|
/* stop execution */
|
|
EvalPlanQualStop(epq);
|
|
/* pop old PQ from the stack */
|
|
oldepq = epq->next;
|
|
if (oldepq == NULL)
|
|
{
|
|
/* this is the first (oldest) PQ - mark as free */
|
|
epq->rti = 0;
|
|
estate->es_useEvalPlan = false;
|
|
break;
|
|
}
|
|
Assert(oldepq->rti != 0);
|
|
/* push current PQ to freePQ stack */
|
|
oldepq->free = epq;
|
|
epq = oldepq;
|
|
estate->es_evalPlanQual = epq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start execution of one level of PlanQual.
|
|
*
|
|
* This is a cut-down version of ExecutorStart(): we copy some state from
|
|
* the top-level estate rather than initializing it fresh.
|
|
*/
|
|
static void
|
|
EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
|
|
{
|
|
EState *epqstate;
|
|
int rtsize;
|
|
MemoryContext oldcontext;
|
|
|
|
rtsize = list_length(estate->es_range_table);
|
|
|
|
epq->estate = epqstate = CreateExecutorState();
|
|
|
|
oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
|
|
|
|
/*
|
|
* The epqstates share the top query's copy of unchanging state such
|
|
* as the snapshot, rangetable, result-rel info, and external Param
|
|
* info. They need their own copies of local state, including a tuple
|
|
* table, es_param_exec_vals, etc.
|
|
*/
|
|
epqstate->es_direction = ForwardScanDirection;
|
|
epqstate->es_snapshot = estate->es_snapshot;
|
|
epqstate->es_crosscheck_snapshot = estate->es_crosscheck_snapshot;
|
|
epqstate->es_range_table = estate->es_range_table;
|
|
epqstate->es_result_relations = estate->es_result_relations;
|
|
epqstate->es_num_result_relations = estate->es_num_result_relations;
|
|
epqstate->es_result_relation_info = estate->es_result_relation_info;
|
|
epqstate->es_junkFilter = estate->es_junkFilter;
|
|
epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
|
|
epqstate->es_param_list_info = estate->es_param_list_info;
|
|
if (estate->es_topPlan->nParamExec > 0)
|
|
epqstate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
|
|
epqstate->es_rowMark = estate->es_rowMark;
|
|
epqstate->es_instrument = estate->es_instrument;
|
|
epqstate->es_select_into = estate->es_select_into;
|
|
epqstate->es_into_oids = estate->es_into_oids;
|
|
epqstate->es_topPlan = estate->es_topPlan;
|
|
|
|
/*
|
|
* Each epqstate must have its own es_evTupleNull state, but all the
|
|
* stack entries share es_evTuple state. This allows sub-rechecks to
|
|
* inherit the value being examined by an outer recheck.
|
|
*/
|
|
epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
|
|
if (priorepq == NULL)
|
|
/* first PQ stack entry */
|
|
epqstate->es_evTuple = (HeapTuple *)
|
|
palloc0(rtsize * sizeof(HeapTuple));
|
|
else
|
|
/* later stack entries share the same storage */
|
|
epqstate->es_evTuple = priorepq->estate->es_evTuple;
|
|
|
|
epqstate->es_tupleTable =
|
|
ExecCreateTupleTable(estate->es_tupleTable->size);
|
|
|
|
epq->planstate = ExecInitNode(estate->es_topPlan, epqstate);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/*
|
|
* End execution of one level of PlanQual.
|
|
*
|
|
* This is a cut-down version of ExecutorEnd(); basically we want to do most
|
|
* of the normal cleanup, but *not* close result relations (which we are
|
|
* just sharing from the outer query).
|
|
*/
|
|
static void
|
|
EvalPlanQualStop(evalPlanQual *epq)
|
|
{
|
|
EState *epqstate = epq->estate;
|
|
MemoryContext oldcontext;
|
|
|
|
oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
|
|
|
|
ExecEndNode(epq->planstate);
|
|
|
|
ExecDropTupleTable(epqstate->es_tupleTable, true);
|
|
epqstate->es_tupleTable = NULL;
|
|
|
|
if (epqstate->es_evTuple[epq->rti - 1] != NULL)
|
|
{
|
|
heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
|
|
epqstate->es_evTuple[epq->rti - 1] = NULL;
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
FreeExecutorState(epqstate);
|
|
|
|
epq->estate = NULL;
|
|
epq->planstate = NULL;
|
|
}
|