
now just below FATAL in server_min_messages. Added more text to highlight ordering difference between it and client_min_messages. --------------------------------------------------------------------------- REALLYFATAL => PANIC STOP => PANIC New INFO level the prints to client by default New LOG level the prints to server log by default Cause VACUUM information to print only to the client NOTICE => INFO where purely information messages are sent DEBUG => LOG for purely server status messages DEBUG removed, kept as backward compatible DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1 added DebugLvl removed in favor of new DEBUG[1-5] symbols New server_min_messages GUC parameter with values: DEBUG[5-1], INFO, NOTICE, ERROR, LOG, FATAL, PANIC New client_min_messages GUC parameter with values: DEBUG[5-1], LOG, INFO, NOTICE, ERROR, FATAL, PANIC Server startup now logged with LOG instead of DEBUG Remove debug_level GUC parameter elog() numbers now start at 10 Add test to print error message if older elog() values are passed to elog() Bootstrap mode now has a -d that requires an argument, like postmaster
3572 lines
92 KiB
C
3572 lines
92 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* selfuncs.c
|
|
* Selectivity functions and index cost estimation functions for
|
|
* standard operators and index access methods.
|
|
*
|
|
* Selectivity routines are registered in the pg_operator catalog
|
|
* in the "oprrest" and "oprjoin" attributes.
|
|
*
|
|
* Index cost functions are registered in the pg_am catalog
|
|
* in the "amcostestimate" attribute.
|
|
*
|
|
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.105 2002/03/02 21:39:32 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*----------
|
|
* Operator selectivity estimation functions are called to estimate the
|
|
* selectivity of WHERE clauses whose top-level operator is their operator.
|
|
* We divide the problem into two cases:
|
|
* Restriction clause estimation: the clause involves vars of just
|
|
* one relation.
|
|
* Join clause estimation: the clause involves vars of multiple rels.
|
|
* Join selectivity estimation is far more difficult and usually less accurate
|
|
* than restriction estimation.
|
|
*
|
|
* When dealing with the inner scan of a nestloop join, we consider the
|
|
* join's joinclauses as restriction clauses for the inner relation, and
|
|
* treat vars of the outer relation as parameters (a/k/a constants of unknown
|
|
* values). So, restriction estimators need to be able to accept an argument
|
|
* telling which relation is to be treated as the variable.
|
|
*
|
|
* The call convention for a restriction estimator (oprrest function) is
|
|
*
|
|
* Selectivity oprrest (Query *root,
|
|
* Oid operator,
|
|
* List *args,
|
|
* int varRelid);
|
|
*
|
|
* root: general information about the query (rtable and RelOptInfo lists
|
|
* are particularly important for the estimator).
|
|
* operator: OID of the specific operator in question.
|
|
* args: argument list from the operator clause.
|
|
* varRelid: if not zero, the relid (rtable index) of the relation to
|
|
* be treated as the variable relation. May be zero if the args list
|
|
* is known to contain vars of only one relation.
|
|
*
|
|
* This is represented at the SQL level (in pg_proc) as
|
|
*
|
|
* float8 oprrest (opaque, oid, opaque, int4);
|
|
*
|
|
* The call convention for a join estimator (oprjoin function) is similar
|
|
* except that varRelid is not needed:
|
|
*
|
|
* Selectivity oprjoin (Query *root,
|
|
* Oid operator,
|
|
* List *args);
|
|
*
|
|
* float8 oprjoin (opaque, oid, opaque);
|
|
*----------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#ifdef USE_LOCALE
|
|
#include <locale.h>
|
|
#endif
|
|
|
|
#include "access/heapam.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_statistic.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/cost.h"
|
|
#include "optimizer/pathnode.h"
|
|
#include "optimizer/plancat.h"
|
|
#include "optimizer/prep.h"
|
|
#include "parser/parse_func.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/date.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/int8.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/selfuncs.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/*
|
|
* Note: the default selectivity estimates are not chosen entirely at random.
|
|
* We want them to be small enough to ensure that indexscans will be used if
|
|
* available, for typical table densities of ~100 tuples/page. Thus, for
|
|
* example, 0.01 is not quite small enough, since that makes it appear that
|
|
* nearly all pages will be hit anyway. Also, since we sometimes estimate
|
|
* eqsel as 1/num_distinct, we probably want DEFAULT_NUM_DISTINCT to equal
|
|
* 1/DEFAULT_EQ_SEL.
|
|
*/
|
|
|
|
/* default selectivity estimate for equalities such as "A = b" */
|
|
#define DEFAULT_EQ_SEL 0.005
|
|
|
|
/* default selectivity estimate for inequalities such as "A < b" */
|
|
#define DEFAULT_INEQ_SEL (1.0 / 3.0)
|
|
|
|
/* default selectivity estimate for pattern-match operators such as LIKE */
|
|
#define DEFAULT_MATCH_SEL 0.005
|
|
|
|
/* default number of distinct values in a table */
|
|
#define DEFAULT_NUM_DISTINCT 200
|
|
|
|
/* default selectivity estimate for boolean and null test nodes */
|
|
#define DEFAULT_UNK_SEL 0.005
|
|
#define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)
|
|
#define DEFAULT_BOOL_SEL 0.5
|
|
|
|
/*
|
|
* Clamp a computed probability estimate (which may suffer from roundoff or
|
|
* estimation errors) to valid range. Argument must be a float variable.
|
|
*/
|
|
#define CLAMP_PROBABILITY(p) \
|
|
do { \
|
|
if (p < 0.0) \
|
|
p = 0.0; \
|
|
else if (p > 1.0) \
|
|
p = 1.0; \
|
|
} while (0)
|
|
|
|
|
|
static bool get_var_maximum(Query *root, Var *var, Oid sortop, Datum *max);
|
|
static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
|
|
Datum lobound, Datum hibound, Oid boundstypid,
|
|
double *scaledlobound, double *scaledhibound);
|
|
static double convert_numeric_to_scalar(Datum value, Oid typid);
|
|
static void convert_string_to_scalar(unsigned char *value,
|
|
double *scaledvalue,
|
|
unsigned char *lobound,
|
|
double *scaledlobound,
|
|
unsigned char *hibound,
|
|
double *scaledhibound);
|
|
static void convert_bytea_to_scalar(Datum value,
|
|
double *scaledvalue,
|
|
Datum lobound,
|
|
double *scaledlobound,
|
|
Datum hibound,
|
|
double *scaledhibound);
|
|
static double convert_one_string_to_scalar(unsigned char *value,
|
|
int rangelo, int rangehi);
|
|
static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
|
|
int rangelo, int rangehi);
|
|
static unsigned char *convert_string_datum(Datum value, Oid typid);
|
|
static double convert_timevalue_to_scalar(Datum value, Oid typid);
|
|
static double get_att_numdistinct(Query *root, Var *var,
|
|
Form_pg_statistic stats);
|
|
static bool get_restriction_var(List *args, int varRelid,
|
|
Var **var, Node **other,
|
|
bool *varonleft);
|
|
static void get_join_vars(List *args, Var **var1, Var **var2);
|
|
static Selectivity prefix_selectivity(Query *root, Var *var, char *prefix);
|
|
static Selectivity pattern_selectivity(char *patt, Pattern_Type ptype);
|
|
static bool string_lessthan(const char *str1, const char *str2,
|
|
Oid datatype);
|
|
static Oid find_operator(const char *opname, Oid datatype);
|
|
static Datum string_to_datum(const char *str, Oid datatype);
|
|
static Const *string_to_const(const char *str, Oid datatype);
|
|
|
|
|
|
/*
|
|
* eqsel - Selectivity of "=" for any data types.
|
|
*
|
|
* Note: this routine is also used to estimate selectivity for some
|
|
* operators that are not "=" but have comparable selectivity behavior,
|
|
* such as "~=" (geometric approximate-match). Even for "=", we must
|
|
* keep in mind that the left and right datatypes may differ.
|
|
*/
|
|
Datum
|
|
eqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Var *var;
|
|
Node *other;
|
|
bool varonleft;
|
|
Oid relid;
|
|
HeapTuple statsTuple;
|
|
Datum *values;
|
|
int nvalues;
|
|
float4 *numbers;
|
|
int nnumbers;
|
|
double selec;
|
|
|
|
/*
|
|
* If expression is not var = something or something = var for a
|
|
* simple var of a real relation (no subqueries, for now), then punt
|
|
* and return a default estimate.
|
|
*/
|
|
if (!get_restriction_var(args, varRelid,
|
|
&var, &other, &varonleft))
|
|
PG_RETURN_FLOAT8(DEFAULT_EQ_SEL);
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
PG_RETURN_FLOAT8(DEFAULT_EQ_SEL);
|
|
|
|
/*
|
|
* If the something is a NULL constant, assume operator is strict and
|
|
* return zero, ie, operator will never return TRUE.
|
|
*/
|
|
if (IsA(other, Const) &&((Const *) other)->constisnull)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
/* get stats for the attribute, if available */
|
|
statsTuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(var->varattno),
|
|
0, 0);
|
|
if (HeapTupleIsValid(statsTuple))
|
|
{
|
|
Form_pg_statistic stats;
|
|
|
|
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
|
|
|
|
if (IsA(other, Const))
|
|
{
|
|
/* Var is being compared to a known non-null constant */
|
|
Datum constval = ((Const *) other)->constvalue;
|
|
bool match = false;
|
|
int i;
|
|
|
|
/*
|
|
* Is the constant "=" to any of the column's most common
|
|
* values? (Although the given operator may not really be
|
|
* "=", we will assume that seeing whether it returns TRUE is
|
|
* an appropriate test. If you don't like this, maybe you
|
|
* shouldn't be using eqsel for your operator...)
|
|
*/
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_MCV, InvalidOid,
|
|
&values, &nvalues,
|
|
&numbers, &nnumbers))
|
|
{
|
|
FmgrInfo eqproc;
|
|
|
|
fmgr_info(get_opcode(operator), &eqproc);
|
|
|
|
for (i = 0; i < nvalues; i++)
|
|
{
|
|
/* be careful to apply operator right way 'round */
|
|
if (varonleft)
|
|
match = DatumGetBool(FunctionCall2(&eqproc,
|
|
values[i],
|
|
constval));
|
|
else
|
|
match = DatumGetBool(FunctionCall2(&eqproc,
|
|
constval,
|
|
values[i]));
|
|
if (match)
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* no most-common-value info available */
|
|
values = NULL;
|
|
numbers = NULL;
|
|
i = nvalues = nnumbers = 0;
|
|
}
|
|
|
|
if (match)
|
|
{
|
|
/*
|
|
* Constant is "=" to this common value. We know
|
|
* selectivity exactly (or as exactly as VACUUM could
|
|
* calculate it, anyway).
|
|
*/
|
|
selec = numbers[i];
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Comparison is against a constant that is neither NULL
|
|
* nor any of the common values. Its selectivity cannot
|
|
* be more than this:
|
|
*/
|
|
double sumcommon = 0.0;
|
|
double otherdistinct;
|
|
|
|
for (i = 0; i < nnumbers; i++)
|
|
sumcommon += numbers[i];
|
|
selec = 1.0 - sumcommon - stats->stanullfrac;
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
/*
|
|
* and in fact it's probably a good deal less. We
|
|
* approximate that all the not-common values share this
|
|
* remaining fraction equally, so we divide by the number
|
|
* of other distinct values.
|
|
*/
|
|
otherdistinct = get_att_numdistinct(root, var, stats)
|
|
- nnumbers;
|
|
if (otherdistinct > 1)
|
|
selec /= otherdistinct;
|
|
|
|
/*
|
|
* Another cross-check: selectivity shouldn't be estimated
|
|
* as more than the least common "most common value".
|
|
*/
|
|
if (nnumbers > 0 && selec > numbers[nnumbers - 1])
|
|
selec = numbers[nnumbers - 1];
|
|
}
|
|
|
|
free_attstatsslot(var->vartype, values, nvalues,
|
|
numbers, nnumbers);
|
|
}
|
|
else
|
|
{
|
|
double ndistinct;
|
|
|
|
/*
|
|
* Search is for a value that we do not know a priori, but we
|
|
* will assume it is not NULL. Estimate the selectivity as
|
|
* non-null fraction divided by number of distinct values, so
|
|
* that we get a result averaged over all possible values
|
|
* whether common or uncommon. (Essentially, we are assuming
|
|
* that the not-yet-known comparison value is equally likely
|
|
* to be any of the possible values, regardless of their
|
|
* frequency in the table. Is that a good idea?)
|
|
*/
|
|
selec = 1.0 - stats->stanullfrac;
|
|
ndistinct = get_att_numdistinct(root, var, stats);
|
|
if (ndistinct > 1)
|
|
selec /= ndistinct;
|
|
|
|
/*
|
|
* Cross-check: selectivity should never be estimated as more
|
|
* than the most common value's.
|
|
*/
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_MCV, InvalidOid,
|
|
NULL, NULL,
|
|
&numbers, &nnumbers))
|
|
{
|
|
if (nnumbers > 0 && selec > numbers[0])
|
|
selec = numbers[0];
|
|
free_attstatsslot(var->vartype, NULL, 0, numbers, nnumbers);
|
|
}
|
|
}
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* No VACUUM ANALYZE stats available, so make a guess using
|
|
* estimated number of distinct values and assuming they are
|
|
* equally common. (The guess is unlikely to be very good, but we
|
|
* do know a few special cases.)
|
|
*/
|
|
selec = 1.0 / get_att_numdistinct(root, var, NULL);
|
|
}
|
|
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
PG_RETURN_FLOAT8((float8) selec);
|
|
}
|
|
|
|
/*
|
|
* neqsel - Selectivity of "!=" for any data types.
|
|
*
|
|
* This routine is also used for some operators that are not "!="
|
|
* but have comparable selectivity behavior. See above comments
|
|
* for eqsel().
|
|
*/
|
|
Datum
|
|
neqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Oid eqop;
|
|
float8 result;
|
|
|
|
/*
|
|
* We want 1 - eqsel() where the equality operator is the one
|
|
* associated with this != operator, that is, its negator.
|
|
*/
|
|
eqop = get_negator(operator);
|
|
if (eqop)
|
|
{
|
|
result = DatumGetFloat8(DirectFunctionCall4(eqsel,
|
|
PointerGetDatum(root),
|
|
ObjectIdGetDatum(eqop),
|
|
PointerGetDatum(args),
|
|
Int32GetDatum(varRelid)));
|
|
}
|
|
else
|
|
{
|
|
/* Use default selectivity (should we raise an error instead?) */
|
|
result = DEFAULT_EQ_SEL;
|
|
}
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
|
|
*
|
|
* This is the guts of both scalarltsel and scalargtsel. The caller has
|
|
* commuted the clause, if necessary, so that we can treat the Var as
|
|
* being on the left. The caller must also make sure that the other side
|
|
* of the clause is a non-null Const, and dissect same into a value and
|
|
* datatype.
|
|
*
|
|
* This routine works for any datatype (or pair of datatypes) known to
|
|
* convert_to_scalar(). If it is applied to some other datatype,
|
|
* it will return a default estimate.
|
|
*/
|
|
static double
|
|
scalarineqsel(Query *root, Oid operator, bool isgt,
|
|
Var *var, Datum constval, Oid consttype)
|
|
{
|
|
Oid relid;
|
|
HeapTuple statsTuple;
|
|
Form_pg_statistic stats;
|
|
FmgrInfo opproc;
|
|
Datum *values;
|
|
int nvalues;
|
|
float4 *numbers;
|
|
int nnumbers;
|
|
double mcv_selec,
|
|
hist_selec,
|
|
sumcommon;
|
|
double selec;
|
|
int i;
|
|
|
|
/*
|
|
* If expression is not var op something or something op var for a
|
|
* simple var of a real relation (no subqueries, for now), then punt
|
|
* and return a default estimate.
|
|
*/
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
return DEFAULT_INEQ_SEL;
|
|
|
|
/* get stats for the attribute */
|
|
statsTuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(var->varattno),
|
|
0, 0);
|
|
if (!HeapTupleIsValid(statsTuple))
|
|
{
|
|
/* no stats available, so default result */
|
|
return DEFAULT_INEQ_SEL;
|
|
}
|
|
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
|
|
|
|
fmgr_info(get_opcode(operator), &opproc);
|
|
|
|
/*
|
|
* If we have most-common-values info, add up the fractions of the MCV
|
|
* entries that satisfy MCV OP CONST. These fractions contribute
|
|
* directly to the result selectivity. Also add up the total fraction
|
|
* represented by MCV entries.
|
|
*/
|
|
mcv_selec = 0.0;
|
|
sumcommon = 0.0;
|
|
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_MCV, InvalidOid,
|
|
&values, &nvalues,
|
|
&numbers, &nnumbers))
|
|
{
|
|
for (i = 0; i < nvalues; i++)
|
|
{
|
|
if (DatumGetBool(FunctionCall2(&opproc,
|
|
values[i],
|
|
constval)))
|
|
mcv_selec += numbers[i];
|
|
sumcommon += numbers[i];
|
|
}
|
|
free_attstatsslot(var->vartype, values, nvalues, numbers, nnumbers);
|
|
}
|
|
|
|
/*
|
|
* If there is a histogram, determine which bin the constant falls in,
|
|
* and compute the resulting contribution to selectivity.
|
|
*
|
|
* Someday, VACUUM might store more than one histogram per rel/att,
|
|
* corresponding to more than one possible sort ordering defined for
|
|
* the column type. However, to make that work we will need to figure
|
|
* out which staop to search for --- it's not necessarily the one we
|
|
* have at hand! (For example, we might have a '<=' operator rather
|
|
* than the '<' operator that will appear in staop.) For now, assume
|
|
* that whatever appears in pg_statistic is sorted the same way our
|
|
* operator sorts, or the reverse way if isgt is TRUE.
|
|
*/
|
|
hist_selec = 0.0;
|
|
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_HISTOGRAM, InvalidOid,
|
|
&values, &nvalues,
|
|
NULL, NULL))
|
|
{
|
|
if (nvalues > 1)
|
|
{
|
|
double histfrac;
|
|
bool ltcmp;
|
|
|
|
ltcmp = DatumGetBool(FunctionCall2(&opproc,
|
|
values[0],
|
|
constval));
|
|
if (isgt)
|
|
ltcmp = !ltcmp;
|
|
if (!ltcmp)
|
|
{
|
|
/* Constant is below lower histogram boundary. */
|
|
histfrac = 0.0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Scan to find proper location. This could be made
|
|
* faster by using a binary-search method, but it's
|
|
* probably not worth the trouble for typical histogram
|
|
* sizes.
|
|
*/
|
|
for (i = 1; i < nvalues; i++)
|
|
{
|
|
ltcmp = DatumGetBool(FunctionCall2(&opproc,
|
|
values[i],
|
|
constval));
|
|
if (isgt)
|
|
ltcmp = !ltcmp;
|
|
if (!ltcmp)
|
|
break;
|
|
}
|
|
if (i >= nvalues)
|
|
{
|
|
/* Constant is above upper histogram boundary. */
|
|
histfrac = 1.0;
|
|
}
|
|
else
|
|
{
|
|
double val,
|
|
high,
|
|
low;
|
|
double binfrac;
|
|
|
|
/*
|
|
* We have values[i-1] < constant < values[i].
|
|
*
|
|
* Convert the constant and the two nearest bin boundary
|
|
* values to a uniform comparison scale, and do a
|
|
* linear interpolation within this bin.
|
|
*/
|
|
if (convert_to_scalar(constval, consttype, &val,
|
|
values[i - 1], values[i],
|
|
var->vartype,
|
|
&low, &high))
|
|
{
|
|
if (high <= low)
|
|
{
|
|
/* cope if bin boundaries appear identical */
|
|
binfrac = 0.5;
|
|
}
|
|
else if (val <= low)
|
|
binfrac = 0.0;
|
|
else if (val >= high)
|
|
binfrac = 1.0;
|
|
else
|
|
{
|
|
binfrac = (val - low) / (high - low);
|
|
|
|
/*
|
|
* Watch out for the possibility that we got a
|
|
* NaN or Infinity from the division. This
|
|
* can happen despite the previous checks, if
|
|
* for example "low" is -Infinity.
|
|
*/
|
|
if (isnan(binfrac) ||
|
|
binfrac < 0.0 || binfrac > 1.0)
|
|
binfrac = 0.5;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Ideally we'd produce an error here, on the
|
|
* grounds that the given operator shouldn't have
|
|
* scalarXXsel registered as its selectivity func
|
|
* unless we can deal with its operand types. But
|
|
* currently, all manner of stuff is invoking
|
|
* scalarXXsel, so give a default estimate until
|
|
* that can be fixed.
|
|
*/
|
|
binfrac = 0.5;
|
|
}
|
|
|
|
/*
|
|
* Now, compute the overall selectivity across the
|
|
* values represented by the histogram. We have i-1
|
|
* full bins and binfrac partial bin below the
|
|
* constant.
|
|
*/
|
|
histfrac = (double) (i - 1) + binfrac;
|
|
histfrac /= (double) (nvalues - 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now histfrac = fraction of histogram entries below the
|
|
* constant.
|
|
*
|
|
* Account for "<" vs ">"
|
|
*/
|
|
hist_selec = isgt ? (1.0 - histfrac) : histfrac;
|
|
|
|
/*
|
|
* The histogram boundaries are only approximate to begin
|
|
* with, and may well be out of date anyway. Therefore, don't
|
|
* believe extremely small or large selectivity estimates.
|
|
*/
|
|
if (hist_selec < 0.0001)
|
|
hist_selec = 0.0001;
|
|
else if (hist_selec > 0.9999)
|
|
hist_selec = 0.9999;
|
|
}
|
|
|
|
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Now merge the results from the MCV and histogram calculations,
|
|
* realizing that the histogram covers only the non-null values that
|
|
* are not listed in MCV.
|
|
*/
|
|
selec = 1.0 - stats->stanullfrac - sumcommon;
|
|
|
|
if (hist_selec > 0.0)
|
|
selec *= hist_selec;
|
|
else
|
|
{
|
|
/*
|
|
* If no histogram but there are values not accounted for by MCV,
|
|
* arbitrarily assume half of them will match.
|
|
*/
|
|
selec *= 0.5;
|
|
}
|
|
|
|
selec += mcv_selec;
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
return selec;
|
|
}
|
|
|
|
/*
|
|
* scalarltsel - Selectivity of "<" (also "<=") for scalars.
|
|
*/
|
|
Datum
|
|
scalarltsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Var *var;
|
|
Node *other;
|
|
Datum constval;
|
|
Oid consttype;
|
|
bool varonleft;
|
|
bool isgt;
|
|
double selec;
|
|
|
|
/*
|
|
* If expression is not var op something or something op var for a
|
|
* simple var of a real relation (no subqueries, for now), then punt
|
|
* and return a default estimate.
|
|
*/
|
|
if (!get_restriction_var(args, varRelid,
|
|
&var, &other, &varonleft))
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
|
|
/*
|
|
* Can't do anything useful if the something is not a constant,
|
|
* either.
|
|
*/
|
|
if (!IsA(other, Const))
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
|
|
/*
|
|
* If the constant is NULL, assume operator is strict and return zero,
|
|
* ie, operator will never return TRUE.
|
|
*/
|
|
if (((Const *) other)->constisnull)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
constval = ((Const *) other)->constvalue;
|
|
consttype = ((Const *) other)->consttype;
|
|
|
|
/*
|
|
* Force the var to be on the left to simplify logic in scalarineqsel.
|
|
*/
|
|
if (varonleft)
|
|
{
|
|
/* we have var < other */
|
|
isgt = false;
|
|
}
|
|
else
|
|
{
|
|
/* we have other < var, commute to make var > other */
|
|
operator = get_commutator(operator);
|
|
if (!operator)
|
|
{
|
|
/* Use default selectivity (should we raise an error instead?) */
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
}
|
|
isgt = true;
|
|
}
|
|
|
|
selec = scalarineqsel(root, operator, isgt, var, constval, consttype);
|
|
|
|
PG_RETURN_FLOAT8((float8) selec);
|
|
}
|
|
|
|
/*
|
|
* scalargtsel - Selectivity of ">" (also ">=") for integers.
|
|
*/
|
|
Datum
|
|
scalargtsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Var *var;
|
|
Node *other;
|
|
Datum constval;
|
|
Oid consttype;
|
|
bool varonleft;
|
|
bool isgt;
|
|
double selec;
|
|
|
|
/*
|
|
* If expression is not var op something or something op var for a
|
|
* simple var of a real relation (no subqueries, for now), then punt
|
|
* and return a default estimate.
|
|
*/
|
|
if (!get_restriction_var(args, varRelid,
|
|
&var, &other, &varonleft))
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
|
|
/*
|
|
* Can't do anything useful if the something is not a constant,
|
|
* either.
|
|
*/
|
|
if (!IsA(other, Const))
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
|
|
/*
|
|
* If the constant is NULL, assume operator is strict and return zero,
|
|
* ie, operator will never return TRUE.
|
|
*/
|
|
if (((Const *) other)->constisnull)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
constval = ((Const *) other)->constvalue;
|
|
consttype = ((Const *) other)->consttype;
|
|
|
|
/*
|
|
* Force the var to be on the left to simplify logic in scalarineqsel.
|
|
*/
|
|
if (varonleft)
|
|
{
|
|
/* we have var > other */
|
|
isgt = true;
|
|
}
|
|
else
|
|
{
|
|
/* we have other > var, commute to make var < other */
|
|
operator = get_commutator(operator);
|
|
if (!operator)
|
|
{
|
|
/* Use default selectivity (should we raise an error instead?) */
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
}
|
|
isgt = false;
|
|
}
|
|
|
|
selec = scalarineqsel(root, operator, isgt, var, constval, consttype);
|
|
|
|
PG_RETURN_FLOAT8((float8) selec);
|
|
}
|
|
|
|
/*
|
|
* patternsel - Generic code for pattern-match selectivity.
|
|
*/
|
|
static double
|
|
patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
|
|
#ifdef NOT_USED
|
|
Oid operator = PG_GETARG_OID(1);
|
|
#endif
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
int varRelid = PG_GETARG_INT32(3);
|
|
Var *var;
|
|
Node *other;
|
|
bool varonleft;
|
|
Oid relid;
|
|
Datum constval;
|
|
char *patt;
|
|
Pattern_Prefix_Status pstatus;
|
|
char *prefix;
|
|
char *rest;
|
|
double result;
|
|
|
|
/*
|
|
* If expression is not var op constant for a simple var of a real
|
|
* relation (no subqueries, for now), then punt and return a default
|
|
* estimate.
|
|
*/
|
|
if (!get_restriction_var(args, varRelid,
|
|
&var, &other, &varonleft))
|
|
return DEFAULT_MATCH_SEL;
|
|
if (!varonleft || !IsA(other, Const))
|
|
return DEFAULT_MATCH_SEL;
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
return DEFAULT_MATCH_SEL;
|
|
|
|
/*
|
|
* If the constant is NULL, assume operator is strict and return zero,
|
|
* ie, operator will never return TRUE.
|
|
*/
|
|
if (((Const *) other)->constisnull)
|
|
return 0.0;
|
|
constval = ((Const *) other)->constvalue;
|
|
/* the right-hand const is type text for all supported operators */
|
|
Assert(((Const *) other)->consttype == TEXTOID);
|
|
patt = DatumGetCString(DirectFunctionCall1(textout, constval));
|
|
|
|
/* divide pattern into fixed prefix and remainder */
|
|
pstatus = pattern_fixed_prefix(patt, ptype, &prefix, &rest);
|
|
|
|
if (pstatus == Pattern_Prefix_Exact)
|
|
{
|
|
/*
|
|
* Pattern specifies an exact match, so pretend operator is '='
|
|
*/
|
|
Oid eqopr = find_operator("=", var->vartype);
|
|
Const *eqcon;
|
|
List *eqargs;
|
|
|
|
if (eqopr == InvalidOid)
|
|
elog(ERROR, "patternsel: no = operator for type %u",
|
|
var->vartype);
|
|
eqcon = string_to_const(prefix, var->vartype);
|
|
eqargs = makeList2(var, eqcon);
|
|
result = DatumGetFloat8(DirectFunctionCall4(eqsel,
|
|
PointerGetDatum(root),
|
|
ObjectIdGetDatum(eqopr),
|
|
PointerGetDatum(eqargs),
|
|
Int32GetDatum(varRelid)));
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Not exact-match pattern. We estimate selectivity of the fixed
|
|
* prefix and remainder of pattern separately, then combine the
|
|
* two.
|
|
*/
|
|
Selectivity prefixsel;
|
|
Selectivity restsel;
|
|
Selectivity selec;
|
|
|
|
if (pstatus == Pattern_Prefix_Partial)
|
|
prefixsel = prefix_selectivity(root, var, prefix);
|
|
else
|
|
prefixsel = 1.0;
|
|
restsel = pattern_selectivity(rest, ptype);
|
|
selec = prefixsel * restsel;
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(selec);
|
|
result = selec;
|
|
}
|
|
|
|
if (prefix)
|
|
pfree(prefix);
|
|
pfree(patt);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* regexeqsel - Selectivity of regular-expression pattern match.
|
|
*/
|
|
Datum
|
|
regexeqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex));
|
|
}
|
|
|
|
/*
|
|
* icregexeqsel - Selectivity of case-insensitive regex match.
|
|
*/
|
|
Datum
|
|
icregexeqsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC));
|
|
}
|
|
|
|
/*
|
|
* likesel - Selectivity of LIKE pattern match.
|
|
*/
|
|
Datum
|
|
likesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like));
|
|
}
|
|
|
|
/*
|
|
* iclikesel - Selectivity of ILIKE pattern match.
|
|
*/
|
|
Datum
|
|
iclikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC));
|
|
}
|
|
|
|
/*
|
|
* regexnesel - Selectivity of regular-expression pattern non-match.
|
|
*/
|
|
Datum
|
|
regexnesel(PG_FUNCTION_ARGS)
|
|
{
|
|
double result;
|
|
|
|
result = patternsel(fcinfo, Pattern_Type_Regex);
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* icregexnesel - Selectivity of case-insensitive regex non-match.
|
|
*/
|
|
Datum
|
|
icregexnesel(PG_FUNCTION_ARGS)
|
|
{
|
|
double result;
|
|
|
|
result = patternsel(fcinfo, Pattern_Type_Regex_IC);
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* nlikesel - Selectivity of LIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
nlikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
double result;
|
|
|
|
result = patternsel(fcinfo, Pattern_Type_Like);
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* icnlikesel - Selectivity of ILIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
icnlikesel(PG_FUNCTION_ARGS)
|
|
{
|
|
double result;
|
|
|
|
result = patternsel(fcinfo, Pattern_Type_Like_IC);
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* booltestsel - Selectivity of BooleanTest Node.
|
|
*/
|
|
Selectivity
|
|
booltestsel(Query *root, BooleanTest *clause, int varRelid)
|
|
{
|
|
Var *var;
|
|
Node *arg;
|
|
Oid relid;
|
|
HeapTuple statsTuple;
|
|
Datum *values;
|
|
int nvalues;
|
|
float4 *numbers;
|
|
int nnumbers;
|
|
double selec;
|
|
|
|
Assert(clause && IsA(clause, BooleanTest));
|
|
|
|
arg = (Node *) clause->arg;
|
|
|
|
/*
|
|
* Ignore any binary-compatible relabeling (probably unnecessary, but
|
|
* can't hurt)
|
|
*/
|
|
if (IsA(arg, RelabelType))
|
|
arg = ((RelabelType *) arg)->arg;
|
|
|
|
if (IsA(arg, Var) &&(varRelid == 0 || varRelid == ((Var *) arg)->varno))
|
|
var = (Var *) arg;
|
|
else
|
|
{
|
|
/*
|
|
* If argument is not a Var, we can't get statistics for it, but
|
|
* perhaps clause_selectivity can do something with it. We ignore
|
|
* the possibility of a NULL value when using clause_selectivity,
|
|
* and just assume the value is either TRUE or FALSE.
|
|
*/
|
|
switch (clause->booltesttype)
|
|
{
|
|
case IS_UNKNOWN:
|
|
selec = DEFAULT_UNK_SEL;
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
selec = DEFAULT_NOT_UNK_SEL;
|
|
break;
|
|
case IS_TRUE:
|
|
case IS_NOT_FALSE:
|
|
selec = (double) clause_selectivity(root, arg, varRelid);
|
|
break;
|
|
case IS_FALSE:
|
|
case IS_NOT_TRUE:
|
|
selec = 1.0 - (double) clause_selectivity(root, arg, varRelid);
|
|
break;
|
|
default:
|
|
elog(ERROR, "booltestsel: unexpected booltesttype %d",
|
|
(int) clause->booltesttype);
|
|
selec = 0.0; /* Keep compiler quiet */
|
|
break;
|
|
}
|
|
return (Selectivity) selec;
|
|
}
|
|
|
|
/* get stats for the attribute, if available */
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
statsTuple = NULL;
|
|
else
|
|
statsTuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(var->varattno),
|
|
0, 0);
|
|
|
|
if (HeapTupleIsValid(statsTuple))
|
|
{
|
|
Form_pg_statistic stats;
|
|
double freq_null;
|
|
|
|
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
|
|
|
|
freq_null = stats->stanullfrac;
|
|
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_MCV, InvalidOid,
|
|
&values, &nvalues,
|
|
&numbers, &nnumbers)
|
|
&& nnumbers > 0)
|
|
{
|
|
double freq_true;
|
|
double freq_false;
|
|
|
|
/*
|
|
* Get first MCV frequency and derive frequency for true.
|
|
*/
|
|
if (DatumGetBool(values[0]))
|
|
freq_true = numbers[0];
|
|
else
|
|
freq_true = 1.0 - numbers[0] - freq_null;
|
|
|
|
/*
|
|
* Next derive freqency for false. Then use these as
|
|
* appropriate to derive frequency for each case.
|
|
*/
|
|
freq_false = 1.0 - freq_true - freq_null;
|
|
|
|
switch (clause->booltesttype)
|
|
{
|
|
case IS_UNKNOWN:
|
|
/* select only NULL values */
|
|
selec = freq_null;
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
/* select non-NULL values */
|
|
selec = 1.0 - freq_null;
|
|
break;
|
|
case IS_TRUE:
|
|
/* select only TRUE values */
|
|
selec = freq_true;
|
|
break;
|
|
case IS_NOT_TRUE:
|
|
/* select non-TRUE values */
|
|
selec = 1.0 - freq_true;
|
|
break;
|
|
case IS_FALSE:
|
|
/* select only FALSE values */
|
|
selec = freq_false;
|
|
break;
|
|
case IS_NOT_FALSE:
|
|
/* select non-FALSE values */
|
|
selec = 1.0 - freq_false;
|
|
break;
|
|
default:
|
|
elog(ERROR, "booltestsel: unexpected booltesttype %d",
|
|
(int) clause->booltesttype);
|
|
selec = 0.0; /* Keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
free_attstatsslot(var->vartype, values, nvalues,
|
|
numbers, nnumbers);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* No most-common-value info available. Still have null
|
|
* fraction information, so use it for IS [NOT] UNKNOWN.
|
|
* Otherwise adjust for null fraction and assume an even split
|
|
* for boolean tests.
|
|
*/
|
|
switch (clause->booltesttype)
|
|
{
|
|
case IS_UNKNOWN:
|
|
|
|
/*
|
|
* Use freq_null directly.
|
|
*/
|
|
selec = freq_null;
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
|
|
/*
|
|
* Select not unknown (not null) values. Calculate
|
|
* from freq_null.
|
|
*/
|
|
selec = 1.0 - freq_null;
|
|
break;
|
|
case IS_TRUE:
|
|
case IS_NOT_TRUE:
|
|
case IS_FALSE:
|
|
case IS_NOT_FALSE:
|
|
selec = (1.0 - freq_null) / 2.0;
|
|
break;
|
|
default:
|
|
elog(ERROR, "booltestsel: unexpected booltesttype %d",
|
|
(int) clause->booltesttype);
|
|
selec = 0.0; /* Keep compiler quiet */
|
|
break;
|
|
}
|
|
}
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* No VACUUM ANALYZE stats available, so use a default value.
|
|
* (Note: not much point in recursing to clause_selectivity here.)
|
|
*/
|
|
switch (clause->booltesttype)
|
|
{
|
|
case IS_UNKNOWN:
|
|
selec = DEFAULT_UNK_SEL;
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
selec = DEFAULT_NOT_UNK_SEL;
|
|
break;
|
|
case IS_TRUE:
|
|
case IS_NOT_TRUE:
|
|
case IS_FALSE:
|
|
case IS_NOT_FALSE:
|
|
selec = DEFAULT_BOOL_SEL;
|
|
break;
|
|
default:
|
|
elog(ERROR, "booltestsel: unexpected booltesttype %d",
|
|
(int) clause->booltesttype);
|
|
selec = 0.0; /* Keep compiler quiet */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
return (Selectivity) selec;
|
|
}
|
|
|
|
/*
|
|
* nulltestsel - Selectivity of NullTest Node.
|
|
*/
|
|
Selectivity
|
|
nulltestsel(Query *root, NullTest *clause, int varRelid)
|
|
{
|
|
Var *var;
|
|
Node *arg;
|
|
Oid relid;
|
|
HeapTuple statsTuple;
|
|
double selec;
|
|
double defselec;
|
|
double freq_null;
|
|
|
|
Assert(clause && IsA(clause, NullTest));
|
|
|
|
switch (clause->nulltesttype)
|
|
{
|
|
case IS_NULL:
|
|
defselec = DEFAULT_UNK_SEL;
|
|
break;
|
|
case IS_NOT_NULL:
|
|
defselec = DEFAULT_NOT_UNK_SEL;
|
|
break;
|
|
default:
|
|
elog(ERROR, "nulltestsel: unexpected nulltesttype %d",
|
|
(int) clause->nulltesttype);
|
|
return (Selectivity) 0; /* keep compiler quiet */
|
|
}
|
|
|
|
arg = (Node *) clause->arg;
|
|
|
|
/*
|
|
* Ignore any binary-compatible relabeling
|
|
*/
|
|
if (IsA(arg, RelabelType))
|
|
arg = ((RelabelType *) arg)->arg;
|
|
|
|
if (IsA(arg, Var) &&(varRelid == 0 || varRelid == ((Var *) arg)->varno))
|
|
var = (Var *) arg;
|
|
else
|
|
{
|
|
/*
|
|
* punt if non-Var argument
|
|
*/
|
|
return (Selectivity) defselec;
|
|
}
|
|
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
return (Selectivity) defselec;
|
|
|
|
/* get stats for the attribute, if available */
|
|
statsTuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(var->varattno),
|
|
0, 0);
|
|
if (HeapTupleIsValid(statsTuple))
|
|
{
|
|
Form_pg_statistic stats;
|
|
|
|
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
|
|
freq_null = stats->stanullfrac;
|
|
|
|
switch (clause->nulltesttype)
|
|
{
|
|
case IS_NULL:
|
|
|
|
/*
|
|
* Use freq_null directly.
|
|
*/
|
|
selec = freq_null;
|
|
break;
|
|
case IS_NOT_NULL:
|
|
|
|
/*
|
|
* Select not unknown (not null) values. Calculate from
|
|
* freq_null.
|
|
*/
|
|
selec = 1.0 - freq_null;
|
|
break;
|
|
default:
|
|
elog(ERROR, "nulltestsel: unexpected nulltesttype %d",
|
|
(int) clause->nulltesttype);
|
|
return (Selectivity) 0; /* keep compiler quiet */
|
|
}
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* No VACUUM ANALYZE stats available, so make a guess
|
|
*/
|
|
selec = defselec;
|
|
}
|
|
|
|
/* result should be in range, but make sure... */
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
return (Selectivity) selec;
|
|
}
|
|
|
|
/*
|
|
* eqjoinsel - Join selectivity of "="
|
|
*/
|
|
Datum
|
|
eqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
Var *var1;
|
|
Var *var2;
|
|
double selec;
|
|
|
|
get_join_vars(args, &var1, &var2);
|
|
|
|
if (var1 == NULL && var2 == NULL)
|
|
selec = DEFAULT_EQ_SEL;
|
|
else
|
|
{
|
|
HeapTuple statsTuple1 = NULL;
|
|
HeapTuple statsTuple2 = NULL;
|
|
Form_pg_statistic stats1 = NULL;
|
|
Form_pg_statistic stats2 = NULL;
|
|
double nd1 = DEFAULT_NUM_DISTINCT;
|
|
double nd2 = DEFAULT_NUM_DISTINCT;
|
|
bool have_mcvs1 = false;
|
|
Datum *values1 = NULL;
|
|
int nvalues1 = 0;
|
|
float4 *numbers1 = NULL;
|
|
int nnumbers1 = 0;
|
|
bool have_mcvs2 = false;
|
|
Datum *values2 = NULL;
|
|
int nvalues2 = 0;
|
|
float4 *numbers2 = NULL;
|
|
int nnumbers2 = 0;
|
|
|
|
if (var1 != NULL)
|
|
{
|
|
/* get stats for the attribute, if available */
|
|
Oid relid1 = getrelid(var1->varno, root->rtable);
|
|
|
|
if (relid1 != InvalidOid)
|
|
{
|
|
statsTuple1 = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid1),
|
|
Int16GetDatum(var1->varattno),
|
|
0, 0);
|
|
if (HeapTupleIsValid(statsTuple1))
|
|
{
|
|
stats1 = (Form_pg_statistic) GETSTRUCT(statsTuple1);
|
|
have_mcvs1 = get_attstatsslot(statsTuple1,
|
|
var1->vartype,
|
|
var1->vartypmod,
|
|
STATISTIC_KIND_MCV,
|
|
InvalidOid,
|
|
&values1, &nvalues1,
|
|
&numbers1, &nnumbers1);
|
|
}
|
|
|
|
nd1 = get_att_numdistinct(root, var1, stats1);
|
|
}
|
|
}
|
|
|
|
if (var2 != NULL)
|
|
{
|
|
/* get stats for the attribute, if available */
|
|
Oid relid2 = getrelid(var2->varno, root->rtable);
|
|
|
|
if (relid2 != InvalidOid)
|
|
{
|
|
statsTuple2 = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid2),
|
|
Int16GetDatum(var2->varattno),
|
|
0, 0);
|
|
if (HeapTupleIsValid(statsTuple2))
|
|
{
|
|
stats2 = (Form_pg_statistic) GETSTRUCT(statsTuple2);
|
|
have_mcvs2 = get_attstatsslot(statsTuple2,
|
|
var2->vartype,
|
|
var2->vartypmod,
|
|
STATISTIC_KIND_MCV,
|
|
InvalidOid,
|
|
&values2, &nvalues2,
|
|
&numbers2, &nnumbers2);
|
|
}
|
|
|
|
nd2 = get_att_numdistinct(root, var2, stats2);
|
|
}
|
|
}
|
|
|
|
if (have_mcvs1 && have_mcvs2)
|
|
{
|
|
/*
|
|
* We have most-common-value lists for both relations. Run
|
|
* through the lists to see which MCVs actually join to each
|
|
* other with the given operator. This allows us to determine
|
|
* the exact join selectivity for the portion of the relations
|
|
* represented by the MCV lists. We still have to estimate
|
|
* for the remaining population, but in a skewed distribution
|
|
* this gives us a big leg up in accuracy. For motivation see
|
|
* the analysis in Y. Ioannidis and S. Christodoulakis, "On
|
|
* the propagation of errors in the size of join results",
|
|
* Technical Report 1018, Computer Science Dept., University
|
|
* of Wisconsin, Madison, March 1991 (available from
|
|
* ftp.cs.wisc.edu).
|
|
*/
|
|
FmgrInfo eqproc;
|
|
bool *hasmatch1;
|
|
bool *hasmatch2;
|
|
double matchprodfreq,
|
|
matchfreq1,
|
|
matchfreq2,
|
|
unmatchfreq1,
|
|
unmatchfreq2,
|
|
otherfreq1,
|
|
otherfreq2,
|
|
totalsel1,
|
|
totalsel2;
|
|
int i,
|
|
nmatches;
|
|
|
|
fmgr_info(get_opcode(operator), &eqproc);
|
|
hasmatch1 = (bool *) palloc(nvalues1 * sizeof(bool));
|
|
memset(hasmatch1, 0, nvalues1 * sizeof(bool));
|
|
hasmatch2 = (bool *) palloc(nvalues2 * sizeof(bool));
|
|
memset(hasmatch2, 0, nvalues2 * sizeof(bool));
|
|
|
|
/*
|
|
* Note we assume that each MCV will match at most one member
|
|
* of the other MCV list. If the operator isn't really
|
|
* equality, there could be multiple matches --- but we don't
|
|
* look for them, both for speed and because the math wouldn't
|
|
* add up...
|
|
*/
|
|
matchprodfreq = 0.0;
|
|
nmatches = 0;
|
|
for (i = 0; i < nvalues1; i++)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < nvalues2; j++)
|
|
{
|
|
if (hasmatch2[j])
|
|
continue;
|
|
if (DatumGetBool(FunctionCall2(&eqproc,
|
|
values1[i],
|
|
values2[j])))
|
|
{
|
|
hasmatch1[i] = hasmatch2[j] = true;
|
|
matchprodfreq += numbers1[i] * numbers2[j];
|
|
nmatches++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CLAMP_PROBABILITY(matchprodfreq);
|
|
/* Sum up frequencies of matched and unmatched MCVs */
|
|
matchfreq1 = unmatchfreq1 = 0.0;
|
|
for (i = 0; i < nvalues1; i++)
|
|
{
|
|
if (hasmatch1[i])
|
|
matchfreq1 += numbers1[i];
|
|
else
|
|
unmatchfreq1 += numbers1[i];
|
|
}
|
|
CLAMP_PROBABILITY(matchfreq1);
|
|
CLAMP_PROBABILITY(unmatchfreq1);
|
|
matchfreq2 = unmatchfreq2 = 0.0;
|
|
for (i = 0; i < nvalues2; i++)
|
|
{
|
|
if (hasmatch2[i])
|
|
matchfreq2 += numbers2[i];
|
|
else
|
|
unmatchfreq2 += numbers2[i];
|
|
}
|
|
CLAMP_PROBABILITY(matchfreq2);
|
|
CLAMP_PROBABILITY(unmatchfreq2);
|
|
pfree(hasmatch1);
|
|
pfree(hasmatch2);
|
|
|
|
/*
|
|
* Compute total frequency of non-null values that are not in
|
|
* the MCV lists.
|
|
*/
|
|
otherfreq1 = 1.0 - stats1->stanullfrac - matchfreq1 - unmatchfreq1;
|
|
otherfreq2 = 1.0 - stats2->stanullfrac - matchfreq2 - unmatchfreq2;
|
|
CLAMP_PROBABILITY(otherfreq1);
|
|
CLAMP_PROBABILITY(otherfreq2);
|
|
|
|
/*
|
|
* We can estimate the total selectivity from the point of
|
|
* view of relation 1 as: the known selectivity for matched
|
|
* MCVs, plus unmatched MCVs that are assumed to match against
|
|
* random members of relation 2's non-MCV population, plus
|
|
* non-MCV values that are assumed to match against random
|
|
* members of relation 2's unmatched MCVs plus non-MCV values.
|
|
*/
|
|
totalsel1 = matchprodfreq;
|
|
if (nd2 > nvalues2)
|
|
totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - nvalues2);
|
|
if (nd2 > nmatches)
|
|
totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
|
|
(nd2 - nmatches);
|
|
/* Same estimate from the point of view of relation 2. */
|
|
totalsel2 = matchprodfreq;
|
|
if (nd1 > nvalues1)
|
|
totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - nvalues1);
|
|
if (nd1 > nmatches)
|
|
totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
|
|
(nd1 - nmatches);
|
|
|
|
/*
|
|
* Use the smaller of the two estimates. This can be
|
|
* justified in essentially the same terms as given below for
|
|
* the no-stats case: to a first approximation, we are
|
|
* estimating from the point of view of the relation with
|
|
* smaller nd.
|
|
*/
|
|
selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We do not have MCV lists for both sides. Estimate the join
|
|
* selectivity as MIN(1/nd1, 1/nd2). This is plausible if we
|
|
* assume that the values are about equally distributed: a
|
|
* given tuple of rel1 will join to either 0 or N2/nd2 rows of
|
|
* rel2, so total join rows are at most N1*N2/nd2 giving a
|
|
* join selectivity of not more than 1/nd2. By the same logic
|
|
* it is not more than 1/nd1, so MIN(1/nd1, 1/nd2) is an upper
|
|
* bound. Using the MIN() means we estimate from the point of
|
|
* view of the relation with smaller nd (since the larger nd
|
|
* is determining the MIN). It is reasonable to assume that
|
|
* most tuples in this rel will have join partners, so the
|
|
* bound is probably reasonably tight and should be taken
|
|
* as-is.
|
|
*
|
|
* XXX Can we be smarter if we have an MCV list for just one
|
|
* side? It seems that if we assume equal distribution for the
|
|
* other side, we end up with the same answer anyway.
|
|
*/
|
|
if (nd1 > nd2)
|
|
selec = 1.0 / nd1;
|
|
else
|
|
selec = 1.0 / nd2;
|
|
}
|
|
|
|
if (have_mcvs1)
|
|
free_attstatsslot(var1->vartype, values1, nvalues1,
|
|
numbers1, nnumbers1);
|
|
if (have_mcvs2)
|
|
free_attstatsslot(var2->vartype, values2, nvalues2,
|
|
numbers2, nnumbers2);
|
|
if (HeapTupleIsValid(statsTuple1))
|
|
ReleaseSysCache(statsTuple1);
|
|
if (HeapTupleIsValid(statsTuple2))
|
|
ReleaseSysCache(statsTuple2);
|
|
}
|
|
|
|
CLAMP_PROBABILITY(selec);
|
|
|
|
PG_RETURN_FLOAT8((float8) selec);
|
|
}
|
|
|
|
/*
|
|
* neqjoinsel - Join selectivity of "!="
|
|
*/
|
|
Datum
|
|
neqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
Oid operator = PG_GETARG_OID(1);
|
|
List *args = (List *) PG_GETARG_POINTER(2);
|
|
Oid eqop;
|
|
float8 result;
|
|
|
|
/*
|
|
* We want 1 - eqjoinsel() where the equality operator is the one
|
|
* associated with this != operator, that is, its negator.
|
|
*/
|
|
eqop = get_negator(operator);
|
|
if (eqop)
|
|
{
|
|
result = DatumGetFloat8(DirectFunctionCall3(eqjoinsel,
|
|
PointerGetDatum(root),
|
|
ObjectIdGetDatum(eqop),
|
|
PointerGetDatum(args)));
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Use default selectivity (should we raise an error instead?) */
|
|
result = DEFAULT_EQ_SEL;
|
|
}
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* scalarltjoinsel - Join selectivity of "<" and "<=" for scalars
|
|
*/
|
|
Datum
|
|
scalarltjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
}
|
|
|
|
/*
|
|
* scalargtjoinsel - Join selectivity of ">" and ">=" for scalars
|
|
*/
|
|
Datum
|
|
scalargtjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
|
|
}
|
|
|
|
/*
|
|
* regexeqjoinsel - Join selectivity of regular-expression pattern match.
|
|
*/
|
|
Datum
|
|
regexeqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
|
|
}
|
|
|
|
/*
|
|
* icregexeqjoinsel - Join selectivity of case-insensitive regex match.
|
|
*/
|
|
Datum
|
|
icregexeqjoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
|
|
}
|
|
|
|
/*
|
|
* likejoinsel - Join selectivity of LIKE pattern match.
|
|
*/
|
|
Datum
|
|
likejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
|
|
}
|
|
|
|
/*
|
|
* iclikejoinsel - Join selectivity of ILIKE pattern match.
|
|
*/
|
|
Datum
|
|
iclikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
|
|
}
|
|
|
|
/*
|
|
* regexnejoinsel - Join selectivity of regex non-match.
|
|
*/
|
|
Datum
|
|
regexnejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
result = DatumGetFloat8(regexeqjoinsel(fcinfo));
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
|
|
*/
|
|
Datum
|
|
icregexnejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
result = DatumGetFloat8(icregexeqjoinsel(fcinfo));
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* nlikejoinsel - Join selectivity of LIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
nlikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
result = DatumGetFloat8(likejoinsel(fcinfo));
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* icnlikejoinsel - Join selectivity of ILIKE pattern non-match.
|
|
*/
|
|
Datum
|
|
icnlikejoinsel(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
result = DatumGetFloat8(iclikejoinsel(fcinfo));
|
|
result = 1.0 - result;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* mergejoinscansel - Scan selectivity of merge join.
|
|
*
|
|
* A merge join will stop as soon as it exhausts either input stream.
|
|
* Therefore, if we can estimate the ranges of both input variables,
|
|
* we can estimate how much of the input will actually be read. This
|
|
* can have a considerable impact on the cost when using indexscans.
|
|
*
|
|
* clause should be a clause already known to be mergejoinable.
|
|
*
|
|
* *leftscan is set to the fraction of the left-hand variable expected
|
|
* to be scanned (0 to 1), and similarly *rightscan for the right-hand
|
|
* variable.
|
|
*/
|
|
void
|
|
mergejoinscansel(Query *root, Node *clause,
|
|
Selectivity *leftscan,
|
|
Selectivity *rightscan)
|
|
{
|
|
Var *left,
|
|
*right;
|
|
Oid opno,
|
|
lsortop,
|
|
rsortop,
|
|
ltop,
|
|
gtop,
|
|
revltop;
|
|
Datum leftmax,
|
|
rightmax;
|
|
double selec;
|
|
|
|
/* Set default results if we can't figure anything out. */
|
|
*leftscan = *rightscan = 1.0;
|
|
|
|
/* Deconstruct the merge clause */
|
|
if (!is_opclause(clause))
|
|
return; /* shouldn't happen */
|
|
opno = ((Oper *) ((Expr *) clause)->oper)->opno;
|
|
left = get_leftop((Expr *) clause);
|
|
right = get_rightop((Expr *) clause);
|
|
if (!right)
|
|
return; /* shouldn't happen */
|
|
|
|
/* Can't do anything if inputs are not Vars */
|
|
if (!IsA(left, Var) ||!IsA(right, Var))
|
|
return;
|
|
|
|
/* Verify mergejoinability and get left and right "<" operators */
|
|
if (!op_mergejoinable(opno,
|
|
left->vartype,
|
|
right->vartype,
|
|
&lsortop,
|
|
&rsortop))
|
|
return; /* shouldn't happen */
|
|
|
|
/* Try to get maximum values of both vars */
|
|
if (!get_var_maximum(root, left, lsortop, &leftmax))
|
|
return; /* no max available from stats */
|
|
|
|
if (!get_var_maximum(root, right, rsortop, &rightmax))
|
|
return; /* no max available from stats */
|
|
|
|
/* Look up the "left < right" and "left > right" operators */
|
|
op_mergejoin_crossops(opno, <op, >op, NULL, NULL);
|
|
|
|
/* Look up the "right < left" operator */
|
|
revltop = get_commutator(gtop);
|
|
if (!OidIsValid(revltop))
|
|
return; /* shouldn't happen */
|
|
|
|
/*
|
|
* Now, the fraction of the left variable that will be scanned is the
|
|
* fraction that's <= the right-side maximum value. But only believe
|
|
* non-default estimates, else stick with our 1.0.
|
|
*/
|
|
selec = scalarineqsel(root, ltop, false, left,
|
|
rightmax, right->vartype);
|
|
if (selec != DEFAULT_INEQ_SEL)
|
|
*leftscan = selec;
|
|
|
|
/* And similarly for the right variable. */
|
|
selec = scalarineqsel(root, revltop, false, right,
|
|
leftmax, left->vartype);
|
|
if (selec != DEFAULT_INEQ_SEL)
|
|
*rightscan = selec;
|
|
|
|
/*
|
|
* Only one of the two fractions can really be less than 1.0; believe
|
|
* the smaller estimate and reset the other one to exactly 1.0.
|
|
*/
|
|
if (*leftscan > *rightscan)
|
|
*leftscan = 1.0;
|
|
else
|
|
*rightscan = 1.0;
|
|
}
|
|
|
|
/*
|
|
* get_var_maximum
|
|
* Estimate the maximum value of the specified variable.
|
|
* If successful, store value in *max and return TRUE.
|
|
* If no data available, return FALSE.
|
|
*
|
|
* sortop is the "<" comparison operator to use. (To extract the
|
|
* minimum instead of the maximum, just pass the ">" operator instead.)
|
|
*/
|
|
static bool
|
|
get_var_maximum(Query *root, Var *var, Oid sortop, Datum *max)
|
|
{
|
|
Datum tmax = 0;
|
|
bool have_max = false;
|
|
Oid relid;
|
|
HeapTuple statsTuple;
|
|
Form_pg_statistic stats;
|
|
int16 typLen;
|
|
bool typByVal;
|
|
Datum *values;
|
|
int nvalues;
|
|
int i;
|
|
|
|
relid = getrelid(var->varno, root->rtable);
|
|
if (relid == InvalidOid)
|
|
return false;
|
|
|
|
/* get stats for the attribute */
|
|
statsTuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(var->varattno),
|
|
0, 0);
|
|
if (!HeapTupleIsValid(statsTuple))
|
|
{
|
|
/* no stats available, so default result */
|
|
return false;
|
|
}
|
|
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
|
|
|
|
get_typlenbyval(var->vartype, &typLen, &typByVal);
|
|
|
|
/*
|
|
* If there is a histogram, grab the last or first value as appropriate.
|
|
*
|
|
* If there is a histogram that is sorted with some other operator
|
|
* than the one we want, fail --- this suggests that there is data
|
|
* we can't use.
|
|
*/
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_HISTOGRAM, sortop,
|
|
&values, &nvalues,
|
|
NULL, NULL))
|
|
{
|
|
if (nvalues > 0)
|
|
{
|
|
tmax = datumCopy(values[nvalues-1], typByVal, typLen);
|
|
have_max = true;
|
|
}
|
|
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
|
|
}
|
|
else
|
|
{
|
|
Oid rsortop = get_commutator(sortop);
|
|
|
|
if (OidIsValid(rsortop) &&
|
|
get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_HISTOGRAM, rsortop,
|
|
&values, &nvalues,
|
|
NULL, NULL))
|
|
{
|
|
if (nvalues > 0)
|
|
{
|
|
tmax = datumCopy(values[0], typByVal, typLen);
|
|
have_max = true;
|
|
}
|
|
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
|
|
}
|
|
else if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_HISTOGRAM, InvalidOid,
|
|
&values, &nvalues,
|
|
NULL, NULL))
|
|
{
|
|
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
|
|
ReleaseSysCache(statsTuple);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have most-common-values info, look for a large MCV. This
|
|
* is needed even if we also have a histogram, since the histogram
|
|
* excludes the MCVs. However, usually the MCVs will not be the
|
|
* extreme values, so avoid unnecessary data copying.
|
|
*/
|
|
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
|
|
STATISTIC_KIND_MCV, InvalidOid,
|
|
&values, &nvalues,
|
|
NULL, NULL))
|
|
{
|
|
bool large_mcv = false;
|
|
FmgrInfo opproc;
|
|
|
|
fmgr_info(get_opcode(sortop), &opproc);
|
|
|
|
for (i = 0; i < nvalues; i++)
|
|
{
|
|
if (!have_max)
|
|
{
|
|
tmax = values[i];
|
|
large_mcv = have_max = true;
|
|
}
|
|
else if (DatumGetBool(FunctionCall2(&opproc, tmax, values[i])))
|
|
{
|
|
tmax = values[i];
|
|
large_mcv = true;
|
|
}
|
|
}
|
|
if (large_mcv)
|
|
tmax = datumCopy(tmax, typByVal, typLen);
|
|
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
|
|
}
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
|
|
*max = tmax;
|
|
return have_max;
|
|
}
|
|
|
|
/*
|
|
* convert_to_scalar
|
|
* Convert non-NULL values of the indicated types to the comparison
|
|
* scale needed by scalarltsel()/scalargtsel().
|
|
* Returns "true" if successful.
|
|
*
|
|
* XXX this routine is a hack: ideally we should look up the conversion
|
|
* subroutines in pg_type.
|
|
*
|
|
* All numeric datatypes are simply converted to their equivalent
|
|
* "double" values. (NUMERIC values that are outside the range of "double"
|
|
* are clamped to +/- HUGE_VAL.)
|
|
*
|
|
* String datatypes are converted by convert_string_to_scalar(),
|
|
* which is explained below. The reason why this routine deals with
|
|
* three values at a time, not just one, is that we need it for strings.
|
|
*
|
|
* The bytea datatype is just enough different from strings that it has
|
|
* to be treated separately.
|
|
*
|
|
* The several datatypes representing absolute times are all converted
|
|
* to Timestamp, which is actually a double, and then we just use that
|
|
* double value. Note this will give correct results even for the "special"
|
|
* values of Timestamp, since those are chosen to compare correctly;
|
|
* see timestamp_cmp.
|
|
*
|
|
* The several datatypes representing relative times (intervals) are all
|
|
* converted to measurements expressed in seconds.
|
|
*/
|
|
static bool
|
|
convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
|
|
Datum lobound, Datum hibound, Oid boundstypid,
|
|
double *scaledlobound, double *scaledhibound)
|
|
{
|
|
switch (valuetypid)
|
|
{
|
|
/*
|
|
* Built-in numeric types
|
|
*/
|
|
case BOOLOID:
|
|
case INT2OID:
|
|
case INT4OID:
|
|
case INT8OID:
|
|
case FLOAT4OID:
|
|
case FLOAT8OID:
|
|
case NUMERICOID:
|
|
case OIDOID:
|
|
case REGPROCOID:
|
|
*scaledvalue = convert_numeric_to_scalar(value, valuetypid);
|
|
*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid);
|
|
*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid);
|
|
return true;
|
|
|
|
/*
|
|
* Built-in string types
|
|
*/
|
|
case CHAROID:
|
|
case BPCHAROID:
|
|
case VARCHAROID:
|
|
case TEXTOID:
|
|
case NAMEOID:
|
|
{
|
|
unsigned char *valstr = convert_string_datum(value, valuetypid);
|
|
unsigned char *lostr = convert_string_datum(lobound, boundstypid);
|
|
unsigned char *histr = convert_string_datum(hibound, boundstypid);
|
|
|
|
convert_string_to_scalar(valstr, scaledvalue,
|
|
lostr, scaledlobound,
|
|
histr, scaledhibound);
|
|
pfree(valstr);
|
|
pfree(lostr);
|
|
pfree(histr);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Built-in bytea type
|
|
*/
|
|
case BYTEAOID:
|
|
{
|
|
convert_bytea_to_scalar(value, scaledvalue,
|
|
lobound, scaledlobound,
|
|
hibound, scaledhibound);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Built-in time types
|
|
*/
|
|
case TIMESTAMPOID:
|
|
case TIMESTAMPTZOID:
|
|
case ABSTIMEOID:
|
|
case DATEOID:
|
|
case INTERVALOID:
|
|
case RELTIMEOID:
|
|
case TINTERVALOID:
|
|
case TIMEOID:
|
|
case TIMETZOID:
|
|
*scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
|
|
*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid);
|
|
*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid);
|
|
return true;
|
|
|
|
/*
|
|
* Built-in network types
|
|
*/
|
|
case INETOID:
|
|
case CIDROID:
|
|
case MACADDROID:
|
|
*scaledvalue = convert_network_to_scalar(value, valuetypid);
|
|
*scaledlobound = convert_network_to_scalar(lobound, boundstypid);
|
|
*scaledhibound = convert_network_to_scalar(hibound, boundstypid);
|
|
return true;
|
|
}
|
|
/* Don't know how to convert */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Do convert_to_scalar()'s work for any numeric data type.
|
|
*/
|
|
static double
|
|
convert_numeric_to_scalar(Datum value, Oid typid)
|
|
{
|
|
switch (typid)
|
|
{
|
|
case BOOLOID:
|
|
return (double) DatumGetBool(value);
|
|
case INT2OID:
|
|
return (double) DatumGetInt16(value);
|
|
case INT4OID:
|
|
return (double) DatumGetInt32(value);
|
|
case INT8OID:
|
|
return (double) DatumGetInt64(value);
|
|
case FLOAT4OID:
|
|
return (double) DatumGetFloat4(value);
|
|
case FLOAT8OID:
|
|
return (double) DatumGetFloat8(value);
|
|
case NUMERICOID:
|
|
/* Note: out-of-range values will be clamped to +-HUGE_VAL */
|
|
return (double)
|
|
DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
|
|
value));
|
|
case OIDOID:
|
|
case REGPROCOID:
|
|
/* we can treat OIDs as integers... */
|
|
return (double) DatumGetObjectId(value);
|
|
}
|
|
|
|
/*
|
|
* Can't get here unless someone tries to use scalarltsel/scalargtsel
|
|
* on an operator with one numeric and one non-numeric operand.
|
|
*/
|
|
elog(ERROR, "convert_numeric_to_scalar: unsupported type %u", typid);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do convert_to_scalar()'s work for any character-string data type.
|
|
*
|
|
* String datatypes are converted to a scale that ranges from 0 to 1,
|
|
* where we visualize the bytes of the string as fractional digits.
|
|
*
|
|
* We do not want the base to be 256, however, since that tends to
|
|
* generate inflated selectivity estimates; few databases will have
|
|
* occurrences of all 256 possible byte values at each position.
|
|
* Instead, use the smallest and largest byte values seen in the bounds
|
|
* as the estimated range for each byte, after some fudging to deal with
|
|
* the fact that we probably aren't going to see the full range that way.
|
|
*
|
|
* An additional refinement is that we discard any common prefix of the
|
|
* three strings before computing the scaled values. This allows us to
|
|
* "zoom in" when we encounter a narrow data range. An example is a phone
|
|
* number database where all the values begin with the same area code.
|
|
* (Actually, the bounds will be adjacent histogram-bin-boundary values,
|
|
* so this is more likely to happen than you might think.)
|
|
*/
|
|
static void
|
|
convert_string_to_scalar(unsigned char *value,
|
|
double *scaledvalue,
|
|
unsigned char *lobound,
|
|
double *scaledlobound,
|
|
unsigned char *hibound,
|
|
double *scaledhibound)
|
|
{
|
|
int rangelo,
|
|
rangehi;
|
|
unsigned char *sptr;
|
|
|
|
rangelo = rangehi = hibound[0];
|
|
for (sptr = lobound; *sptr; sptr++)
|
|
{
|
|
if (rangelo > *sptr)
|
|
rangelo = *sptr;
|
|
if (rangehi < *sptr)
|
|
rangehi = *sptr;
|
|
}
|
|
for (sptr = hibound; *sptr; sptr++)
|
|
{
|
|
if (rangelo > *sptr)
|
|
rangelo = *sptr;
|
|
if (rangehi < *sptr)
|
|
rangehi = *sptr;
|
|
}
|
|
/* If range includes any upper-case ASCII chars, make it include all */
|
|
if (rangelo <= 'Z' && rangehi >= 'A')
|
|
{
|
|
if (rangelo > 'A')
|
|
rangelo = 'A';
|
|
if (rangehi < 'Z')
|
|
rangehi = 'Z';
|
|
}
|
|
/* Ditto lower-case */
|
|
if (rangelo <= 'z' && rangehi >= 'a')
|
|
{
|
|
if (rangelo > 'a')
|
|
rangelo = 'a';
|
|
if (rangehi < 'z')
|
|
rangehi = 'z';
|
|
}
|
|
/* Ditto digits */
|
|
if (rangelo <= '9' && rangehi >= '0')
|
|
{
|
|
if (rangelo > '0')
|
|
rangelo = '0';
|
|
if (rangehi < '9')
|
|
rangehi = '9';
|
|
}
|
|
|
|
/*
|
|
* If range includes less than 10 chars, assume we have not got enough
|
|
* data, and make it include regular ASCII set.
|
|
*/
|
|
if (rangehi - rangelo < 9)
|
|
{
|
|
rangelo = ' ';
|
|
rangehi = 127;
|
|
}
|
|
|
|
/*
|
|
* Now strip any common prefix of the three strings.
|
|
*/
|
|
while (*lobound)
|
|
{
|
|
if (*lobound != *hibound || *lobound != *value)
|
|
break;
|
|
lobound++, hibound++, value++;
|
|
}
|
|
|
|
/*
|
|
* Now we can do the conversions.
|
|
*/
|
|
*scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
|
|
*scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
|
|
*scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
|
|
}
|
|
|
|
static double
|
|
convert_one_string_to_scalar(unsigned char *value, int rangelo, int rangehi)
|
|
{
|
|
int slen = strlen((char *) value);
|
|
double num,
|
|
denom,
|
|
base;
|
|
|
|
if (slen <= 0)
|
|
return 0.0; /* empty string has scalar value 0 */
|
|
|
|
/*
|
|
* Since base is at least 10, need not consider more than about 20
|
|
* chars
|
|
*/
|
|
if (slen > 20)
|
|
slen = 20;
|
|
|
|
/* Convert initial characters to fraction */
|
|
base = rangehi - rangelo + 1;
|
|
num = 0.0;
|
|
denom = base;
|
|
while (slen-- > 0)
|
|
{
|
|
int ch = *value++;
|
|
|
|
if (ch < rangelo)
|
|
ch = rangelo - 1;
|
|
else if (ch > rangehi)
|
|
ch = rangehi + 1;
|
|
num += ((double) (ch - rangelo)) / denom;
|
|
denom *= base;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* Convert a string-type Datum into a palloc'd, null-terminated string.
|
|
*
|
|
* If USE_LOCALE is defined, we must pass the string through strxfrm()
|
|
* before continuing, so as to generate correct locale-specific results.
|
|
*/
|
|
static unsigned char *
|
|
convert_string_datum(Datum value, Oid typid)
|
|
{
|
|
char *val;
|
|
|
|
#ifdef USE_LOCALE
|
|
char *xfrmstr;
|
|
size_t xfrmsize;
|
|
size_t xfrmlen;
|
|
#endif
|
|
|
|
switch (typid)
|
|
{
|
|
case CHAROID:
|
|
val = (char *) palloc(2);
|
|
val[0] = DatumGetChar(value);
|
|
val[1] = '\0';
|
|
break;
|
|
case BPCHAROID:
|
|
case VARCHAROID:
|
|
case TEXTOID:
|
|
{
|
|
char *str = (char *) VARDATA(DatumGetPointer(value));
|
|
int strlength = VARSIZE(DatumGetPointer(value)) - VARHDRSZ;
|
|
|
|
val = (char *) palloc(strlength + 1);
|
|
memcpy(val, str, strlength);
|
|
val[strlength] = '\0';
|
|
break;
|
|
}
|
|
case NAMEOID:
|
|
{
|
|
NameData *nm = (NameData *) DatumGetPointer(value);
|
|
|
|
val = pstrdup(NameStr(*nm));
|
|
break;
|
|
}
|
|
default:
|
|
|
|
/*
|
|
* Can't get here unless someone tries to use scalarltsel on
|
|
* an operator with one string and one non-string operand.
|
|
*/
|
|
elog(ERROR, "convert_string_datum: unsupported type %u", typid);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef USE_LOCALE
|
|
/* Guess that transformed string is not much bigger than original */
|
|
xfrmsize = strlen(val) + 32; /* arbitrary pad value here... */
|
|
xfrmstr = (char *) palloc(xfrmsize);
|
|
xfrmlen = strxfrm(xfrmstr, val, xfrmsize);
|
|
if (xfrmlen >= xfrmsize)
|
|
{
|
|
/* Oops, didn't make it */
|
|
pfree(xfrmstr);
|
|
xfrmstr = (char *) palloc(xfrmlen + 1);
|
|
xfrmlen = strxfrm(xfrmstr, val, xfrmlen + 1);
|
|
}
|
|
pfree(val);
|
|
val = xfrmstr;
|
|
#endif
|
|
|
|
return (unsigned char *) val;
|
|
}
|
|
|
|
/*
|
|
* Do convert_to_scalar()'s work for any bytea data type.
|
|
*
|
|
* Very similar to convert_string_to_scalar except we can't assume
|
|
* null-termination and therefore pass explicit lengths around.
|
|
*
|
|
* Also, assumptions about likely "normal" ranges of characters have been
|
|
* removed - a data range of 0..255 is always used, for now. (Perhaps
|
|
* someday we will add information about actual byte data range to
|
|
* pg_statistic.)
|
|
*/
|
|
static void
|
|
convert_bytea_to_scalar(Datum value,
|
|
double *scaledvalue,
|
|
Datum lobound,
|
|
double *scaledlobound,
|
|
Datum hibound,
|
|
double *scaledhibound)
|
|
{
|
|
int rangelo,
|
|
rangehi,
|
|
valuelen = VARSIZE(DatumGetPointer(value)) - VARHDRSZ,
|
|
loboundlen = VARSIZE(DatumGetPointer(lobound)) - VARHDRSZ,
|
|
hiboundlen = VARSIZE(DatumGetPointer(hibound)) - VARHDRSZ,
|
|
i,
|
|
minlen;
|
|
unsigned char *valstr = (unsigned char *) VARDATA(DatumGetPointer(value)),
|
|
*lostr = (unsigned char *) VARDATA(DatumGetPointer(lobound)),
|
|
*histr = (unsigned char *) VARDATA(DatumGetPointer(hibound));
|
|
|
|
/*
|
|
* Assume bytea data is uniformly distributed across all byte values.
|
|
*/
|
|
rangelo = 0;
|
|
rangehi = 255;
|
|
|
|
/*
|
|
* Now strip any common prefix of the three strings.
|
|
*/
|
|
minlen = Min(Min(valuelen, loboundlen), hiboundlen);
|
|
for (i = 0; i < minlen; i++)
|
|
{
|
|
if (*lostr != *histr || *lostr != *valstr)
|
|
break;
|
|
lostr++, histr++, valstr++;
|
|
loboundlen--, hiboundlen--, valuelen--;
|
|
}
|
|
|
|
/*
|
|
* Now we can do the conversions.
|
|
*/
|
|
*scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
|
|
*scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
|
|
*scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
|
|
}
|
|
|
|
static double
|
|
convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
|
|
int rangelo, int rangehi)
|
|
{
|
|
double num,
|
|
denom,
|
|
base;
|
|
|
|
if (valuelen <= 0)
|
|
return 0.0; /* empty string has scalar value 0 */
|
|
|
|
/*
|
|
* Since base is 256, need not consider more than about 10 chars (even
|
|
* this many seems like overkill)
|
|
*/
|
|
if (valuelen > 10)
|
|
valuelen = 10;
|
|
|
|
/* Convert initial characters to fraction */
|
|
base = rangehi - rangelo + 1;
|
|
num = 0.0;
|
|
denom = base;
|
|
while (valuelen-- > 0)
|
|
{
|
|
int ch = *value++;
|
|
|
|
if (ch < rangelo)
|
|
ch = rangelo - 1;
|
|
else if (ch > rangehi)
|
|
ch = rangehi + 1;
|
|
num += ((double) (ch - rangelo)) / denom;
|
|
denom *= base;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* Do convert_to_scalar()'s work for any timevalue data type.
|
|
*/
|
|
static double
|
|
convert_timevalue_to_scalar(Datum value, Oid typid)
|
|
{
|
|
switch (typid)
|
|
{
|
|
case TIMESTAMPOID:
|
|
return DatumGetTimestamp(value);
|
|
case TIMESTAMPTZOID:
|
|
return DatumGetTimestampTz(value);
|
|
case ABSTIMEOID:
|
|
return DatumGetTimestamp(DirectFunctionCall1(abstime_timestamp,
|
|
value));
|
|
case DATEOID:
|
|
return DatumGetTimestamp(DirectFunctionCall1(date_timestamp,
|
|
value));
|
|
case INTERVALOID:
|
|
{
|
|
Interval *interval = DatumGetIntervalP(value);
|
|
|
|
/*
|
|
* Convert the month part of Interval to days using
|
|
* assumed average month length of 365.25/12.0 days. Not
|
|
* too accurate, but plenty good enough for our purposes.
|
|
*/
|
|
return interval->time +
|
|
interval->month * (365.25 / 12.0 * 24.0 * 60.0 * 60.0);
|
|
}
|
|
case RELTIMEOID:
|
|
return DatumGetRelativeTime(value);
|
|
case TINTERVALOID:
|
|
{
|
|
TimeInterval interval = DatumGetTimeInterval(value);
|
|
|
|
if (interval->status != 0)
|
|
return interval->data[1] - interval->data[0];
|
|
return 0; /* for lack of a better idea */
|
|
}
|
|
case TIMEOID:
|
|
return DatumGetTimeADT(value);
|
|
case TIMETZOID:
|
|
{
|
|
TimeTzADT *timetz = DatumGetTimeTzADTP(value);
|
|
|
|
/* use GMT-equivalent time */
|
|
return (double) (timetz->time + timetz->zone);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Can't get here unless someone tries to use scalarltsel/scalargtsel
|
|
* on an operator with one timevalue and one non-timevalue operand.
|
|
*/
|
|
elog(ERROR, "convert_timevalue_to_scalar: unsupported type %u", typid);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* get_att_numdistinct
|
|
* Estimate the number of distinct values of an attribute.
|
|
*
|
|
* var: identifies the attribute to examine.
|
|
* stats: pg_statistic tuple for attribute, or NULL if not available.
|
|
*
|
|
* NB: be careful to produce an integral result, since callers may compare
|
|
* the result to exact integer counts.
|
|
*/
|
|
static double
|
|
get_att_numdistinct(Query *root, Var *var, Form_pg_statistic stats)
|
|
{
|
|
RelOptInfo *rel;
|
|
double ntuples;
|
|
|
|
/*
|
|
* Special-case boolean columns: presumably, two distinct values.
|
|
*
|
|
* Are there any other cases we should wire in special estimates for?
|
|
*/
|
|
if (var->vartype == BOOLOID)
|
|
return 2.0;
|
|
|
|
/*
|
|
* Otherwise we need to get the relation size.
|
|
*/
|
|
rel = find_base_rel(root, var->varno);
|
|
ntuples = rel->tuples;
|
|
|
|
if (ntuples <= 0.0)
|
|
return DEFAULT_NUM_DISTINCT; /* no data available; return a
|
|
* default */
|
|
|
|
/*
|
|
* Look to see if there is a unique index on the attribute. If so, we
|
|
* assume it's distinct, ignoring pg_statistic info which could be out
|
|
* of date.
|
|
*/
|
|
if (has_unique_index(rel, var->varattno))
|
|
return ntuples;
|
|
|
|
/*
|
|
* If ANALYZE determined a fixed or scaled estimate, use it.
|
|
*/
|
|
if (stats)
|
|
{
|
|
if (stats->stadistinct > 0.0)
|
|
return stats->stadistinct;
|
|
if (stats->stadistinct < 0.0)
|
|
return floor((-stats->stadistinct * ntuples) + 0.5);
|
|
}
|
|
|
|
/*
|
|
* ANALYZE does not compute stats for system attributes, but some of
|
|
* them can reasonably be assumed unique anyway.
|
|
*/
|
|
switch (var->varattno)
|
|
{
|
|
case ObjectIdAttributeNumber:
|
|
case SelfItemPointerAttributeNumber:
|
|
return ntuples;
|
|
case TableOidAttributeNumber:
|
|
return 1.0;
|
|
}
|
|
|
|
/*
|
|
* Estimate ndistinct = ntuples if the table is small, else use
|
|
* default.
|
|
*/
|
|
if (ntuples < DEFAULT_NUM_DISTINCT)
|
|
return ntuples;
|
|
|
|
return DEFAULT_NUM_DISTINCT;
|
|
}
|
|
|
|
/*
|
|
* get_restriction_var
|
|
* Examine the args of a restriction clause to see if it's of the
|
|
* form (var op something) or (something op var). If so, extract
|
|
* and return the var and the other argument.
|
|
*
|
|
* Inputs:
|
|
* args: clause argument list
|
|
* varRelid: see specs for restriction selectivity functions
|
|
*
|
|
* Outputs: (these are set only if TRUE is returned)
|
|
* *var: gets Var node
|
|
* *other: gets other clause argument
|
|
* *varonleft: set TRUE if var is on the left, FALSE if on the right
|
|
*
|
|
* Returns TRUE if a Var is identified, otherwise FALSE.
|
|
*/
|
|
static bool
|
|
get_restriction_var(List *args,
|
|
int varRelid,
|
|
Var **var,
|
|
Node **other,
|
|
bool *varonleft)
|
|
{
|
|
Node *left,
|
|
*right;
|
|
|
|
if (length(args) != 2)
|
|
return false;
|
|
|
|
left = (Node *) lfirst(args);
|
|
right = (Node *) lsecond(args);
|
|
|
|
/* Ignore any binary-compatible relabeling */
|
|
|
|
if (IsA(left, RelabelType))
|
|
left = ((RelabelType *) left)->arg;
|
|
if (IsA(right, RelabelType))
|
|
right = ((RelabelType *) right)->arg;
|
|
|
|
/* Look for the var */
|
|
|
|
if (IsA(left, Var) &&
|
|
(varRelid == 0 || varRelid == ((Var *) left)->varno))
|
|
{
|
|
*var = (Var *) left;
|
|
*other = right;
|
|
*varonleft = true;
|
|
}
|
|
else if (IsA(right, Var) &&
|
|
(varRelid == 0 || varRelid == ((Var *) right)->varno))
|
|
{
|
|
*var = (Var *) right;
|
|
*other = left;
|
|
*varonleft = false;
|
|
}
|
|
else
|
|
{
|
|
/* Duh, it's too complicated for me... */
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* get_join_vars
|
|
*
|
|
* Extract the two Vars from a join clause's argument list. Returns
|
|
* NULL for arguments that are not simple vars.
|
|
*/
|
|
static void
|
|
get_join_vars(List *args, Var **var1, Var **var2)
|
|
{
|
|
Node *left,
|
|
*right;
|
|
|
|
if (length(args) != 2)
|
|
{
|
|
*var1 = NULL;
|
|
*var2 = NULL;
|
|
return;
|
|
}
|
|
|
|
left = (Node *) lfirst(args);
|
|
right = (Node *) lsecond(args);
|
|
|
|
/* Ignore any binary-compatible relabeling */
|
|
if (IsA(left, RelabelType))
|
|
left = ((RelabelType *) left)->arg;
|
|
if (IsA(right, RelabelType))
|
|
right = ((RelabelType *) right)->arg;
|
|
|
|
if (IsA(left, Var))
|
|
*var1 = (Var *) left;
|
|
else
|
|
*var1 = NULL;
|
|
|
|
if (IsA(right, Var))
|
|
*var2 = (Var *) right;
|
|
else
|
|
*var2 = NULL;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
*
|
|
* Pattern analysis functions
|
|
*
|
|
* These routines support analysis of LIKE and regular-expression patterns
|
|
* by the planner/optimizer. It's important that they agree with the
|
|
* regular-expression code in backend/regex/ and the LIKE code in
|
|
* backend/utils/adt/like.c.
|
|
*
|
|
* Note that the prefix-analysis functions are called from
|
|
* backend/optimizer/path/indxpath.c as well as from routines in this file.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* Extract the fixed prefix, if any, for a pattern.
|
|
* *prefix is set to a palloc'd prefix string,
|
|
* or to NULL if no fixed prefix exists for the pattern.
|
|
* *rest is set to point to the remainder of the pattern after the
|
|
* portion describing the fixed prefix.
|
|
* The return value distinguishes no fixed prefix, a partial prefix,
|
|
* or an exact-match-only pattern.
|
|
*/
|
|
|
|
static Pattern_Prefix_Status
|
|
like_fixed_prefix(char *patt, bool case_insensitive,
|
|
char **prefix, char **rest)
|
|
{
|
|
char *match;
|
|
int pos,
|
|
match_pos;
|
|
|
|
*prefix = match = palloc(strlen(patt) + 1);
|
|
match_pos = 0;
|
|
|
|
for (pos = 0; patt[pos]; pos++)
|
|
{
|
|
/* % and _ are wildcard characters in LIKE */
|
|
if (patt[pos] == '%' ||
|
|
patt[pos] == '_')
|
|
break;
|
|
/* Backslash quotes the next character */
|
|
if (patt[pos] == '\\')
|
|
{
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX I suspect isalpha() is not an adequately locale-sensitive
|
|
* test for characters that can vary under case folding?
|
|
*/
|
|
if (case_insensitive && isalpha((unsigned char) patt[pos]))
|
|
break;
|
|
|
|
/*
|
|
* NOTE: this code used to think that %% meant a literal %, but
|
|
* textlike() itself does not think that, and the SQL92 spec
|
|
* doesn't say any such thing either.
|
|
*/
|
|
match[match_pos++] = patt[pos];
|
|
}
|
|
|
|
match[match_pos] = '\0';
|
|
*rest = &patt[pos];
|
|
|
|
/* in LIKE, an empty pattern is an exact match! */
|
|
if (patt[pos] == '\0')
|
|
return Pattern_Prefix_Exact; /* reached end of pattern, so
|
|
* exact */
|
|
|
|
if (match_pos > 0)
|
|
return Pattern_Prefix_Partial;
|
|
|
|
pfree(match);
|
|
*prefix = NULL;
|
|
return Pattern_Prefix_None;
|
|
}
|
|
|
|
static Pattern_Prefix_Status
|
|
regex_fixed_prefix(char *patt, bool case_insensitive,
|
|
char **prefix, char **rest)
|
|
{
|
|
char *match;
|
|
int pos,
|
|
match_pos,
|
|
paren_depth;
|
|
|
|
/* Pattern must be anchored left */
|
|
if (patt[0] != '^')
|
|
{
|
|
*prefix = NULL;
|
|
*rest = patt;
|
|
return Pattern_Prefix_None;
|
|
}
|
|
|
|
/*
|
|
* If unquoted | is present at paren level 0 in pattern, then there
|
|
* are multiple alternatives for the start of the string.
|
|
*/
|
|
paren_depth = 0;
|
|
for (pos = 1; patt[pos]; pos++)
|
|
{
|
|
if (patt[pos] == '|' && paren_depth == 0)
|
|
{
|
|
*prefix = NULL;
|
|
*rest = patt;
|
|
return Pattern_Prefix_None;
|
|
}
|
|
else if (patt[pos] == '(')
|
|
paren_depth++;
|
|
else if (patt[pos] == ')' && paren_depth > 0)
|
|
paren_depth--;
|
|
else if (patt[pos] == '\\')
|
|
{
|
|
/* backslash quotes the next character */
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* OK, allocate space for pattern */
|
|
*prefix = match = palloc(strlen(patt) + 1);
|
|
match_pos = 0;
|
|
|
|
/* note start at pos 1 to skip leading ^ */
|
|
for (pos = 1; patt[pos]; pos++)
|
|
{
|
|
/*
|
|
* Check for characters that indicate multiple possible matches
|
|
* here. XXX I suspect isalpha() is not an adequately
|
|
* locale-sensitive test for characters that can vary under case
|
|
* folding?
|
|
*/
|
|
if (patt[pos] == '.' ||
|
|
patt[pos] == '(' ||
|
|
patt[pos] == '[' ||
|
|
patt[pos] == '$' ||
|
|
(case_insensitive && isalpha((unsigned char) patt[pos])))
|
|
break;
|
|
|
|
/*
|
|
* Check for quantifiers. Except for +, this means the preceding
|
|
* character is optional, so we must remove it from the prefix
|
|
* too!
|
|
*/
|
|
if (patt[pos] == '*' ||
|
|
patt[pos] == '?' ||
|
|
patt[pos] == '{')
|
|
{
|
|
if (match_pos > 0)
|
|
match_pos--;
|
|
pos--;
|
|
break;
|
|
}
|
|
if (patt[pos] == '+')
|
|
{
|
|
pos--;
|
|
break;
|
|
}
|
|
if (patt[pos] == '\\')
|
|
{
|
|
/* backslash quotes the next character */
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
match[match_pos++] = patt[pos];
|
|
}
|
|
|
|
match[match_pos] = '\0';
|
|
*rest = &patt[pos];
|
|
|
|
if (patt[pos] == '$' && patt[pos + 1] == '\0')
|
|
{
|
|
*rest = &patt[pos + 1];
|
|
return Pattern_Prefix_Exact; /* pattern specifies exact match */
|
|
}
|
|
|
|
if (match_pos > 0)
|
|
return Pattern_Prefix_Partial;
|
|
|
|
pfree(match);
|
|
*prefix = NULL;
|
|
return Pattern_Prefix_None;
|
|
}
|
|
|
|
Pattern_Prefix_Status
|
|
pattern_fixed_prefix(char *patt, Pattern_Type ptype,
|
|
char **prefix, char **rest)
|
|
{
|
|
Pattern_Prefix_Status result;
|
|
|
|
switch (ptype)
|
|
{
|
|
case Pattern_Type_Like:
|
|
result = like_fixed_prefix(patt, false, prefix, rest);
|
|
break;
|
|
case Pattern_Type_Like_IC:
|
|
result = like_fixed_prefix(patt, true, prefix, rest);
|
|
break;
|
|
case Pattern_Type_Regex:
|
|
result = regex_fixed_prefix(patt, false, prefix, rest);
|
|
break;
|
|
case Pattern_Type_Regex_IC:
|
|
result = regex_fixed_prefix(patt, true, prefix, rest);
|
|
break;
|
|
default:
|
|
elog(ERROR, "pattern_fixed_prefix: bogus ptype");
|
|
result = Pattern_Prefix_None; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Estimate the selectivity of a fixed prefix for a pattern match.
|
|
*
|
|
* A fixed prefix "foo" is estimated as the selectivity of the expression
|
|
* "var >= 'foo' AND var < 'fop'" (see also indxqual.c).
|
|
*
|
|
* XXX Note: we make use of the upper bound to estimate operator selectivity
|
|
* even if the locale is such that we cannot rely on the upper-bound string.
|
|
* The selectivity only needs to be approximately right anyway, so it seems
|
|
* more useful to use the upper-bound code than not.
|
|
*/
|
|
static Selectivity
|
|
prefix_selectivity(Query *root, Var *var, char *prefix)
|
|
{
|
|
Selectivity prefixsel;
|
|
Oid cmpopr;
|
|
Const *prefixcon;
|
|
List *cmpargs;
|
|
char *greaterstr;
|
|
|
|
cmpopr = find_operator(">=", var->vartype);
|
|
if (cmpopr == InvalidOid)
|
|
elog(ERROR, "prefix_selectivity: no >= operator for type %u",
|
|
var->vartype);
|
|
prefixcon = string_to_const(prefix, var->vartype);
|
|
cmpargs = makeList2(var, prefixcon);
|
|
/* Assume scalargtsel is appropriate for all supported types */
|
|
prefixsel = DatumGetFloat8(DirectFunctionCall4(scalargtsel,
|
|
PointerGetDatum(root),
|
|
ObjectIdGetDatum(cmpopr),
|
|
PointerGetDatum(cmpargs),
|
|
Int32GetDatum(0)));
|
|
|
|
/*-------
|
|
* If we can create a string larger than the prefix, say
|
|
* "x < greaterstr".
|
|
*-------
|
|
*/
|
|
greaterstr = make_greater_string(prefix, var->vartype);
|
|
if (greaterstr)
|
|
{
|
|
Selectivity topsel;
|
|
|
|
cmpopr = find_operator("<", var->vartype);
|
|
if (cmpopr == InvalidOid)
|
|
elog(ERROR, "prefix_selectivity: no < operator for type %u",
|
|
var->vartype);
|
|
prefixcon = string_to_const(greaterstr, var->vartype);
|
|
cmpargs = makeList2(var, prefixcon);
|
|
/* Assume scalarltsel is appropriate for all supported types */
|
|
topsel = DatumGetFloat8(DirectFunctionCall4(scalarltsel,
|
|
PointerGetDatum(root),
|
|
ObjectIdGetDatum(cmpopr),
|
|
PointerGetDatum(cmpargs),
|
|
Int32GetDatum(0)));
|
|
|
|
/*
|
|
* Merge the two selectivities in the same way as for a range
|
|
* query (see clauselist_selectivity()).
|
|
*/
|
|
prefixsel = topsel + prefixsel - 1.0;
|
|
|
|
/*
|
|
* A zero or slightly negative prefixsel should be converted into
|
|
* a small positive value; we probably are dealing with a very
|
|
* tight range and got a bogus result due to roundoff errors.
|
|
* However, if prefixsel is very negative, then we probably have
|
|
* default selectivity estimates on one or both sides of the
|
|
* range. In that case, insert a not-so-wildly-optimistic default
|
|
* estimate.
|
|
*/
|
|
if (prefixsel <= 0.0)
|
|
{
|
|
if (prefixsel < -0.01)
|
|
{
|
|
/*
|
|
* No data available --- use a default estimate that is
|
|
* small, but not real small.
|
|
*/
|
|
prefixsel = 0.005;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* It's just roundoff error; use a small positive value
|
|
*/
|
|
prefixsel = 1.0e-10;
|
|
}
|
|
}
|
|
}
|
|
|
|
return prefixsel;
|
|
}
|
|
|
|
|
|
/*
|
|
* Estimate the selectivity of a pattern of the specified type.
|
|
* Note that any fixed prefix of the pattern will have been removed already.
|
|
*
|
|
* For now, we use a very simplistic approach: fixed characters reduce the
|
|
* selectivity a good deal, character ranges reduce it a little,
|
|
* wildcards (such as % for LIKE or .* for regex) increase it.
|
|
*/
|
|
|
|
#define FIXED_CHAR_SEL 0.04 /* about 1/25 */
|
|
#define CHAR_RANGE_SEL 0.25
|
|
#define ANY_CHAR_SEL 0.9 /* not 1, since it won't match
|
|
* end-of-string */
|
|
#define FULL_WILDCARD_SEL 5.0
|
|
#define PARTIAL_WILDCARD_SEL 2.0
|
|
|
|
static Selectivity
|
|
like_selectivity(char *patt, bool case_insensitive)
|
|
{
|
|
Selectivity sel = 1.0;
|
|
int pos;
|
|
|
|
/* Skip any leading %; it's already factored into initial sel */
|
|
pos = (*patt == '%') ? 1 : 0;
|
|
for (; patt[pos]; pos++)
|
|
{
|
|
/* % and _ are wildcard characters in LIKE */
|
|
if (patt[pos] == '%')
|
|
sel *= FULL_WILDCARD_SEL;
|
|
else if (patt[pos] == '_')
|
|
sel *= ANY_CHAR_SEL;
|
|
else if (patt[pos] == '\\')
|
|
{
|
|
/* Backslash quotes the next character */
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
else
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
/* Could get sel > 1 if multiple wildcards */
|
|
if (sel > 1.0)
|
|
sel = 1.0;
|
|
return sel;
|
|
}
|
|
|
|
static Selectivity
|
|
regex_selectivity_sub(char *patt, int pattlen, bool case_insensitive)
|
|
{
|
|
Selectivity sel = 1.0;
|
|
int paren_depth = 0;
|
|
int paren_pos = 0; /* dummy init to keep compiler quiet */
|
|
int pos;
|
|
|
|
for (pos = 0; pos < pattlen; pos++)
|
|
{
|
|
if (patt[pos] == '(')
|
|
{
|
|
if (paren_depth == 0)
|
|
paren_pos = pos; /* remember start of parenthesized item */
|
|
paren_depth++;
|
|
}
|
|
else if (patt[pos] == ')' && paren_depth > 0)
|
|
{
|
|
paren_depth--;
|
|
if (paren_depth == 0)
|
|
sel *= regex_selectivity_sub(patt + (paren_pos + 1),
|
|
pos - (paren_pos + 1),
|
|
case_insensitive);
|
|
}
|
|
else if (patt[pos] == '|' && paren_depth == 0)
|
|
{
|
|
/*
|
|
* If unquoted | is present at paren level 0 in pattern, we
|
|
* have multiple alternatives; sum their probabilities.
|
|
*/
|
|
sel += regex_selectivity_sub(patt + (pos + 1),
|
|
pattlen - (pos + 1),
|
|
case_insensitive);
|
|
break; /* rest of pattern is now processed */
|
|
}
|
|
else if (patt[pos] == '[')
|
|
{
|
|
bool negclass = false;
|
|
|
|
if (patt[++pos] == '^')
|
|
{
|
|
negclass = true;
|
|
pos++;
|
|
}
|
|
if (patt[pos] == ']') /* ']' at start of class is not
|
|
* special */
|
|
pos++;
|
|
while (pos < pattlen && patt[pos] != ']')
|
|
pos++;
|
|
if (paren_depth == 0)
|
|
sel *= (negclass ? (1.0 - CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
|
|
}
|
|
else if (patt[pos] == '.')
|
|
{
|
|
if (paren_depth == 0)
|
|
sel *= ANY_CHAR_SEL;
|
|
}
|
|
else if (patt[pos] == '*' ||
|
|
patt[pos] == '?' ||
|
|
patt[pos] == '+')
|
|
{
|
|
/* Ought to be smarter about quantifiers... */
|
|
if (paren_depth == 0)
|
|
sel *= PARTIAL_WILDCARD_SEL;
|
|
}
|
|
else if (patt[pos] == '{')
|
|
{
|
|
while (pos < pattlen && patt[pos] != '}')
|
|
pos++;
|
|
if (paren_depth == 0)
|
|
sel *= PARTIAL_WILDCARD_SEL;
|
|
}
|
|
else if (patt[pos] == '\\')
|
|
{
|
|
/* backslash quotes the next character */
|
|
pos++;
|
|
if (pos >= pattlen)
|
|
break;
|
|
if (paren_depth == 0)
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
else
|
|
{
|
|
if (paren_depth == 0)
|
|
sel *= FIXED_CHAR_SEL;
|
|
}
|
|
}
|
|
/* Could get sel > 1 if multiple wildcards */
|
|
if (sel > 1.0)
|
|
sel = 1.0;
|
|
return sel;
|
|
}
|
|
|
|
static Selectivity
|
|
regex_selectivity(char *patt, bool case_insensitive)
|
|
{
|
|
Selectivity sel;
|
|
int pattlen = strlen(patt);
|
|
|
|
/* If patt doesn't end with $, consider it to have a trailing wildcard */
|
|
if (pattlen > 0 && patt[pattlen - 1] == '$' &&
|
|
(pattlen == 1 || patt[pattlen - 2] != '\\'))
|
|
{
|
|
/* has trailing $ */
|
|
sel = regex_selectivity_sub(patt, pattlen - 1, case_insensitive);
|
|
}
|
|
else
|
|
{
|
|
/* no trailing $ */
|
|
sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
|
|
sel *= FULL_WILDCARD_SEL;
|
|
if (sel > 1.0)
|
|
sel = 1.0;
|
|
}
|
|
return sel;
|
|
}
|
|
|
|
static Selectivity
|
|
pattern_selectivity(char *patt, Pattern_Type ptype)
|
|
{
|
|
Selectivity result;
|
|
|
|
switch (ptype)
|
|
{
|
|
case Pattern_Type_Like:
|
|
result = like_selectivity(patt, false);
|
|
break;
|
|
case Pattern_Type_Like_IC:
|
|
result = like_selectivity(patt, true);
|
|
break;
|
|
case Pattern_Type_Regex:
|
|
result = regex_selectivity(patt, false);
|
|
break;
|
|
case Pattern_Type_Regex_IC:
|
|
result = regex_selectivity(patt, true);
|
|
break;
|
|
default:
|
|
elog(ERROR, "pattern_selectivity: bogus ptype");
|
|
result = 1.0; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Test whether the database's LOCALE setting is safe for LIKE/regexp index
|
|
* optimization. The key requirement here is that given a prefix string,
|
|
* say "foo", we must be able to generate another string "fop" that is
|
|
* greater than all strings "foobar" starting with "foo". Unfortunately,
|
|
* many non-C locales have bizarre collation rules in which "fop" > "foo"
|
|
* is not sufficient to ensure "fop" > "foobar". Until we can come up
|
|
* with a more bulletproof way of generating the upper-bound string,
|
|
* disable the optimization in locales where it is not known to be safe.
|
|
*/
|
|
bool
|
|
locale_is_like_safe(void)
|
|
{
|
|
#ifdef USE_LOCALE
|
|
/* Cache result so we only have to compute it once */
|
|
static int result = -1;
|
|
char *localeptr;
|
|
|
|
if (result >= 0)
|
|
return (bool) result;
|
|
localeptr = setlocale(LC_COLLATE, NULL);
|
|
if (!localeptr)
|
|
elog(PANIC, "Invalid LC_COLLATE setting");
|
|
|
|
/*
|
|
* Currently we accept only "C" and "POSIX" (do any systems still
|
|
* return "POSIX"?). Which other locales allow safe optimization?
|
|
*/
|
|
if (strcmp(localeptr, "C") == 0)
|
|
result = true;
|
|
else if (strcmp(localeptr, "POSIX") == 0)
|
|
result = true;
|
|
else
|
|
result = false;
|
|
return (bool) result;
|
|
#else /* not USE_LOCALE */
|
|
return true; /* We must be in C locale, which is OK */
|
|
#endif /* USE_LOCALE */
|
|
}
|
|
|
|
/*
|
|
* Try to generate a string greater than the given string or any string it is
|
|
* a prefix of. If successful, return a palloc'd string; else return NULL.
|
|
*
|
|
* To work correctly in non-ASCII locales with weird collation orders,
|
|
* we cannot simply increment "foo" to "fop" --- we have to check whether
|
|
* we actually produced a string greater than the given one. If not,
|
|
* increment the righthand byte again and repeat. If we max out the righthand
|
|
* byte, truncate off the last character and start incrementing the next.
|
|
* For example, if "z" were the last character in the sort order, then we
|
|
* could produce "foo" as a string greater than "fonz".
|
|
*
|
|
* This could be rather slow in the worst case, but in most cases we won't
|
|
* have to try more than one or two strings before succeeding.
|
|
*
|
|
* XXX this is actually not sufficient, since it only copes with the case
|
|
* where individual characters collate in an order different from their
|
|
* numeric code assignments. It does not handle cases where there are
|
|
* cross-character effects, such as specially sorted digraphs, multiple
|
|
* sort passes, etc. For now, we just shut down the whole thing in locales
|
|
* that do such things :-(
|
|
*/
|
|
char *
|
|
make_greater_string(const char *str, Oid datatype)
|
|
{
|
|
char *workstr;
|
|
int len;
|
|
|
|
/*
|
|
* Make a modifiable copy, which will be our return value if
|
|
* successful
|
|
*/
|
|
workstr = pstrdup((char *) str);
|
|
|
|
while ((len = strlen(workstr)) > 0)
|
|
{
|
|
unsigned char *lastchar = (unsigned char *) (workstr + len - 1);
|
|
|
|
/*
|
|
* Try to generate a larger string by incrementing the last byte.
|
|
*/
|
|
while (*lastchar < (unsigned char) 255)
|
|
{
|
|
(*lastchar)++;
|
|
if (string_lessthan(str, workstr, datatype))
|
|
return workstr; /* Success! */
|
|
}
|
|
|
|
/*
|
|
* Truncate off the last character, which might be more than 1
|
|
* byte in MULTIBYTE case.
|
|
*/
|
|
#ifdef MULTIBYTE
|
|
len = pg_mbcliplen((const unsigned char *) workstr, len, len - 1);
|
|
workstr[len] = '\0';
|
|
#else
|
|
*lastchar = '\0';
|
|
#endif
|
|
}
|
|
|
|
/* Failed... */
|
|
pfree(workstr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Test whether two strings are "<" according to the rules of the given
|
|
* datatype. We do this the hard way, ie, actually calling the type's
|
|
* "<" operator function, to ensure we get the right result...
|
|
*/
|
|
static bool
|
|
string_lessthan(const char *str1, const char *str2, Oid datatype)
|
|
{
|
|
Datum datum1 = string_to_datum(str1, datatype);
|
|
Datum datum2 = string_to_datum(str2, datatype);
|
|
bool result;
|
|
|
|
switch (datatype)
|
|
{
|
|
case TEXTOID:
|
|
result = DatumGetBool(DirectFunctionCall2(text_lt,
|
|
datum1, datum2));
|
|
break;
|
|
|
|
case BPCHAROID:
|
|
result = DatumGetBool(DirectFunctionCall2(bpcharlt,
|
|
datum1, datum2));
|
|
break;
|
|
|
|
case VARCHAROID:
|
|
result = DatumGetBool(DirectFunctionCall2(varcharlt,
|
|
datum1, datum2));
|
|
break;
|
|
|
|
case NAMEOID:
|
|
result = DatumGetBool(DirectFunctionCall2(namelt,
|
|
datum1, datum2));
|
|
break;
|
|
|
|
case BYTEAOID:
|
|
result = DatumGetBool(DirectFunctionCall2(bytealt,
|
|
datum1, datum2));
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "string_lessthan: unexpected datatype %u", datatype);
|
|
result = false;
|
|
break;
|
|
}
|
|
|
|
pfree(DatumGetPointer(datum1));
|
|
pfree(DatumGetPointer(datum2));
|
|
|
|
return result;
|
|
}
|
|
|
|
/* See if there is a binary op of the given name for the given datatype */
|
|
static Oid
|
|
find_operator(const char *opname, Oid datatype)
|
|
{
|
|
return GetSysCacheOid(OPERNAME,
|
|
PointerGetDatum(opname),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(datatype),
|
|
CharGetDatum('b'));
|
|
}
|
|
|
|
/*
|
|
* Generate a Datum of the appropriate type from a C string.
|
|
* Note that all of the supported types are pass-by-ref, so the
|
|
* returned value should be pfree'd if no longer needed.
|
|
*/
|
|
static Datum
|
|
string_to_datum(const char *str, Oid datatype)
|
|
{
|
|
/*
|
|
* We cheat a little by assuming that textin() will do for bpchar and
|
|
* varchar constants too...
|
|
*/
|
|
if (datatype == NAMEOID)
|
|
return DirectFunctionCall1(namein, CStringGetDatum(str));
|
|
else
|
|
return DirectFunctionCall1(textin, CStringGetDatum(str));
|
|
}
|
|
|
|
/*
|
|
* Generate a Const node of the appropriate type from a C string.
|
|
*/
|
|
static Const *
|
|
string_to_const(const char *str, Oid datatype)
|
|
{
|
|
Datum conval = string_to_datum(str, datatype);
|
|
|
|
return makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
|
|
conval, false, false, false, false);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
*
|
|
* Index cost estimation functions
|
|
*
|
|
* genericcostestimate is a general-purpose estimator for use when we
|
|
* don't have any better idea about how to estimate. Index-type-specific
|
|
* knowledge can be incorporated in the type-specific routines.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
static void
|
|
genericcostestimate(Query *root, RelOptInfo *rel,
|
|
IndexOptInfo *index, List *indexQuals,
|
|
Cost *indexStartupCost,
|
|
Cost *indexTotalCost,
|
|
Selectivity *indexSelectivity,
|
|
double *indexCorrelation)
|
|
{
|
|
double numIndexTuples;
|
|
double numIndexPages;
|
|
List *selectivityQuals = indexQuals;
|
|
|
|
/*
|
|
* If the index is partial, AND the index predicate with the
|
|
* explicitly given indexquals to produce a more accurate idea of the
|
|
* index restriction. This may produce redundant clauses, which we
|
|
* hope that cnfify and clauselist_selectivity will deal with
|
|
* intelligently.
|
|
*
|
|
* Note that index->indpred and indexQuals are both in implicit-AND form
|
|
* to start with, which we have to make explicit to hand to
|
|
* canonicalize_qual, and then we get back implicit-AND form again.
|
|
*/
|
|
if (index->indpred != NIL)
|
|
{
|
|
Expr *andedQuals;
|
|
|
|
andedQuals = make_ands_explicit(nconc(listCopy(index->indpred),
|
|
indexQuals));
|
|
selectivityQuals = canonicalize_qual(andedQuals, true);
|
|
}
|
|
|
|
/* Estimate the fraction of main-table tuples that will be visited */
|
|
*indexSelectivity = clauselist_selectivity(root, selectivityQuals,
|
|
lfirsti(rel->relids));
|
|
|
|
/*
|
|
* Estimate the number of tuples that will be visited. We do it in
|
|
* this rather peculiar-looking way in order to get the right answer
|
|
* for partial indexes. We can bound the number of tuples by the
|
|
* index size, in any case.
|
|
*/
|
|
numIndexTuples = *indexSelectivity * rel->tuples;
|
|
|
|
if (numIndexTuples > index->tuples)
|
|
numIndexTuples = index->tuples;
|
|
|
|
/*
|
|
* Always estimate at least one tuple is touched, even when
|
|
* indexSelectivity estimate is tiny.
|
|
*/
|
|
if (numIndexTuples < 1.0)
|
|
numIndexTuples = 1.0;
|
|
|
|
/*
|
|
* Estimate the number of index pages that will be retrieved.
|
|
*
|
|
* For all currently-supported index types, the first page of the index
|
|
* is a metadata page, and we should figure on fetching that plus a
|
|
* pro-rated fraction of the remaining pages.
|
|
*/
|
|
if (index->pages > 1 && index->tuples > 0)
|
|
{
|
|
numIndexPages = (numIndexTuples / index->tuples) * (index->pages - 1);
|
|
numIndexPages += 1; /* count the metapage too */
|
|
numIndexPages = ceil(numIndexPages);
|
|
}
|
|
else
|
|
numIndexPages = 1.0;
|
|
|
|
/*
|
|
* Compute the index access cost.
|
|
*
|
|
* Our generic assumption is that the index pages will be read
|
|
* sequentially, so they have cost 1.0 each, not random_page_cost.
|
|
* Also, we charge for evaluation of the indexquals at each index
|
|
* tuple. All the costs are assumed to be paid incrementally during
|
|
* the scan.
|
|
*/
|
|
*indexStartupCost = 0;
|
|
*indexTotalCost = numIndexPages +
|
|
(cpu_index_tuple_cost + cost_qual_eval(indexQuals)) * numIndexTuples;
|
|
|
|
/*
|
|
* Generic assumption about index correlation: there isn't any.
|
|
*/
|
|
*indexCorrelation = 0.0;
|
|
}
|
|
|
|
|
|
Datum
|
|
btcostestimate(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
|
|
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
|
|
List *indexQuals = (List *) PG_GETARG_POINTER(3);
|
|
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
|
|
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
|
|
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
|
|
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
|
|
|
|
genericcostestimate(root, rel, index, indexQuals,
|
|
indexStartupCost, indexTotalCost,
|
|
indexSelectivity, indexCorrelation);
|
|
|
|
/*
|
|
* If it's a functional index, leave the default zero-correlation
|
|
* estimate in place. If not, and if we can get an estimate for the
|
|
* first variable's ordering correlation C from pg_statistic, estimate
|
|
* the index correlation as C / number-of-columns. (The idea here is
|
|
* that multiple columns dilute the importance of the first column's
|
|
* ordering, but don't negate it entirely.)
|
|
*/
|
|
if (index->indproc == InvalidOid)
|
|
{
|
|
Oid relid;
|
|
HeapTuple tuple;
|
|
|
|
relid = getrelid(lfirsti(rel->relids), root->rtable);
|
|
Assert(relid != InvalidOid);
|
|
tuple = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(index->indexkeys[0]),
|
|
0, 0);
|
|
if (HeapTupleIsValid(tuple))
|
|
{
|
|
Oid typid;
|
|
int32 typmod;
|
|
float4 *numbers;
|
|
int nnumbers;
|
|
|
|
get_atttypetypmod(relid, index->indexkeys[0],
|
|
&typid, &typmod);
|
|
if (get_attstatsslot(tuple, typid, typmod,
|
|
STATISTIC_KIND_CORRELATION,
|
|
index->ordering[0],
|
|
NULL, NULL, &numbers, &nnumbers))
|
|
{
|
|
double varCorrelation;
|
|
int nKeys;
|
|
|
|
Assert(nnumbers == 1);
|
|
varCorrelation = numbers[0];
|
|
for (nKeys = 1; index->indexkeys[nKeys] != 0; nKeys++)
|
|
/* skip */ ;
|
|
|
|
*indexCorrelation = varCorrelation / nKeys;
|
|
|
|
free_attstatsslot(typid, NULL, 0, numbers, nnumbers);
|
|
}
|
|
ReleaseSysCache(tuple);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
rtcostestimate(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
|
|
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
|
|
List *indexQuals = (List *) PG_GETARG_POINTER(3);
|
|
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
|
|
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
|
|
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
|
|
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
|
|
|
|
genericcostestimate(root, rel, index, indexQuals,
|
|
indexStartupCost, indexTotalCost,
|
|
indexSelectivity, indexCorrelation);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
hashcostestimate(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
|
|
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
|
|
List *indexQuals = (List *) PG_GETARG_POINTER(3);
|
|
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
|
|
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
|
|
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
|
|
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
|
|
|
|
genericcostestimate(root, rel, index, indexQuals,
|
|
indexStartupCost, indexTotalCost,
|
|
indexSelectivity, indexCorrelation);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
gistcostestimate(PG_FUNCTION_ARGS)
|
|
{
|
|
Query *root = (Query *) PG_GETARG_POINTER(0);
|
|
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
|
|
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
|
|
List *indexQuals = (List *) PG_GETARG_POINTER(3);
|
|
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
|
|
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
|
|
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
|
|
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
|
|
|
|
genericcostestimate(root, rel, index, indexQuals,
|
|
indexStartupCost, indexTotalCost,
|
|
indexSelectivity, indexCorrelation);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|