
and heap_deformtuple in favor of the newer functions heap_form_tuple et al (which do the same things but use bool control flags instead of arbitrary char values). Eliminate the former duplicate coding of these functions, reducing the deprecated functions to mere wrappers around the newer ones. We can't get rid of them entirely because add-on modules probably still contain many instances of the old coding style. Kris Jurka
1255 lines
34 KiB
C
1255 lines
34 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execTuples.c
|
|
* Routines dealing with the executor tuple tables. These are used to
|
|
* ensure that the executor frees copies of tuples (made by
|
|
* ExecTargetList) properly.
|
|
*
|
|
* Routines dealing with the type information for tuples. Currently,
|
|
* the type information for a tuple is an array of FormData_pg_attribute.
|
|
* This information is needed by routines manipulating tuples
|
|
* (getattribute, formtuple, etc.).
|
|
*
|
|
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/execTuples.c,v 1.104 2008/11/02 01:45:28 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
*
|
|
* TABLE CREATE/DELETE
|
|
* ExecCreateTupleTable - create a new tuple table
|
|
* ExecDropTupleTable - destroy a table
|
|
* MakeSingleTupleTableSlot - make a single-slot table
|
|
* ExecDropSingleTupleTableSlot - destroy same
|
|
*
|
|
* SLOT RESERVATION
|
|
* ExecAllocTableSlot - find an available slot in the table
|
|
*
|
|
* SLOT ACCESSORS
|
|
* ExecSetSlotDescriptor - set a slot's tuple descriptor
|
|
* ExecStoreTuple - store a physical tuple in the slot
|
|
* ExecStoreMinimalTuple - store a minimal physical tuple in the slot
|
|
* ExecClearTuple - clear contents of a slot
|
|
* ExecStoreVirtualTuple - mark slot as containing a virtual tuple
|
|
* ExecCopySlotTuple - build a physical tuple from a slot
|
|
* ExecCopySlotMinimalTuple - build a minimal physical tuple from a slot
|
|
* ExecMaterializeSlot - convert virtual to physical storage
|
|
* ExecCopySlot - copy one slot's contents to another
|
|
*
|
|
* CONVENIENCE INITIALIZATION ROUTINES
|
|
* ExecInitResultTupleSlot \ convenience routines to initialize
|
|
* ExecInitScanTupleSlot \ the various tuple slots for nodes
|
|
* ExecInitExtraTupleSlot / which store copies of tuples.
|
|
* ExecInitNullTupleSlot /
|
|
*
|
|
* Routines that probably belong somewhere else:
|
|
* ExecTypeFromTL - form a TupleDesc from a target list
|
|
*
|
|
* EXAMPLE OF HOW TABLE ROUTINES WORK
|
|
* Suppose we have a query such as SELECT emp.name FROM emp and we have
|
|
* a single SeqScan node in the query plan.
|
|
*
|
|
* At ExecutorStart()
|
|
* ----------------
|
|
* - InitPlan() calls ExecCreateTupleTable() to create the tuple
|
|
* table which will hold tuples processed by the executor.
|
|
*
|
|
* - ExecInitSeqScan() calls ExecInitScanTupleSlot() and
|
|
* ExecInitResultTupleSlot() to reserve places in the tuple
|
|
* table for the tuples returned by the access methods and the
|
|
* tuples resulting from performing target list projections.
|
|
*
|
|
* During ExecutorRun()
|
|
* ----------------
|
|
* - SeqNext() calls ExecStoreTuple() to place the tuple returned
|
|
* by the access methods into the scan tuple slot.
|
|
*
|
|
* - ExecSeqScan() calls ExecStoreTuple() to take the result
|
|
* tuple from ExecProject() and place it into the result tuple slot.
|
|
*
|
|
* - ExecutePlan() calls ExecSelect(), which passes the result slot
|
|
* to printtup(), which uses slot_getallattrs() to extract the
|
|
* individual Datums for printing.
|
|
*
|
|
* At ExecutorEnd()
|
|
* ----------------
|
|
* - EndPlan() calls ExecDropTupleTable() to clean up any remaining
|
|
* tuples left over from executing the query.
|
|
*
|
|
* The important thing to watch in the executor code is how pointers
|
|
* to the slots containing tuples are passed instead of the tuples
|
|
* themselves. This facilitates the communication of related information
|
|
* (such as whether or not a tuple should be pfreed, what buffer contains
|
|
* this tuple, the tuple's tuple descriptor, etc). It also allows us
|
|
* to avoid physically constructing projection tuples in many cases.
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "funcapi.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "storage/bufmgr.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/typcache.h"
|
|
|
|
|
|
static TupleDesc ExecTypeFromTLInternal(List *targetList,
|
|
bool hasoid, bool skipjunk);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* tuple table create/delete functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* --------------------------------
|
|
* ExecCreateTupleTable
|
|
*
|
|
* This creates a new tuple table of the specified size.
|
|
*
|
|
* This should be used by InitPlan() to allocate the table.
|
|
* The table's address will be stored in the EState structure.
|
|
* --------------------------------
|
|
*/
|
|
TupleTable
|
|
ExecCreateTupleTable(int tableSize)
|
|
{
|
|
TupleTable newtable;
|
|
int i;
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(tableSize >= 1);
|
|
|
|
/*
|
|
* allocate the table itself
|
|
*/
|
|
newtable = (TupleTable) palloc(sizeof(TupleTableData) +
|
|
(tableSize - 1) *sizeof(TupleTableSlot));
|
|
newtable->size = tableSize;
|
|
newtable->next = 0;
|
|
|
|
/*
|
|
* initialize all the slots to empty states
|
|
*/
|
|
for (i = 0; i < tableSize; i++)
|
|
{
|
|
TupleTableSlot *slot = &(newtable->array[i]);
|
|
|
|
slot->type = T_TupleTableSlot;
|
|
slot->tts_isempty = true;
|
|
slot->tts_shouldFree = false;
|
|
slot->tts_tuple = NULL;
|
|
slot->tts_tupleDescriptor = NULL;
|
|
slot->tts_mcxt = CurrentMemoryContext;
|
|
slot->tts_buffer = InvalidBuffer;
|
|
slot->tts_nvalid = 0;
|
|
slot->tts_values = NULL;
|
|
slot->tts_isnull = NULL;
|
|
slot->tts_mintuple = NULL;
|
|
}
|
|
|
|
return newtable;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecDropTupleTable
|
|
*
|
|
* This frees the storage used by the tuple table itself
|
|
* and optionally frees the contents of the table also.
|
|
* It is expected that this routine be called by EndPlan().
|
|
* --------------------------------
|
|
*/
|
|
void
|
|
ExecDropTupleTable(TupleTable table, /* tuple table */
|
|
bool shouldFree) /* true if we should free slot
|
|
* contents */
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(table != NULL);
|
|
|
|
/*
|
|
* first free all the valid pointers in the tuple array and drop refcounts
|
|
* of any referenced buffers, if that's what the caller wants. (There is
|
|
* probably no good reason for the caller ever not to want it!)
|
|
*/
|
|
if (shouldFree)
|
|
{
|
|
int next = table->next;
|
|
int i;
|
|
|
|
for (i = 0; i < next; i++)
|
|
{
|
|
TupleTableSlot *slot = &(table->array[i]);
|
|
|
|
ExecClearTuple(slot);
|
|
if (slot->tts_tupleDescriptor)
|
|
ReleaseTupleDesc(slot->tts_tupleDescriptor);
|
|
if (slot->tts_values)
|
|
pfree(slot->tts_values);
|
|
if (slot->tts_isnull)
|
|
pfree(slot->tts_isnull);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* finally free the tuple table itself.
|
|
*/
|
|
pfree(table);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* MakeSingleTupleTableSlot
|
|
*
|
|
* This is a convenience routine for operations that need a
|
|
* standalone TupleTableSlot not gotten from the main executor
|
|
* tuple table. It makes a single slot and initializes it as
|
|
* though by ExecSetSlotDescriptor(slot, tupdesc).
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
MakeSingleTupleTableSlot(TupleDesc tupdesc)
|
|
{
|
|
TupleTableSlot *slot = makeNode(TupleTableSlot);
|
|
|
|
/* This should match ExecCreateTupleTable() */
|
|
slot->tts_isempty = true;
|
|
slot->tts_shouldFree = false;
|
|
slot->tts_tuple = NULL;
|
|
slot->tts_tupleDescriptor = NULL;
|
|
slot->tts_mcxt = CurrentMemoryContext;
|
|
slot->tts_buffer = InvalidBuffer;
|
|
slot->tts_nvalid = 0;
|
|
slot->tts_values = NULL;
|
|
slot->tts_isnull = NULL;
|
|
slot->tts_mintuple = NULL;
|
|
|
|
ExecSetSlotDescriptor(slot, tupdesc);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecDropSingleTupleTableSlot
|
|
*
|
|
* Release a TupleTableSlot made with MakeSingleTupleTableSlot.
|
|
* --------------------------------
|
|
*/
|
|
void
|
|
ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
|
|
ExecClearTuple(slot);
|
|
if (slot->tts_tupleDescriptor)
|
|
ReleaseTupleDesc(slot->tts_tupleDescriptor);
|
|
if (slot->tts_values)
|
|
pfree(slot->tts_values);
|
|
if (slot->tts_isnull)
|
|
pfree(slot->tts_isnull);
|
|
|
|
pfree(slot);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* tuple table slot reservation functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* --------------------------------
|
|
* ExecAllocTableSlot
|
|
*
|
|
* This routine is used to reserve slots in the table for
|
|
* use by the various plan nodes. It is expected to be
|
|
* called by the node init routines (ex: ExecInitNestLoop)
|
|
* once per slot needed by the node. Not all nodes need
|
|
* slots (some just pass tuples around).
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecAllocTableSlot(TupleTable table)
|
|
{
|
|
int slotnum; /* new slot number */
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(table != NULL);
|
|
|
|
/*
|
|
* We expect that the table was made big enough to begin with. We cannot
|
|
* reallocate it on the fly since previous plan nodes have already got
|
|
* pointers to individual entries.
|
|
*/
|
|
if (table->next >= table->size)
|
|
elog(ERROR, "plan requires more slots than are available");
|
|
|
|
slotnum = table->next;
|
|
table->next++;
|
|
|
|
return &(table->array[slotnum]);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* tuple table slot accessor functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* --------------------------------
|
|
* ExecSetSlotDescriptor
|
|
*
|
|
* This function is used to set the tuple descriptor associated
|
|
* with the slot's tuple. The passed descriptor must have lifespan
|
|
* at least equal to the slot's. If it is a reference-counted descriptor
|
|
* then the reference count is incremented for as long as the slot holds
|
|
* a reference.
|
|
* --------------------------------
|
|
*/
|
|
void
|
|
ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
|
|
TupleDesc tupdesc) /* new tuple descriptor */
|
|
{
|
|
/* For safety, make sure slot is empty before changing it */
|
|
ExecClearTuple(slot);
|
|
|
|
/*
|
|
* Release any old descriptor. Also release old Datum/isnull arrays if
|
|
* present (we don't bother to check if they could be re-used).
|
|
*/
|
|
if (slot->tts_tupleDescriptor)
|
|
ReleaseTupleDesc(slot->tts_tupleDescriptor);
|
|
|
|
if (slot->tts_values)
|
|
pfree(slot->tts_values);
|
|
if (slot->tts_isnull)
|
|
pfree(slot->tts_isnull);
|
|
|
|
/*
|
|
* Install the new descriptor; if it's refcounted, bump its refcount.
|
|
*/
|
|
slot->tts_tupleDescriptor = tupdesc;
|
|
PinTupleDesc(tupdesc);
|
|
|
|
/*
|
|
* Allocate Datum/isnull arrays of the appropriate size. These must have
|
|
* the same lifetime as the slot, so allocate in the slot's own context.
|
|
*/
|
|
slot->tts_values = (Datum *)
|
|
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
|
|
slot->tts_isnull = (bool *)
|
|
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecStoreTuple
|
|
*
|
|
* This function is used to store a physical tuple into a specified
|
|
* slot in the tuple table.
|
|
*
|
|
* tuple: tuple to store
|
|
* slot: slot to store it in
|
|
* buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
|
|
* shouldFree: true if ExecClearTuple should pfree() the tuple
|
|
* when done with it
|
|
*
|
|
* If 'buffer' is not InvalidBuffer, the tuple table code acquires a pin
|
|
* on the buffer which is held until the slot is cleared, so that the tuple
|
|
* won't go away on us.
|
|
*
|
|
* shouldFree is normally set 'true' for tuples constructed on-the-fly.
|
|
* It must always be 'false' for tuples that are stored in disk pages,
|
|
* since we don't want to try to pfree those.
|
|
*
|
|
* Another case where it is 'false' is when the referenced tuple is held
|
|
* in a tuple table slot belonging to a lower-level executor Proc node.
|
|
* In this case the lower-level slot retains ownership and responsibility
|
|
* for eventually releasing the tuple. When this method is used, we must
|
|
* be certain that the upper-level Proc node will lose interest in the tuple
|
|
* sooner than the lower-level one does! If you're not certain, copy the
|
|
* lower-level tuple with heap_copytuple and let the upper-level table
|
|
* slot assume ownership of the copy!
|
|
*
|
|
* Return value is just the passed-in slot pointer.
|
|
*
|
|
* NOTE: before PostgreSQL 8.1, this function would accept a NULL tuple
|
|
* pointer and effectively behave like ExecClearTuple (though you could
|
|
* still specify a buffer to pin, which would be an odd combination).
|
|
* This saved a couple lines of code in a few places, but seemed more likely
|
|
* to mask logic errors than to be really useful, so it's now disallowed.
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecStoreTuple(HeapTuple tuple,
|
|
TupleTableSlot *slot,
|
|
Buffer buffer,
|
|
bool shouldFree)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(tuple != NULL);
|
|
Assert(slot != NULL);
|
|
Assert(slot->tts_tupleDescriptor != NULL);
|
|
/* passing shouldFree=true for a tuple on a disk page is not sane */
|
|
Assert(BufferIsValid(buffer) ? (!shouldFree) : true);
|
|
|
|
/*
|
|
* Free any old physical tuple belonging to the slot.
|
|
*/
|
|
if (slot->tts_shouldFree)
|
|
{
|
|
if (slot->tts_mintuple)
|
|
heap_free_minimal_tuple(slot->tts_mintuple);
|
|
else
|
|
heap_freetuple(slot->tts_tuple);
|
|
}
|
|
|
|
/*
|
|
* Store the new tuple into the specified slot.
|
|
*/
|
|
slot->tts_isempty = false;
|
|
slot->tts_shouldFree = shouldFree;
|
|
slot->tts_tuple = tuple;
|
|
slot->tts_mintuple = NULL;
|
|
|
|
/* Mark extracted state invalid */
|
|
slot->tts_nvalid = 0;
|
|
|
|
/*
|
|
* If tuple is on a disk page, keep the page pinned as long as we hold a
|
|
* pointer into it. We assume the caller already has such a pin.
|
|
*
|
|
* This is coded to optimize the case where the slot previously held a
|
|
* tuple on the same disk page: in that case releasing and re-acquiring
|
|
* the pin is a waste of cycles. This is a common situation during
|
|
* seqscans, so it's worth troubling over.
|
|
*/
|
|
if (slot->tts_buffer != buffer)
|
|
{
|
|
if (BufferIsValid(slot->tts_buffer))
|
|
ReleaseBuffer(slot->tts_buffer);
|
|
slot->tts_buffer = buffer;
|
|
if (BufferIsValid(buffer))
|
|
IncrBufferRefCount(buffer);
|
|
}
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecStoreMinimalTuple
|
|
*
|
|
* Like ExecStoreTuple, but insert a "minimal" tuple into the slot.
|
|
*
|
|
* No 'buffer' parameter since minimal tuples are never stored in relations.
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecStoreMinimalTuple(MinimalTuple mtup,
|
|
TupleTableSlot *slot,
|
|
bool shouldFree)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(mtup != NULL);
|
|
Assert(slot != NULL);
|
|
Assert(slot->tts_tupleDescriptor != NULL);
|
|
|
|
/*
|
|
* Free any old physical tuple belonging to the slot.
|
|
*/
|
|
if (slot->tts_shouldFree)
|
|
{
|
|
if (slot->tts_mintuple)
|
|
heap_free_minimal_tuple(slot->tts_mintuple);
|
|
else
|
|
heap_freetuple(slot->tts_tuple);
|
|
}
|
|
|
|
/*
|
|
* Drop the pin on the referenced buffer, if there is one.
|
|
*/
|
|
if (BufferIsValid(slot->tts_buffer))
|
|
ReleaseBuffer(slot->tts_buffer);
|
|
|
|
slot->tts_buffer = InvalidBuffer;
|
|
|
|
/*
|
|
* Store the new tuple into the specified slot.
|
|
*/
|
|
slot->tts_isempty = false;
|
|
slot->tts_shouldFree = shouldFree;
|
|
slot->tts_tuple = &slot->tts_minhdr;
|
|
slot->tts_mintuple = mtup;
|
|
|
|
slot->tts_minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
|
|
slot->tts_minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
|
|
/* no need to set t_self or t_tableOid since we won't allow access */
|
|
|
|
/* Mark extracted state invalid */
|
|
slot->tts_nvalid = 0;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecClearTuple
|
|
*
|
|
* This function is used to clear out a slot in the tuple table.
|
|
*
|
|
* NB: only the tuple is cleared, not the tuple descriptor (if any).
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot * /* return: slot passed */
|
|
ExecClearTuple(TupleTableSlot *slot) /* slot in which to store tuple */
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
|
|
/*
|
|
* Free the old physical tuple if necessary.
|
|
*/
|
|
if (slot->tts_shouldFree)
|
|
{
|
|
if (slot->tts_mintuple)
|
|
heap_free_minimal_tuple(slot->tts_mintuple);
|
|
else
|
|
heap_freetuple(slot->tts_tuple);
|
|
}
|
|
|
|
slot->tts_tuple = NULL;
|
|
slot->tts_mintuple = NULL;
|
|
slot->tts_shouldFree = false;
|
|
|
|
/*
|
|
* Drop the pin on the referenced buffer, if there is one.
|
|
*/
|
|
if (BufferIsValid(slot->tts_buffer))
|
|
ReleaseBuffer(slot->tts_buffer);
|
|
|
|
slot->tts_buffer = InvalidBuffer;
|
|
|
|
/*
|
|
* Mark it empty.
|
|
*/
|
|
slot->tts_isempty = true;
|
|
slot->tts_nvalid = 0;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecStoreVirtualTuple
|
|
* Mark a slot as containing a virtual tuple.
|
|
*
|
|
* The protocol for loading a slot with virtual tuple data is:
|
|
* * Call ExecClearTuple to mark the slot empty.
|
|
* * Store data into the Datum/isnull arrays.
|
|
* * Call ExecStoreVirtualTuple to mark the slot valid.
|
|
* This is a bit unclean but it avoids one round of data copying.
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecStoreVirtualTuple(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(slot->tts_tupleDescriptor != NULL);
|
|
Assert(slot->tts_isempty);
|
|
|
|
slot->tts_isempty = false;
|
|
slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecStoreAllNullTuple
|
|
* Set up the slot to contain a null in every column.
|
|
*
|
|
* At first glance this might sound just like ExecClearTuple, but it's
|
|
* entirely different: the slot ends up full, not empty.
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecStoreAllNullTuple(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(slot->tts_tupleDescriptor != NULL);
|
|
|
|
/* Clear any old contents */
|
|
ExecClearTuple(slot);
|
|
|
|
/*
|
|
* Fill all the columns of the virtual tuple with nulls
|
|
*/
|
|
MemSet(slot->tts_values, 0,
|
|
slot->tts_tupleDescriptor->natts * sizeof(Datum));
|
|
memset(slot->tts_isnull, true,
|
|
slot->tts_tupleDescriptor->natts * sizeof(bool));
|
|
|
|
return ExecStoreVirtualTuple(slot);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecCopySlotTuple
|
|
* Obtain a copy of a slot's regular physical tuple. The copy is
|
|
* palloc'd in the current memory context.
|
|
*
|
|
* This works even if the slot contains a virtual or minimal tuple;
|
|
* however the "system columns" of the result will not be meaningful.
|
|
* --------------------------------
|
|
*/
|
|
HeapTuple
|
|
ExecCopySlotTuple(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(!slot->tts_isempty);
|
|
|
|
/*
|
|
* If we have a physical tuple then just copy it.
|
|
*/
|
|
if (slot->tts_tuple)
|
|
{
|
|
if (slot->tts_mintuple)
|
|
return heap_tuple_from_minimal_tuple(slot->tts_mintuple);
|
|
else
|
|
return heap_copytuple(slot->tts_tuple);
|
|
}
|
|
|
|
/*
|
|
* Otherwise we need to build a tuple from the Datum array.
|
|
*/
|
|
return heap_form_tuple(slot->tts_tupleDescriptor,
|
|
slot->tts_values,
|
|
slot->tts_isnull);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecCopySlotMinimalTuple
|
|
* Obtain a copy of a slot's minimal physical tuple. The copy is
|
|
* palloc'd in the current memory context.
|
|
* --------------------------------
|
|
*/
|
|
MinimalTuple
|
|
ExecCopySlotMinimalTuple(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(!slot->tts_isempty);
|
|
|
|
/*
|
|
* If we have a physical tuple then just copy it.
|
|
*/
|
|
if (slot->tts_tuple)
|
|
{
|
|
if (slot->tts_mintuple)
|
|
return heap_copy_minimal_tuple(slot->tts_mintuple);
|
|
else
|
|
return minimal_tuple_from_heap_tuple(slot->tts_tuple);
|
|
}
|
|
|
|
/*
|
|
* Otherwise we need to build a tuple from the Datum array.
|
|
*/
|
|
return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
|
|
slot->tts_values,
|
|
slot->tts_isnull);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecFetchSlotTuple
|
|
* Fetch the slot's regular physical tuple.
|
|
*
|
|
* If the slot contains a virtual tuple, we convert it to physical
|
|
* form. The slot retains ownership of the physical tuple.
|
|
* Likewise, if it contains a minimal tuple we convert to regular form.
|
|
*
|
|
* The difference between this and ExecMaterializeSlot() is that this
|
|
* does not guarantee that the contained tuple is local storage.
|
|
* Hence, the result must be treated as read-only.
|
|
* --------------------------------
|
|
*/
|
|
HeapTuple
|
|
ExecFetchSlotTuple(TupleTableSlot *slot)
|
|
{
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(!slot->tts_isempty);
|
|
|
|
/*
|
|
* If we have a regular physical tuple then just return it.
|
|
*/
|
|
if (slot->tts_tuple && slot->tts_mintuple == NULL)
|
|
return slot->tts_tuple;
|
|
|
|
/*
|
|
* Otherwise materialize the slot...
|
|
*/
|
|
return ExecMaterializeSlot(slot);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecFetchSlotMinimalTuple
|
|
* Fetch the slot's minimal physical tuple.
|
|
*
|
|
* If the slot contains a virtual tuple, we convert it to minimal
|
|
* physical form. The slot retains ownership of the physical tuple.
|
|
* Likewise, if it contains a regular tuple we convert to minimal form.
|
|
*
|
|
* As above, the result must be treated as read-only.
|
|
* --------------------------------
|
|
*/
|
|
MinimalTuple
|
|
ExecFetchSlotMinimalTuple(TupleTableSlot *slot)
|
|
{
|
|
MinimalTuple newTuple;
|
|
MemoryContext oldContext;
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(!slot->tts_isempty);
|
|
|
|
/*
|
|
* If we have a minimal physical tuple then just return it.
|
|
*/
|
|
if (slot->tts_mintuple)
|
|
return slot->tts_mintuple;
|
|
|
|
/*
|
|
* Otherwise, build a minimal tuple, and then store it as the new slot
|
|
* value. (Note: tts_nvalid will be reset to zero here. There are cases
|
|
* in which this could be optimized but it's probably not worth worrying
|
|
* about.)
|
|
*
|
|
* We may be called in a context that is shorter-lived than the tuple
|
|
* slot, but we have to ensure that the materialized tuple will survive
|
|
* anyway.
|
|
*/
|
|
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
|
|
newTuple = ExecCopySlotMinimalTuple(slot);
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
ExecStoreMinimalTuple(newTuple, slot, true);
|
|
|
|
Assert(slot->tts_mintuple);
|
|
return slot->tts_mintuple;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecFetchSlotTupleDatum
|
|
* Fetch the slot's tuple as a composite-type Datum.
|
|
*
|
|
* We convert the slot's contents to local physical-tuple form,
|
|
* and fill in the Datum header fields. Note that the result
|
|
* always points to storage owned by the slot.
|
|
* --------------------------------
|
|
*/
|
|
Datum
|
|
ExecFetchSlotTupleDatum(TupleTableSlot *slot)
|
|
{
|
|
HeapTuple tup;
|
|
HeapTupleHeader td;
|
|
TupleDesc tupdesc;
|
|
|
|
/* Make sure we can scribble on the slot contents ... */
|
|
tup = ExecMaterializeSlot(slot);
|
|
/* ... and set up the composite-Datum header fields, in case not done */
|
|
td = tup->t_data;
|
|
tupdesc = slot->tts_tupleDescriptor;
|
|
HeapTupleHeaderSetDatumLength(td, tup->t_len);
|
|
HeapTupleHeaderSetTypeId(td, tupdesc->tdtypeid);
|
|
HeapTupleHeaderSetTypMod(td, tupdesc->tdtypmod);
|
|
return PointerGetDatum(td);
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecMaterializeSlot
|
|
* Force a slot into the "materialized" state.
|
|
*
|
|
* This causes the slot's tuple to be a local copy not dependent on
|
|
* any external storage. A pointer to the contained tuple is returned.
|
|
*
|
|
* A typical use for this operation is to prepare a computed tuple
|
|
* for being stored on disk. The original data may or may not be
|
|
* virtual, but in any case we need a private copy for heap_insert
|
|
* to scribble on.
|
|
* --------------------------------
|
|
*/
|
|
HeapTuple
|
|
ExecMaterializeSlot(TupleTableSlot *slot)
|
|
{
|
|
HeapTuple newTuple;
|
|
MemoryContext oldContext;
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(slot != NULL);
|
|
Assert(!slot->tts_isempty);
|
|
|
|
/*
|
|
* If we have a regular physical tuple, and it's locally palloc'd, we have
|
|
* nothing to do.
|
|
*/
|
|
if (slot->tts_tuple && slot->tts_shouldFree && slot->tts_mintuple == NULL)
|
|
return slot->tts_tuple;
|
|
|
|
/*
|
|
* Otherwise, copy or build a tuple, and then store it as the new slot
|
|
* value. (Note: tts_nvalid will be reset to zero here. There are cases
|
|
* in which this could be optimized but it's probably not worth worrying
|
|
* about.)
|
|
*
|
|
* We may be called in a context that is shorter-lived than the tuple
|
|
* slot, but we have to ensure that the materialized tuple will survive
|
|
* anyway.
|
|
*/
|
|
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
|
|
newTuple = ExecCopySlotTuple(slot);
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
ExecStoreTuple(newTuple, slot, InvalidBuffer, true);
|
|
|
|
return slot->tts_tuple;
|
|
}
|
|
|
|
/* --------------------------------
|
|
* ExecCopySlot
|
|
* Copy the source slot's contents into the destination slot.
|
|
*
|
|
* The destination acquires a private copy that will not go away
|
|
* if the source is cleared.
|
|
*
|
|
* The caller must ensure the slots have compatible tupdescs.
|
|
* --------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
|
|
{
|
|
HeapTuple newTuple;
|
|
MemoryContext oldContext;
|
|
|
|
/*
|
|
* There might be ways to optimize this when the source is virtual, but
|
|
* for now just always build a physical copy. Make sure it is in the
|
|
* right context.
|
|
*/
|
|
oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
|
|
newTuple = ExecCopySlotTuple(srcslot);
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
return ExecStoreTuple(newTuple, dstslot, InvalidBuffer, true);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* convenience initialization routines
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* --------------------------------
|
|
* ExecInit{Result,Scan,Extra}TupleSlot
|
|
*
|
|
* These are convenience routines to initialize the specified slot
|
|
* in nodes inheriting the appropriate state. ExecInitExtraTupleSlot
|
|
* is used for initializing special-purpose slots.
|
|
* --------------------------------
|
|
*/
|
|
|
|
/* ----------------
|
|
* ExecInitResultTupleSlot
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecInitResultTupleSlot(EState *estate, PlanState *planstate)
|
|
{
|
|
planstate->ps_ResultTupleSlot = ExecAllocTableSlot(estate->es_tupleTable);
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecInitScanTupleSlot
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecInitScanTupleSlot(EState *estate, ScanState *scanstate)
|
|
{
|
|
scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(estate->es_tupleTable);
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecInitExtraTupleSlot
|
|
* ----------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecInitExtraTupleSlot(EState *estate)
|
|
{
|
|
return ExecAllocTableSlot(estate->es_tupleTable);
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecInitNullTupleSlot
|
|
*
|
|
* Build a slot containing an all-nulls tuple of the given type.
|
|
* This is used as a substitute for an input tuple when performing an
|
|
* outer join.
|
|
* ----------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecInitNullTupleSlot(EState *estate, TupleDesc tupType)
|
|
{
|
|
TupleTableSlot *slot = ExecInitExtraTupleSlot(estate);
|
|
|
|
ExecSetSlotDescriptor(slot, tupType);
|
|
|
|
return ExecStoreAllNullTuple(slot);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecTypeFromTL
|
|
*
|
|
* Generate a tuple descriptor for the result tuple of a targetlist.
|
|
* (A parse/plan tlist must be passed, not an ExprState tlist.)
|
|
* Note that resjunk columns, if any, are included in the result.
|
|
*
|
|
* Currently there are about 4 different places where we create
|
|
* TupleDescriptors. They should all be merged, or perhaps
|
|
* be rewritten to call BuildDesc().
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleDesc
|
|
ExecTypeFromTL(List *targetList, bool hasoid)
|
|
{
|
|
return ExecTypeFromTLInternal(targetList, hasoid, false);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecCleanTypeFromTL
|
|
*
|
|
* Same as above, but resjunk columns are omitted from the result.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleDesc
|
|
ExecCleanTypeFromTL(List *targetList, bool hasoid)
|
|
{
|
|
return ExecTypeFromTLInternal(targetList, hasoid, true);
|
|
}
|
|
|
|
static TupleDesc
|
|
ExecTypeFromTLInternal(List *targetList, bool hasoid, bool skipjunk)
|
|
{
|
|
TupleDesc typeInfo;
|
|
ListCell *l;
|
|
int len;
|
|
int cur_resno = 1;
|
|
|
|
if (skipjunk)
|
|
len = ExecCleanTargetListLength(targetList);
|
|
else
|
|
len = ExecTargetListLength(targetList);
|
|
typeInfo = CreateTemplateTupleDesc(len, hasoid);
|
|
|
|
foreach(l, targetList)
|
|
{
|
|
TargetEntry *tle = lfirst(l);
|
|
|
|
if (skipjunk && tle->resjunk)
|
|
continue;
|
|
TupleDescInitEntry(typeInfo,
|
|
cur_resno++,
|
|
tle->resname,
|
|
exprType((Node *) tle->expr),
|
|
exprTypmod((Node *) tle->expr),
|
|
0);
|
|
}
|
|
|
|
return typeInfo;
|
|
}
|
|
|
|
/*
|
|
* ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
|
|
*
|
|
* Here we must make up an arbitrary set of field names.
|
|
*/
|
|
TupleDesc
|
|
ExecTypeFromExprList(List *exprList)
|
|
{
|
|
TupleDesc typeInfo;
|
|
ListCell *l;
|
|
int cur_resno = 1;
|
|
char fldname[NAMEDATALEN];
|
|
|
|
typeInfo = CreateTemplateTupleDesc(list_length(exprList), false);
|
|
|
|
foreach(l, exprList)
|
|
{
|
|
Node *e = lfirst(l);
|
|
|
|
sprintf(fldname, "f%d", cur_resno);
|
|
|
|
TupleDescInitEntry(typeInfo,
|
|
cur_resno++,
|
|
fldname,
|
|
exprType(e),
|
|
exprTypmod(e),
|
|
0);
|
|
}
|
|
|
|
return typeInfo;
|
|
}
|
|
|
|
/*
|
|
* BlessTupleDesc - make a completed tuple descriptor useful for SRFs
|
|
*
|
|
* Rowtype Datums returned by a function must contain valid type information.
|
|
* This happens "for free" if the tupdesc came from a relcache entry, but
|
|
* not if we have manufactured a tupdesc for a transient RECORD datatype.
|
|
* In that case we have to notify typcache.c of the existence of the type.
|
|
*/
|
|
TupleDesc
|
|
BlessTupleDesc(TupleDesc tupdesc)
|
|
{
|
|
if (tupdesc->tdtypeid == RECORDOID &&
|
|
tupdesc->tdtypmod < 0)
|
|
assign_record_type_typmod(tupdesc);
|
|
|
|
return tupdesc; /* just for notational convenience */
|
|
}
|
|
|
|
/*
|
|
* TupleDescGetSlot - Initialize a slot based on the supplied tupledesc
|
|
*
|
|
* Note: this is obsolete; it is sufficient to call BlessTupleDesc on
|
|
* the tupdesc. We keep it around just for backwards compatibility with
|
|
* existing user-written SRFs.
|
|
*/
|
|
TupleTableSlot *
|
|
TupleDescGetSlot(TupleDesc tupdesc)
|
|
{
|
|
TupleTableSlot *slot;
|
|
|
|
/* The useful work is here */
|
|
BlessTupleDesc(tupdesc);
|
|
|
|
/* Make a standalone slot */
|
|
slot = MakeSingleTupleTableSlot(tupdesc);
|
|
|
|
/* Return the slot */
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
|
|
* supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
|
|
* to produce a properly formed tuple.
|
|
*/
|
|
AttInMetadata *
|
|
TupleDescGetAttInMetadata(TupleDesc tupdesc)
|
|
{
|
|
int natts = tupdesc->natts;
|
|
int i;
|
|
Oid atttypeid;
|
|
Oid attinfuncid;
|
|
FmgrInfo *attinfuncinfo;
|
|
Oid *attioparams;
|
|
int32 *atttypmods;
|
|
AttInMetadata *attinmeta;
|
|
|
|
attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
|
|
|
|
/* "Bless" the tupledesc so that we can make rowtype datums with it */
|
|
attinmeta->tupdesc = BlessTupleDesc(tupdesc);
|
|
|
|
/*
|
|
* Gather info needed later to call the "in" function for each attribute
|
|
*/
|
|
attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
|
|
attioparams = (Oid *) palloc0(natts * sizeof(Oid));
|
|
atttypmods = (int32 *) palloc0(natts * sizeof(int32));
|
|
|
|
for (i = 0; i < natts; i++)
|
|
{
|
|
/* Ignore dropped attributes */
|
|
if (!tupdesc->attrs[i]->attisdropped)
|
|
{
|
|
atttypeid = tupdesc->attrs[i]->atttypid;
|
|
getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
|
|
fmgr_info(attinfuncid, &attinfuncinfo[i]);
|
|
atttypmods[i] = tupdesc->attrs[i]->atttypmod;
|
|
}
|
|
}
|
|
attinmeta->attinfuncs = attinfuncinfo;
|
|
attinmeta->attioparams = attioparams;
|
|
attinmeta->atttypmods = atttypmods;
|
|
|
|
return attinmeta;
|
|
}
|
|
|
|
/*
|
|
* BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
|
|
* values is an array of C strings, one for each attribute of the return tuple.
|
|
* A NULL string pointer indicates we want to create a NULL field.
|
|
*/
|
|
HeapTuple
|
|
BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
|
|
{
|
|
TupleDesc tupdesc = attinmeta->tupdesc;
|
|
int natts = tupdesc->natts;
|
|
Datum *dvalues;
|
|
bool *nulls;
|
|
int i;
|
|
HeapTuple tuple;
|
|
|
|
dvalues = (Datum *) palloc(natts * sizeof(Datum));
|
|
nulls = (bool *) palloc(natts * sizeof(bool));
|
|
|
|
/* Call the "in" function for each non-dropped attribute */
|
|
for (i = 0; i < natts; i++)
|
|
{
|
|
if (!tupdesc->attrs[i]->attisdropped)
|
|
{
|
|
/* Non-dropped attributes */
|
|
dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
|
|
values[i],
|
|
attinmeta->attioparams[i],
|
|
attinmeta->atttypmods[i]);
|
|
if (values[i] != NULL)
|
|
nulls[i] = false;
|
|
else
|
|
nulls[i] = true;
|
|
}
|
|
else
|
|
{
|
|
/* Handle dropped attributes by setting to NULL */
|
|
dvalues[i] = (Datum) 0;
|
|
nulls[i] = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Form a tuple
|
|
*/
|
|
tuple = heap_form_tuple(tupdesc, dvalues, nulls);
|
|
|
|
/*
|
|
* Release locally palloc'd space. XXX would probably be good to pfree
|
|
* values of pass-by-reference datums, as well.
|
|
*/
|
|
pfree(dvalues);
|
|
pfree(nulls);
|
|
|
|
return tuple;
|
|
}
|
|
|
|
/*
|
|
* Functions for sending tuples to the frontend (or other specified destination)
|
|
* as though it is a SELECT result. These are used by utility commands that
|
|
* need to project directly to the destination and don't need or want full
|
|
* Table Function capability. Currently used by EXPLAIN and SHOW ALL
|
|
*/
|
|
TupOutputState *
|
|
begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc)
|
|
{
|
|
TupOutputState *tstate;
|
|
|
|
tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
|
|
|
|
tstate->metadata = TupleDescGetAttInMetadata(tupdesc);
|
|
tstate->slot = MakeSingleTupleTableSlot(tupdesc);
|
|
tstate->dest = dest;
|
|
|
|
(*tstate->dest->rStartup) (tstate->dest, (int) CMD_SELECT, tupdesc);
|
|
|
|
return tstate;
|
|
}
|
|
|
|
/*
|
|
* write a single tuple
|
|
*
|
|
* values is a list of the external C string representations of the values
|
|
* to be projected.
|
|
*
|
|
* XXX This could be made more efficient, since in reality we probably only
|
|
* need a virtual tuple.
|
|
*/
|
|
void
|
|
do_tup_output(TupOutputState *tstate, char **values)
|
|
{
|
|
/* build a tuple from the input strings using the tupdesc */
|
|
HeapTuple tuple = BuildTupleFromCStrings(tstate->metadata, values);
|
|
|
|
/* put it in a slot */
|
|
ExecStoreTuple(tuple, tstate->slot, InvalidBuffer, true);
|
|
|
|
/* send the tuple to the receiver */
|
|
(*tstate->dest->receiveSlot) (tstate->slot, tstate->dest);
|
|
|
|
/* clean up */
|
|
ExecClearTuple(tstate->slot);
|
|
}
|
|
|
|
/*
|
|
* write a chunk of text, breaking at newline characters
|
|
*
|
|
* NB: scribbles on its input!
|
|
*
|
|
* Should only be used with a single-TEXT-attribute tupdesc.
|
|
*/
|
|
void
|
|
do_text_output_multiline(TupOutputState *tstate, char *text)
|
|
{
|
|
while (*text)
|
|
{
|
|
char *eol;
|
|
|
|
eol = strchr(text, '\n');
|
|
if (eol)
|
|
*eol++ = '\0';
|
|
else
|
|
eol = text +strlen(text);
|
|
|
|
do_tup_output(tstate, &text);
|
|
text = eol;
|
|
}
|
|
}
|
|
|
|
void
|
|
end_tup_output(TupOutputState *tstate)
|
|
{
|
|
(*tstate->dest->rShutdown) (tstate->dest);
|
|
/* note that destroying the dest is not ours to do */
|
|
ExecDropSingleTupleTableSlot(tstate->slot);
|
|
/* XXX worth cleaning up the attinmetadata? */
|
|
pfree(tstate);
|
|
}
|