
use that value when the backend is new enough to allow it. This responds to bug report from Keh-Cheng Chu pointing out that although 2 extra digits should be sufficient to dump and restore float8 exactly, it is possible to need 3 extra digits for float4 values.
5404 lines
118 KiB
C
5404 lines
118 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* geo_ops.c
|
|
* 2D geometric operations
|
|
*
|
|
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/utils/adt/geo_ops.c,v 1.105 2009/09/11 19:17:03 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <float.h>
|
|
#include <ctype.h>
|
|
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/geo_decls.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Internal routines
|
|
*/
|
|
|
|
static int point_inside(Point *p, int npts, Point *plist);
|
|
static int lseg_crossing(double x, double y, double px, double py);
|
|
static BOX *box_construct(double x1, double x2, double y1, double y2);
|
|
static BOX *box_copy(BOX *box);
|
|
static BOX *box_fill(BOX *result, double x1, double x2, double y1, double y2);
|
|
static bool box_ov(BOX *box1, BOX *box2);
|
|
static double box_ht(BOX *box);
|
|
static double box_wd(BOX *box);
|
|
static double circle_ar(CIRCLE *circle);
|
|
static CIRCLE *circle_copy(CIRCLE *circle);
|
|
static LINE *line_construct_pm(Point *pt, double m);
|
|
static void line_construct_pts(LINE *line, Point *pt1, Point *pt2);
|
|
static bool lseg_intersect_internal(LSEG *l1, LSEG *l2);
|
|
static double lseg_dt(LSEG *l1, LSEG *l2);
|
|
static bool on_ps_internal(Point *pt, LSEG *lseg);
|
|
static void make_bound_box(POLYGON *poly);
|
|
static bool plist_same(int npts, Point *p1, Point *p2);
|
|
static Point *point_construct(double x, double y);
|
|
static Point *point_copy(Point *pt);
|
|
static int single_decode(char *str, float8 *x, char **ss);
|
|
static int single_encode(float8 x, char *str);
|
|
static int pair_decode(char *str, float8 *x, float8 *y, char **s);
|
|
static int pair_encode(float8 x, float8 y, char *str);
|
|
static int pair_count(char *s, char delim);
|
|
static int path_decode(int opentype, int npts, char *str, int *isopen, char **ss, Point *p);
|
|
static char *path_encode(bool closed, int npts, Point *pt);
|
|
static void statlseg_construct(LSEG *lseg, Point *pt1, Point *pt2);
|
|
static double box_ar(BOX *box);
|
|
static void box_cn(Point *center, BOX *box);
|
|
static Point *interpt_sl(LSEG *lseg, LINE *line);
|
|
static bool has_interpt_sl(LSEG *lseg, LINE *line);
|
|
static double dist_pl_internal(Point *pt, LINE *line);
|
|
static double dist_ps_internal(Point *pt, LSEG *lseg);
|
|
static Point *line_interpt_internal(LINE *l1, LINE *l2);
|
|
static bool lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start);
|
|
static Point* lseg_interpt_internal(LSEG *l1, LSEG *l2);
|
|
|
|
|
|
/*
|
|
* Delimiters for input and output strings.
|
|
* LDELIM, RDELIM, and DELIM are left, right, and separator delimiters, respectively.
|
|
* LDELIM_EP, RDELIM_EP are left and right delimiters for paths with endpoints.
|
|
*/
|
|
|
|
#define LDELIM '('
|
|
#define RDELIM ')'
|
|
#define DELIM ','
|
|
#define LDELIM_EP '['
|
|
#define RDELIM_EP ']'
|
|
#define LDELIM_C '<'
|
|
#define RDELIM_C '>'
|
|
|
|
/* Maximum number of characters printed by pair_encode() */
|
|
/* ...+3+7 : 3 accounts for extra_float_digits max value */
|
|
#define P_MAXLEN (2*(DBL_DIG+3+7)+1)
|
|
|
|
|
|
/*
|
|
* Geometric data types are composed of points.
|
|
* This code tries to support a common format throughout the data types,
|
|
* to allow for more predictable usage and data type conversion.
|
|
* The fundamental unit is the point. Other units are line segments,
|
|
* open paths, boxes, closed paths, and polygons (which should be considered
|
|
* non-intersecting closed paths).
|
|
*
|
|
* Data representation is as follows:
|
|
* point: (x,y)
|
|
* line segment: [(x1,y1),(x2,y2)]
|
|
* box: (x1,y1),(x2,y2)
|
|
* open path: [(x1,y1),...,(xn,yn)]
|
|
* closed path: ((x1,y1),...,(xn,yn))
|
|
* polygon: ((x1,y1),...,(xn,yn))
|
|
*
|
|
* For boxes, the points are opposite corners with the first point at the top right.
|
|
* For closed paths and polygons, the points should be reordered to allow
|
|
* fast and correct equality comparisons.
|
|
*
|
|
* XXX perhaps points in complex shapes should be reordered internally
|
|
* to allow faster internal operations, but should keep track of input order
|
|
* and restore that order for text output - tgl 97/01/16
|
|
*/
|
|
|
|
static int
|
|
single_decode(char *str, float8 *x, char **s)
|
|
{
|
|
char *cp;
|
|
|
|
if (!PointerIsValid(str))
|
|
return FALSE;
|
|
|
|
while (isspace((unsigned char) *str))
|
|
str++;
|
|
*x = strtod(str, &cp);
|
|
#ifdef GEODEBUG
|
|
printf("single_decode- (%x) try decoding %s to %g\n", (cp - str), str, *x);
|
|
#endif
|
|
if (cp <= str)
|
|
return FALSE;
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
|
|
if (s != NULL)
|
|
*s = cp;
|
|
|
|
return TRUE;
|
|
} /* single_decode() */
|
|
|
|
static int
|
|
single_encode(float8 x, char *str)
|
|
{
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
sprintf(str, "%.*g", ndig, x);
|
|
return TRUE;
|
|
} /* single_encode() */
|
|
|
|
static int
|
|
pair_decode(char *str, float8 *x, float8 *y, char **s)
|
|
{
|
|
int has_delim;
|
|
char *cp;
|
|
|
|
if (!PointerIsValid(str))
|
|
return FALSE;
|
|
|
|
while (isspace((unsigned char) *str))
|
|
str++;
|
|
if ((has_delim = (*str == LDELIM)))
|
|
str++;
|
|
|
|
while (isspace((unsigned char) *str))
|
|
str++;
|
|
*x = strtod(str, &cp);
|
|
if (cp <= str)
|
|
return FALSE;
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
if (*cp++ != DELIM)
|
|
return FALSE;
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
*y = strtod(cp, &str);
|
|
if (str <= cp)
|
|
return FALSE;
|
|
while (isspace((unsigned char) *str))
|
|
str++;
|
|
if (has_delim)
|
|
{
|
|
if (*str != RDELIM)
|
|
return FALSE;
|
|
str++;
|
|
while (isspace((unsigned char) *str))
|
|
str++;
|
|
}
|
|
if (s != NULL)
|
|
*s = str;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
pair_encode(float8 x, float8 y, char *str)
|
|
{
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
sprintf(str, "%.*g,%.*g", ndig, x, ndig, y);
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
path_decode(int opentype, int npts, char *str, int *isopen, char **ss, Point *p)
|
|
{
|
|
int depth = 0;
|
|
char *s,
|
|
*cp;
|
|
int i;
|
|
|
|
s = str;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
if ((*isopen = (*s == LDELIM_EP)))
|
|
{
|
|
/* no open delimiter allowed? */
|
|
if (!opentype)
|
|
return FALSE;
|
|
depth++;
|
|
s++;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
|
|
}
|
|
else if (*s == LDELIM)
|
|
{
|
|
cp = (s + 1);
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
if (*cp == LDELIM)
|
|
{
|
|
#ifdef NOT_USED
|
|
/* nested delimiters with only one point? */
|
|
if (npts <= 1)
|
|
return FALSE;
|
|
#endif
|
|
depth++;
|
|
s = cp;
|
|
}
|
|
else if (strrchr(s, LDELIM) == s)
|
|
{
|
|
depth++;
|
|
s = cp;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
if (!pair_decode(s, &(p->x), &(p->y), &s))
|
|
return FALSE;
|
|
|
|
if (*s == DELIM)
|
|
s++;
|
|
p++;
|
|
}
|
|
|
|
while (depth > 0)
|
|
{
|
|
if ((*s == RDELIM)
|
|
|| ((*s == RDELIM_EP) && (*isopen) && (depth == 1)))
|
|
{
|
|
depth--;
|
|
s++;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
}
|
|
else
|
|
return FALSE;
|
|
}
|
|
*ss = s;
|
|
|
|
return TRUE;
|
|
} /* path_decode() */
|
|
|
|
static char *
|
|
path_encode(bool closed, int npts, Point *pt)
|
|
{
|
|
int size = npts * (P_MAXLEN + 3) + 2;
|
|
char *result;
|
|
char *cp;
|
|
int i;
|
|
|
|
/* Check for integer overflow */
|
|
if ((size - 2) / npts != (P_MAXLEN + 3))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("too many points requested")));
|
|
|
|
result = palloc(size);
|
|
|
|
cp = result;
|
|
switch (closed)
|
|
{
|
|
case TRUE:
|
|
*cp++ = LDELIM;
|
|
break;
|
|
case FALSE:
|
|
*cp++ = LDELIM_EP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
*cp++ = LDELIM;
|
|
if (!pair_encode(pt->x, pt->y, cp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("could not format \"path\" value")));
|
|
|
|
cp += strlen(cp);
|
|
*cp++ = RDELIM;
|
|
*cp++ = DELIM;
|
|
pt++;
|
|
}
|
|
cp--;
|
|
switch (closed)
|
|
{
|
|
case TRUE:
|
|
*cp++ = RDELIM;
|
|
break;
|
|
case FALSE:
|
|
*cp++ = RDELIM_EP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
*cp = '\0';
|
|
|
|
return result;
|
|
} /* path_encode() */
|
|
|
|
/*-------------------------------------------------------------
|
|
* pair_count - count the number of points
|
|
* allow the following notation:
|
|
* '((1,2),(3,4))'
|
|
* '(1,3,2,4)'
|
|
* require an odd number of delim characters in the string
|
|
*-------------------------------------------------------------*/
|
|
static int
|
|
pair_count(char *s, char delim)
|
|
{
|
|
int ndelim = 0;
|
|
|
|
while ((s = strchr(s, delim)) != NULL)
|
|
{
|
|
ndelim++;
|
|
s++;
|
|
}
|
|
return (ndelim % 2) ? ((ndelim + 1) / 2) : -1;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for two-dimensional boxes.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* Formatting and conversion routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* box_in - convert a string to internal form.
|
|
*
|
|
* External format: (two corners of box)
|
|
* "(f8, f8), (f8, f8)"
|
|
* also supports the older style "(f8, f8, f8, f8)"
|
|
*/
|
|
Datum
|
|
box_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
BOX *box = (BOX *) palloc(sizeof(BOX));
|
|
int isopen;
|
|
char *s;
|
|
double x,
|
|
y;
|
|
|
|
if ((!path_decode(FALSE, 2, str, &isopen, &s, &(box->high)))
|
|
|| (*s != '\0'))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type box: \"%s\"", str)));
|
|
|
|
/* reorder corners if necessary... */
|
|
if (box->high.x < box->low.x)
|
|
{
|
|
x = box->high.x;
|
|
box->high.x = box->low.x;
|
|
box->low.x = x;
|
|
}
|
|
if (box->high.y < box->low.y)
|
|
{
|
|
y = box->high.y;
|
|
box->high.y = box->low.y;
|
|
box->low.y = y;
|
|
}
|
|
|
|
PG_RETURN_BOX_P(box);
|
|
}
|
|
|
|
/* box_out - convert a box to external form.
|
|
*/
|
|
Datum
|
|
box_out(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
|
|
PG_RETURN_CSTRING(path_encode(-1, 2, &(box->high)));
|
|
}
|
|
|
|
/*
|
|
* box_recv - converts external binary format to box
|
|
*/
|
|
Datum
|
|
box_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
BOX *box;
|
|
double x,
|
|
y;
|
|
|
|
box = (BOX *) palloc(sizeof(BOX));
|
|
|
|
box->high.x = pq_getmsgfloat8(buf);
|
|
box->high.y = pq_getmsgfloat8(buf);
|
|
box->low.x = pq_getmsgfloat8(buf);
|
|
box->low.y = pq_getmsgfloat8(buf);
|
|
|
|
/* reorder corners if necessary... */
|
|
if (box->high.x < box->low.x)
|
|
{
|
|
x = box->high.x;
|
|
box->high.x = box->low.x;
|
|
box->low.x = x;
|
|
}
|
|
if (box->high.y < box->low.y)
|
|
{
|
|
y = box->high.y;
|
|
box->high.y = box->low.y;
|
|
box->low.y = y;
|
|
}
|
|
|
|
PG_RETURN_BOX_P(box);
|
|
}
|
|
|
|
/*
|
|
* box_send - converts box to binary format
|
|
*/
|
|
Datum
|
|
box_send(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, box->high.x);
|
|
pq_sendfloat8(&buf, box->high.y);
|
|
pq_sendfloat8(&buf, box->low.x);
|
|
pq_sendfloat8(&buf, box->low.y);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* box_construct - fill in a new box.
|
|
*/
|
|
static BOX *
|
|
box_construct(double x1, double x2, double y1, double y2)
|
|
{
|
|
BOX *result = (BOX *) palloc(sizeof(BOX));
|
|
|
|
return box_fill(result, x1, x2, y1, y2);
|
|
}
|
|
|
|
|
|
/* box_fill - fill in a given box struct
|
|
*/
|
|
static BOX *
|
|
box_fill(BOX *result, double x1, double x2, double y1, double y2)
|
|
{
|
|
if (x1 > x2)
|
|
{
|
|
result->high.x = x1;
|
|
result->low.x = x2;
|
|
}
|
|
else
|
|
{
|
|
result->high.x = x2;
|
|
result->low.x = x1;
|
|
}
|
|
if (y1 > y2)
|
|
{
|
|
result->high.y = y1;
|
|
result->low.y = y2;
|
|
}
|
|
else
|
|
{
|
|
result->high.y = y2;
|
|
result->low.y = y1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* box_copy - copy a box
|
|
*/
|
|
static BOX *
|
|
box_copy(BOX *box)
|
|
{
|
|
BOX *result = (BOX *) palloc(sizeof(BOX));
|
|
|
|
memcpy((char *) result, (char *) box, sizeof(BOX));
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators for BOXes.
|
|
* <, >, <=, >=, and == are based on box area.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* box_same - are two boxes identical?
|
|
*/
|
|
Datum
|
|
box_same(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(box1->high.x, box2->high.x) &&
|
|
FPeq(box1->low.x, box2->low.x) &&
|
|
FPeq(box1->high.y, box2->high.y) &&
|
|
FPeq(box1->low.y, box2->low.y));
|
|
}
|
|
|
|
/* box_overlap - does box1 overlap box2?
|
|
*/
|
|
Datum
|
|
box_overlap(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(box_ov(box1, box2));
|
|
}
|
|
|
|
static bool
|
|
box_ov(BOX *box1, BOX *box2)
|
|
{
|
|
return ((FPge(box1->high.x, box2->high.x) &&
|
|
FPle(box1->low.x, box2->high.x)) ||
|
|
(FPge(box2->high.x, box1->high.x) &&
|
|
FPle(box2->low.x, box1->high.x)))
|
|
&&
|
|
((FPge(box1->high.y, box2->high.y) &&
|
|
FPle(box1->low.y, box2->high.y)) ||
|
|
(FPge(box2->high.y, box1->high.y) &&
|
|
FPle(box2->low.y, box1->high.y)));
|
|
}
|
|
|
|
/* box_left - is box1 strictly left of box2?
|
|
*/
|
|
Datum
|
|
box_left(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(box1->high.x, box2->low.x));
|
|
}
|
|
|
|
/* box_overleft - is the right edge of box1 at or left of
|
|
* the right edge of box2?
|
|
*
|
|
* This is "less than or equal" for the end of a time range,
|
|
* when time ranges are stored as rectangles.
|
|
*/
|
|
Datum
|
|
box_overleft(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(box1->high.x, box2->high.x));
|
|
}
|
|
|
|
/* box_right - is box1 strictly right of box2?
|
|
*/
|
|
Datum
|
|
box_right(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(box1->low.x, box2->high.x));
|
|
}
|
|
|
|
/* box_overright - is the left edge of box1 at or right of
|
|
* the left edge of box2?
|
|
*
|
|
* This is "greater than or equal" for time ranges, when time ranges
|
|
* are stored as rectangles.
|
|
*/
|
|
Datum
|
|
box_overright(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(box1->low.x, box2->low.x));
|
|
}
|
|
|
|
/* box_below - is box1 strictly below box2?
|
|
*/
|
|
Datum
|
|
box_below(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(box1->high.y, box2->low.y));
|
|
}
|
|
|
|
/* box_overbelow - is the upper edge of box1 at or below
|
|
* the upper edge of box2?
|
|
*/
|
|
Datum
|
|
box_overbelow(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(box1->high.y, box2->high.y));
|
|
}
|
|
|
|
/* box_above - is box1 strictly above box2?
|
|
*/
|
|
Datum
|
|
box_above(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(box1->low.y, box2->high.y));
|
|
}
|
|
|
|
/* box_overabove - is the lower edge of box1 at or above
|
|
* the lower edge of box2?
|
|
*/
|
|
Datum
|
|
box_overabove(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(box1->low.y, box2->low.y));
|
|
}
|
|
|
|
/* box_contained - is box1 contained by box2?
|
|
*/
|
|
Datum
|
|
box_contained(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(box1->high.x, box2->high.x) &&
|
|
FPge(box1->low.x, box2->low.x) &&
|
|
FPle(box1->high.y, box2->high.y) &&
|
|
FPge(box1->low.y, box2->low.y));
|
|
}
|
|
|
|
/* box_contain - does box1 contain box2?
|
|
*/
|
|
Datum
|
|
box_contain(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(box1->high.x, box2->high.x) &&
|
|
FPle(box1->low.x, box2->low.x) &&
|
|
FPge(box1->high.y, box2->high.y) &&
|
|
FPle(box1->low.y, box2->low.y));
|
|
}
|
|
|
|
|
|
/* box_positionop -
|
|
* is box1 entirely {above,below} box2?
|
|
*
|
|
* box_below_eq and box_above_eq are obsolete versions that (probably
|
|
* erroneously) accept the equal-boundaries case. Since these are not
|
|
* in sync with the box_left and box_right code, they are deprecated and
|
|
* not supported in the PG 8.1 rtree operator class extension.
|
|
*/
|
|
Datum
|
|
box_below_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(box1->high.y, box2->low.y));
|
|
}
|
|
|
|
Datum
|
|
box_above_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(box1->low.y, box2->high.y));
|
|
}
|
|
|
|
|
|
/* box_relop - is area(box1) relop area(box2), within
|
|
* our accuracy constraint?
|
|
*/
|
|
Datum
|
|
box_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(box_ar(box1), box_ar(box2)));
|
|
}
|
|
|
|
Datum
|
|
box_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(box_ar(box1), box_ar(box2)));
|
|
}
|
|
|
|
Datum
|
|
box_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(box_ar(box1), box_ar(box2)));
|
|
}
|
|
|
|
Datum
|
|
box_le(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(box_ar(box1), box_ar(box2)));
|
|
}
|
|
|
|
Datum
|
|
box_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(box_ar(box1), box_ar(box2)));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* "Arithmetic" operators on boxes.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* box_area - returns the area of the box.
|
|
*/
|
|
Datum
|
|
box_area(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
|
|
PG_RETURN_FLOAT8(box_ar(box));
|
|
}
|
|
|
|
|
|
/* box_width - returns the width of the box
|
|
* (horizontal magnitude).
|
|
*/
|
|
Datum
|
|
box_width(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
|
|
PG_RETURN_FLOAT8(box->high.x - box->low.x);
|
|
}
|
|
|
|
|
|
/* box_height - returns the height of the box
|
|
* (vertical magnitude).
|
|
*/
|
|
Datum
|
|
box_height(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
|
|
PG_RETURN_FLOAT8(box->high.y - box->low.y);
|
|
}
|
|
|
|
|
|
/* box_distance - returns the distance between the
|
|
* center points of two boxes.
|
|
*/
|
|
Datum
|
|
box_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
Point a,
|
|
b;
|
|
|
|
box_cn(&a, box1);
|
|
box_cn(&b, box2);
|
|
|
|
PG_RETURN_FLOAT8(HYPOT(a.x - b.x, a.y - b.y));
|
|
}
|
|
|
|
|
|
/* box_center - returns the center point of the box.
|
|
*/
|
|
Datum
|
|
box_center(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
Point *result = (Point *) palloc(sizeof(Point));
|
|
|
|
box_cn(result, box);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
|
|
/* box_ar - returns the area of the box.
|
|
*/
|
|
static double
|
|
box_ar(BOX *box)
|
|
{
|
|
return box_wd(box) * box_ht(box);
|
|
}
|
|
|
|
|
|
/* box_cn - stores the centerpoint of the box into *center.
|
|
*/
|
|
static void
|
|
box_cn(Point *center, BOX *box)
|
|
{
|
|
center->x = (box->high.x + box->low.x) / 2.0;
|
|
center->y = (box->high.y + box->low.y) / 2.0;
|
|
}
|
|
|
|
|
|
/* box_wd - returns the width (length) of the box
|
|
* (horizontal magnitude).
|
|
*/
|
|
static double
|
|
box_wd(BOX *box)
|
|
{
|
|
return box->high.x - box->low.x;
|
|
}
|
|
|
|
|
|
/* box_ht - returns the height of the box
|
|
* (vertical magnitude).
|
|
*/
|
|
static double
|
|
box_ht(BOX *box)
|
|
{
|
|
return box->high.y - box->low.y;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Funky operations.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* box_intersect -
|
|
* returns the overlapping portion of two boxes,
|
|
* or NULL if they do not intersect.
|
|
*/
|
|
Datum
|
|
box_intersect(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box1 = PG_GETARG_BOX_P(0);
|
|
BOX *box2 = PG_GETARG_BOX_P(1);
|
|
BOX *result;
|
|
|
|
if (!box_ov(box1, box2))
|
|
PG_RETURN_NULL();
|
|
|
|
result = (BOX *) palloc(sizeof(BOX));
|
|
|
|
result->high.x = Min(box1->high.x, box2->high.x);
|
|
result->low.x = Max(box1->low.x, box2->low.x);
|
|
result->high.y = Min(box1->high.y, box2->high.y);
|
|
result->low.y = Max(box1->low.y, box2->low.y);
|
|
|
|
PG_RETURN_BOX_P(result);
|
|
}
|
|
|
|
|
|
/* box_diagonal -
|
|
* returns a line segment which happens to be the
|
|
* positive-slope diagonal of "box".
|
|
*/
|
|
Datum
|
|
box_diagonal(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
LSEG *result = (LSEG *) palloc(sizeof(LSEG));
|
|
|
|
statlseg_construct(result, &box->high, &box->low);
|
|
|
|
PG_RETURN_LSEG_P(result);
|
|
}
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D lines.
|
|
** Lines are not intended to be used as ADTs per se,
|
|
** but their ops are useful tools for other ADT ops. Thus,
|
|
** there are few relops.
|
|
**
|
|
***********************************************************************/
|
|
|
|
Datum
|
|
line_in(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef ENABLE_LINE_TYPE
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
#endif
|
|
LINE *line;
|
|
|
|
#ifdef ENABLE_LINE_TYPE
|
|
/* when fixed, modify "not implemented", catalog/pg_type.h and SGML */
|
|
LSEG lseg;
|
|
int isopen;
|
|
char *s;
|
|
|
|
if ((!path_decode(TRUE, 2, str, &isopen, &s, &(lseg.p[0])))
|
|
|| (*s != '\0'))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type line: \"%s\"", str)));
|
|
|
|
line = (LINE *) palloc(sizeof(LINE));
|
|
line_construct_pts(line, &lseg.p[0], &lseg.p[1]);
|
|
#else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("type \"line\" not yet implemented")));
|
|
|
|
line = NULL;
|
|
#endif
|
|
|
|
PG_RETURN_LINE_P(line);
|
|
}
|
|
|
|
|
|
Datum
|
|
line_out(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef ENABLE_LINE_TYPE
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
#endif
|
|
char *result;
|
|
|
|
#ifdef ENABLE_LINE_TYPE
|
|
/* when fixed, modify "not implemented", catalog/pg_type.h and SGML */
|
|
LSEG lseg;
|
|
|
|
if (FPzero(line->B))
|
|
{ /* vertical */
|
|
/* use "x = C" */
|
|
result->A = -1;
|
|
result->B = 0;
|
|
result->C = pt1->x;
|
|
#ifdef GEODEBUG
|
|
printf("line_out- line is vertical\n");
|
|
#endif
|
|
#ifdef NOT_USED
|
|
result->m = DBL_MAX;
|
|
#endif
|
|
|
|
}
|
|
else if (FPzero(line->A))
|
|
{ /* horizontal */
|
|
/* use "x = C" */
|
|
result->A = 0;
|
|
result->B = -1;
|
|
result->C = pt1->y;
|
|
#ifdef GEODEBUG
|
|
printf("line_out- line is horizontal\n");
|
|
#endif
|
|
#ifdef NOT_USED
|
|
result->m = 0.0;
|
|
#endif
|
|
|
|
}
|
|
else
|
|
{
|
|
}
|
|
|
|
if (FPzero(line->A)) /* horizontal? */
|
|
{
|
|
}
|
|
else if (FPzero(line->B)) /* vertical? */
|
|
{
|
|
}
|
|
else
|
|
{
|
|
}
|
|
|
|
return path_encode(TRUE, 2, (Point *) &(ls->p[0]));
|
|
#else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("type \"line\" not yet implemented")));
|
|
result = NULL;
|
|
#endif
|
|
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* line_recv - converts external binary format to line
|
|
*/
|
|
Datum
|
|
line_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("type \"line\" not yet implemented")));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* line_send - converts line to binary format
|
|
*/
|
|
Datum
|
|
line_send(PG_FUNCTION_ARGS)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("type \"line\" not yet implemented")));
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Conversion routines from one line formula to internal.
|
|
* Internal form: Ax+By+C=0
|
|
*---------------------------------------------------------*/
|
|
|
|
/* line_construct_pm()
|
|
* point-slope
|
|
*/
|
|
static LINE *
|
|
line_construct_pm(Point *pt, double m)
|
|
{
|
|
LINE *result = (LINE *) palloc(sizeof(LINE));
|
|
|
|
/* use "mx - y + yinter = 0" */
|
|
result->A = m;
|
|
result->B = -1.0;
|
|
if (m == DBL_MAX)
|
|
result->C = pt->y;
|
|
else
|
|
result->C = pt->y - m * pt->x;
|
|
|
|
#ifdef NOT_USED
|
|
result->m = m;
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Fill already-allocated LINE struct from two points on the line
|
|
*/
|
|
static void
|
|
line_construct_pts(LINE *line, Point *pt1, Point *pt2)
|
|
{
|
|
if (FPeq(pt1->x, pt2->x))
|
|
{ /* vertical */
|
|
/* use "x = C" */
|
|
line->A = -1;
|
|
line->B = 0;
|
|
line->C = pt1->x;
|
|
#ifdef NOT_USED
|
|
line->m = DBL_MAX;
|
|
#endif
|
|
#ifdef GEODEBUG
|
|
printf("line_construct_pts- line is vertical\n");
|
|
#endif
|
|
}
|
|
else if (FPeq(pt1->y, pt2->y))
|
|
{ /* horizontal */
|
|
/* use "y = C" */
|
|
line->A = 0;
|
|
line->B = -1;
|
|
line->C = pt1->y;
|
|
#ifdef NOT_USED
|
|
line->m = 0.0;
|
|
#endif
|
|
#ifdef GEODEBUG
|
|
printf("line_construct_pts- line is horizontal\n");
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* use "mx - y + yinter = 0" */
|
|
line->A = (pt2->y - pt1->y) / (pt2->x - pt1->x);
|
|
line->B = -1.0;
|
|
line->C = pt1->y - line->A * pt1->x;
|
|
#ifdef NOT_USED
|
|
line->m = line->A;
|
|
#endif
|
|
#ifdef GEODEBUG
|
|
printf("line_construct_pts- line is neither vertical nor horizontal (diffs x=%.*g, y=%.*g\n",
|
|
DBL_DIG, (pt2->x - pt1->x), DBL_DIG, (pt2->y - pt1->y));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* line_construct_pp()
|
|
* two points
|
|
*/
|
|
Datum
|
|
line_construct_pp(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
LINE *result = (LINE *) palloc(sizeof(LINE));
|
|
|
|
line_construct_pts(result, pt1, pt2);
|
|
PG_RETURN_LINE_P(result);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relative position routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
line_intersect(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
|
|
PG_RETURN_BOOL(!DatumGetBool(DirectFunctionCall2(line_parallel,
|
|
LinePGetDatum(l1),
|
|
LinePGetDatum(l2))));
|
|
}
|
|
|
|
Datum
|
|
line_parallel(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
|
|
#ifdef NOT_USED
|
|
PG_RETURN_BOOL(FPeq(l1->m, l2->m));
|
|
#endif
|
|
if (FPzero(l1->B))
|
|
PG_RETURN_BOOL(FPzero(l2->B));
|
|
|
|
PG_RETURN_BOOL(FPeq(l2->A, l1->A * (l2->B / l1->B)));
|
|
}
|
|
|
|
Datum
|
|
line_perp(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
|
|
#ifdef NOT_USED
|
|
if (l1->m)
|
|
PG_RETURN_BOOL(FPeq(l2->m / l1->m, -1.0));
|
|
else if (l2->m)
|
|
PG_RETURN_BOOL(FPeq(l1->m / l2->m, -1.0));
|
|
#endif
|
|
if (FPzero(l1->A))
|
|
PG_RETURN_BOOL(FPzero(l2->B));
|
|
else if (FPzero(l1->B))
|
|
PG_RETURN_BOOL(FPzero(l2->A));
|
|
|
|
PG_RETURN_BOOL(FPeq(((l1->A * l2->B) / (l1->B * l2->A)), -1.0));
|
|
}
|
|
|
|
Datum
|
|
line_vertical(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
|
|
PG_RETURN_BOOL(FPzero(line->B));
|
|
}
|
|
|
|
Datum
|
|
line_horizontal(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
|
|
PG_RETURN_BOOL(FPzero(line->A));
|
|
}
|
|
|
|
Datum
|
|
line_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
double k;
|
|
|
|
if (!FPzero(l2->A))
|
|
k = l1->A / l2->A;
|
|
else if (!FPzero(l2->B))
|
|
k = l1->B / l2->B;
|
|
else if (!FPzero(l2->C))
|
|
k = l1->C / l2->C;
|
|
else
|
|
k = 1.0;
|
|
|
|
PG_RETURN_BOOL(FPeq(l1->A, k * l2->A) &&
|
|
FPeq(l1->B, k * l2->B) &&
|
|
FPeq(l1->C, k * l2->C));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Line arithmetic routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* line_distance()
|
|
* Distance between two lines.
|
|
*/
|
|
Datum
|
|
line_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
float8 result;
|
|
Point *tmp;
|
|
|
|
if (!DatumGetBool(DirectFunctionCall2(line_parallel,
|
|
LinePGetDatum(l1),
|
|
LinePGetDatum(l2))))
|
|
PG_RETURN_FLOAT8(0.0);
|
|
if (FPzero(l1->B)) /* vertical? */
|
|
PG_RETURN_FLOAT8(fabs(l1->C - l2->C));
|
|
tmp = point_construct(0.0, l1->C);
|
|
result = dist_pl_internal(tmp, l2);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/* line_interpt()
|
|
* Point where two lines l1, l2 intersect (if any)
|
|
*/
|
|
Datum
|
|
line_interpt(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *l1 = PG_GETARG_LINE_P(0);
|
|
LINE *l2 = PG_GETARG_LINE_P(1);
|
|
Point *result;
|
|
|
|
result = line_interpt_internal(l1, l2);
|
|
|
|
if (result == NULL)
|
|
PG_RETURN_NULL();
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/*
|
|
* Internal version of line_interpt
|
|
*
|
|
* returns a NULL pointer if no intersection point
|
|
*/
|
|
static Point *
|
|
line_interpt_internal(LINE *l1, LINE *l2)
|
|
{
|
|
Point *result;
|
|
double x,
|
|
y;
|
|
|
|
/*
|
|
* NOTE: if the lines are identical then we will find they are parallel
|
|
* and report "no intersection". This is a little weird, but since
|
|
* there's no *unique* intersection, maybe it's appropriate behavior.
|
|
*/
|
|
if (DatumGetBool(DirectFunctionCall2(line_parallel,
|
|
LinePGetDatum(l1),
|
|
LinePGetDatum(l2))))
|
|
return NULL;
|
|
|
|
#ifdef NOT_USED
|
|
if (FPzero(l1->B)) /* l1 vertical? */
|
|
result = point_construct(l2->m * l1->C + l2->C, l1->C);
|
|
else if (FPzero(l2->B)) /* l2 vertical? */
|
|
result = point_construct(l1->m * l2->C + l1->C, l2->C);
|
|
else
|
|
{
|
|
x = (l1->C - l2->C) / (l2->A - l1->A);
|
|
result = point_construct(x, l1->m * x + l1->C);
|
|
}
|
|
#endif
|
|
|
|
if (FPzero(l1->B)) /* l1 vertical? */
|
|
{
|
|
x = l1->C;
|
|
y = (l2->A * x + l2->C);
|
|
}
|
|
else if (FPzero(l2->B)) /* l2 vertical? */
|
|
{
|
|
x = l2->C;
|
|
y = (l1->A * x + l1->C);
|
|
}
|
|
else
|
|
{
|
|
x = (l1->C - l2->C) / (l2->A - l1->A);
|
|
y = (l1->A * x + l1->C);
|
|
}
|
|
result = point_construct(x, y);
|
|
|
|
#ifdef GEODEBUG
|
|
printf("line_interpt- lines are A=%.*g, B=%.*g, C=%.*g, A=%.*g, B=%.*g, C=%.*g\n",
|
|
DBL_DIG, l1->A, DBL_DIG, l1->B, DBL_DIG, l1->C, DBL_DIG, l2->A, DBL_DIG, l2->B, DBL_DIG, l2->C);
|
|
printf("line_interpt- lines intersect at (%.*g,%.*g)\n", DBL_DIG, x, DBL_DIG, y);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D paths (sequences of line segments, also
|
|
** called `polylines').
|
|
**
|
|
** This is not a general package for geometric paths,
|
|
** which of course include polygons; the emphasis here
|
|
** is on (for example) usefulness in wire layout.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* String to path / path to string conversion.
|
|
* External format:
|
|
* "((xcoord, ycoord),... )"
|
|
* "[(xcoord, ycoord),... ]"
|
|
* "(xcoord, ycoord),... "
|
|
* "[xcoord, ycoord,... ]"
|
|
* Also support older format:
|
|
* "(closed, npts, xcoord, ycoord,... )"
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
path_area(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
double area = 0.0;
|
|
int i,
|
|
j;
|
|
|
|
if (!path->closed)
|
|
PG_RETURN_NULL();
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
j = (i + 1) % path->npts;
|
|
area += path->p[i].x * path->p[j].y;
|
|
area -= path->p[i].y * path->p[j].x;
|
|
}
|
|
|
|
area *= 0.5;
|
|
PG_RETURN_FLOAT8(area < 0.0 ? -area : area);
|
|
}
|
|
|
|
|
|
Datum
|
|
path_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
PATH *path;
|
|
int isopen;
|
|
char *s;
|
|
int npts;
|
|
int size;
|
|
int depth = 0;
|
|
|
|
if ((npts = pair_count(str, ',')) <= 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type path: \"%s\"", str)));
|
|
|
|
s = str;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
|
|
/* skip single leading paren */
|
|
if ((*s == LDELIM) && (strrchr(s, LDELIM) == s))
|
|
{
|
|
s++;
|
|
depth++;
|
|
}
|
|
|
|
size = offsetof(PATH, p[0]) +sizeof(path->p[0]) * npts;
|
|
path = (PATH *) palloc(size);
|
|
|
|
SET_VARSIZE(path, size);
|
|
path->npts = npts;
|
|
|
|
if ((!path_decode(TRUE, npts, s, &isopen, &s, &(path->p[0])))
|
|
&& (!((depth == 0) && (*s == '\0'))) && !((depth >= 1) && (*s == RDELIM)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type path: \"%s\"", str)));
|
|
|
|
path->closed = (!isopen);
|
|
/* prevent instability in unused pad bytes */
|
|
path->dummy = 0;
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
|
|
Datum
|
|
path_out(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
|
|
PG_RETURN_CSTRING(path_encode(path->closed, path->npts, path->p));
|
|
}
|
|
|
|
/*
|
|
* path_recv - converts external binary format to path
|
|
*
|
|
* External representation is closed flag (a boolean byte), int32 number
|
|
* of points, and the points.
|
|
*/
|
|
Datum
|
|
path_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
PATH *path;
|
|
int closed;
|
|
int32 npts;
|
|
int32 i;
|
|
int size;
|
|
|
|
closed = pq_getmsgbyte(buf);
|
|
npts = pq_getmsgint(buf, sizeof(int32));
|
|
if (npts <= 0 || npts >= (int32) ((INT_MAX - offsetof(PATH, p[0])) / sizeof(Point)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid number of points in external \"path\" value")));
|
|
|
|
size = offsetof(PATH, p[0]) +sizeof(path->p[0]) * npts;
|
|
path = (PATH *) palloc(size);
|
|
|
|
SET_VARSIZE(path, size);
|
|
path->npts = npts;
|
|
path->closed = (closed ? 1 : 0);
|
|
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
path->p[i].x = pq_getmsgfloat8(buf);
|
|
path->p[i].y = pq_getmsgfloat8(buf);
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
/*
|
|
* path_send - converts path to binary format
|
|
*/
|
|
Datum
|
|
path_send(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
StringInfoData buf;
|
|
int32 i;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendbyte(&buf, path->closed ? 1 : 0);
|
|
pq_sendint(&buf, path->npts, sizeof(int32));
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
pq_sendfloat8(&buf, path->p[i].x);
|
|
pq_sendfloat8(&buf, path->p[i].y);
|
|
}
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators.
|
|
* These are based on the path cardinality,
|
|
* as stupid as that sounds.
|
|
*
|
|
* Better relops and access methods coming soon.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
path_n_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
|
|
PG_RETURN_BOOL(p1->npts < p2->npts);
|
|
}
|
|
|
|
Datum
|
|
path_n_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
|
|
PG_RETURN_BOOL(p1->npts > p2->npts);
|
|
}
|
|
|
|
Datum
|
|
path_n_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
|
|
PG_RETURN_BOOL(p1->npts == p2->npts);
|
|
}
|
|
|
|
Datum
|
|
path_n_le(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
|
|
PG_RETURN_BOOL(p1->npts <= p2->npts);
|
|
}
|
|
|
|
Datum
|
|
path_n_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
|
|
PG_RETURN_BOOL(p1->npts >= p2->npts);
|
|
}
|
|
|
|
/*----------------------------------------------------------
|
|
* Conversion operators.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
path_isclosed(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
|
|
PG_RETURN_BOOL(path->closed);
|
|
}
|
|
|
|
Datum
|
|
path_isopen(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
|
|
PG_RETURN_BOOL(!path->closed);
|
|
}
|
|
|
|
Datum
|
|
path_npoints(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
|
|
PG_RETURN_INT32(path->npts);
|
|
}
|
|
|
|
|
|
Datum
|
|
path_close(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
|
|
path->closed = TRUE;
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
Datum
|
|
path_open(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
|
|
path->closed = FALSE;
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
|
|
/* path_inter -
|
|
* Does p1 intersect p2 at any point?
|
|
* Use bounding boxes for a quick (O(n)) check, then do a
|
|
* O(n^2) iterative edge check.
|
|
*/
|
|
Datum
|
|
path_inter(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
BOX b1,
|
|
b2;
|
|
int i,
|
|
j;
|
|
LSEG seg1,
|
|
seg2;
|
|
|
|
if (p1->npts <= 0 || p2->npts <= 0)
|
|
PG_RETURN_BOOL(false);
|
|
|
|
b1.high.x = b1.low.x = p1->p[0].x;
|
|
b1.high.y = b1.low.y = p1->p[0].y;
|
|
for (i = 1; i < p1->npts; i++)
|
|
{
|
|
b1.high.x = Max(p1->p[i].x, b1.high.x);
|
|
b1.high.y = Max(p1->p[i].y, b1.high.y);
|
|
b1.low.x = Min(p1->p[i].x, b1.low.x);
|
|
b1.low.y = Min(p1->p[i].y, b1.low.y);
|
|
}
|
|
b2.high.x = b2.low.x = p2->p[0].x;
|
|
b2.high.y = b2.low.y = p2->p[0].y;
|
|
for (i = 1; i < p2->npts; i++)
|
|
{
|
|
b2.high.x = Max(p2->p[i].x, b2.high.x);
|
|
b2.high.y = Max(p2->p[i].y, b2.high.y);
|
|
b2.low.x = Min(p2->p[i].x, b2.low.x);
|
|
b2.low.y = Min(p2->p[i].y, b2.low.y);
|
|
}
|
|
if (!box_ov(&b1, &b2))
|
|
PG_RETURN_BOOL(false);
|
|
|
|
/* pairwise check lseg intersections */
|
|
for (i = 0; i < p1->npts; i++)
|
|
{
|
|
int iprev;
|
|
|
|
if (i > 0)
|
|
iprev = i - 1;
|
|
else
|
|
{
|
|
if (!p1->closed)
|
|
continue;
|
|
iprev = p1->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
for (j = 0; j < p2->npts; j++)
|
|
{
|
|
int jprev;
|
|
|
|
if (j > 0)
|
|
jprev = j - 1;
|
|
else
|
|
{
|
|
if (!p2->closed)
|
|
continue;
|
|
jprev = p2->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
statlseg_construct(&seg1, &p1->p[iprev], &p1->p[i]);
|
|
statlseg_construct(&seg2, &p2->p[jprev], &p2->p[j]);
|
|
if (lseg_intersect_internal(&seg1, &seg2))
|
|
PG_RETURN_BOOL(true);
|
|
}
|
|
}
|
|
|
|
/* if we dropped through, no two segs intersected */
|
|
PG_RETURN_BOOL(false);
|
|
}
|
|
|
|
/* path_distance()
|
|
* This essentially does a cartesian product of the lsegs in the
|
|
* two paths, and finds the min distance between any two lsegs
|
|
*/
|
|
Datum
|
|
path_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
float8 min = 0.0; /* initialize to keep compiler quiet */
|
|
bool have_min = false;
|
|
float8 tmp;
|
|
int i,
|
|
j;
|
|
LSEG seg1,
|
|
seg2;
|
|
|
|
for (i = 0; i < p1->npts; i++)
|
|
{
|
|
int iprev;
|
|
|
|
if (i > 0)
|
|
iprev = i - 1;
|
|
else
|
|
{
|
|
if (!p1->closed)
|
|
continue;
|
|
iprev = p1->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
for (j = 0; j < p2->npts; j++)
|
|
{
|
|
int jprev;
|
|
|
|
if (j > 0)
|
|
jprev = j - 1;
|
|
else
|
|
{
|
|
if (!p2->closed)
|
|
continue;
|
|
jprev = p2->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
statlseg_construct(&seg1, &p1->p[iprev], &p1->p[i]);
|
|
statlseg_construct(&seg2, &p2->p[jprev], &p2->p[j]);
|
|
|
|
tmp = DatumGetFloat8(DirectFunctionCall2(lseg_distance,
|
|
LsegPGetDatum(&seg1),
|
|
LsegPGetDatum(&seg2)));
|
|
if (!have_min || tmp < min)
|
|
{
|
|
min = tmp;
|
|
have_min = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!have_min)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(min);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* "Arithmetic" operations.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
path_length(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
float8 result = 0.0;
|
|
int i;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
int iprev;
|
|
|
|
if (i > 0)
|
|
iprev = i - 1;
|
|
else
|
|
{
|
|
if (!path->closed)
|
|
continue;
|
|
iprev = path->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
result += point_dt(&path->p[iprev], &path->p[i]);
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D points.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* String to point, point to string conversion.
|
|
* External format:
|
|
* "(x,y)"
|
|
* "x,y"
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
point_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
Point *point;
|
|
double x,
|
|
y;
|
|
char *s;
|
|
|
|
if (!pair_decode(str, &x, &y, &s) || (*s != '\0'))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type point: \"%s\"", str)));
|
|
|
|
point = (Point *) palloc(sizeof(Point));
|
|
|
|
point->x = x;
|
|
point->y = y;
|
|
|
|
PG_RETURN_POINT_P(point);
|
|
}
|
|
|
|
Datum
|
|
point_out(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
|
|
PG_RETURN_CSTRING(path_encode(-1, 1, pt));
|
|
}
|
|
|
|
/*
|
|
* point_recv - converts external binary format to point
|
|
*/
|
|
Datum
|
|
point_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
Point *point;
|
|
|
|
point = (Point *) palloc(sizeof(Point));
|
|
point->x = pq_getmsgfloat8(buf);
|
|
point->y = pq_getmsgfloat8(buf);
|
|
PG_RETURN_POINT_P(point);
|
|
}
|
|
|
|
/*
|
|
* point_send - converts point to binary format
|
|
*/
|
|
Datum
|
|
point_send(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, pt->x);
|
|
pq_sendfloat8(&buf, pt->y);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
static Point *
|
|
point_construct(double x, double y)
|
|
{
|
|
Point *result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = x;
|
|
result->y = y;
|
|
return result;
|
|
}
|
|
|
|
|
|
static Point *
|
|
point_copy(Point *pt)
|
|
{
|
|
Point *result;
|
|
|
|
if (!PointerIsValid(pt))
|
|
return NULL;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = pt->x;
|
|
result->y = pt->y;
|
|
return result;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators for Points.
|
|
* Since we do have a sense of coordinates being
|
|
* "equal" to a given accuracy (point_vert, point_horiz),
|
|
* the other ops must preserve that sense. This means
|
|
* that results may, strictly speaking, be a lie (unless
|
|
* EPSILON = 0.0).
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
point_left(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(pt1->x, pt2->x));
|
|
}
|
|
|
|
Datum
|
|
point_right(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(pt1->x, pt2->x));
|
|
}
|
|
|
|
Datum
|
|
point_above(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(pt1->y, pt2->y));
|
|
}
|
|
|
|
Datum
|
|
point_below(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(pt1->y, pt2->y));
|
|
}
|
|
|
|
Datum
|
|
point_vert(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(pt1->x, pt2->x));
|
|
}
|
|
|
|
Datum
|
|
point_horiz(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(pt1->y, pt2->y));
|
|
}
|
|
|
|
Datum
|
|
point_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(pt1->x, pt2->x) && FPeq(pt1->y, pt2->y));
|
|
}
|
|
|
|
Datum
|
|
point_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(FPne(pt1->x, pt2->x) || FPne(pt1->y, pt2->y));
|
|
}
|
|
|
|
/*----------------------------------------------------------
|
|
* "Arithmetic" operators on points.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
point_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_FLOAT8(HYPOT(pt1->x - pt2->x, pt1->y - pt2->y));
|
|
}
|
|
|
|
double
|
|
point_dt(Point *pt1, Point *pt2)
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("point_dt- segment (%f,%f),(%f,%f) length is %f\n",
|
|
pt1->x, pt1->y, pt2->x, pt2->y, HYPOT(pt1->x - pt2->x, pt1->y - pt2->y));
|
|
#endif
|
|
return HYPOT(pt1->x - pt2->x, pt1->y - pt2->y);
|
|
}
|
|
|
|
Datum
|
|
point_slope(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_FLOAT8(point_sl(pt1, pt2));
|
|
}
|
|
|
|
|
|
double
|
|
point_sl(Point *pt1, Point *pt2)
|
|
{
|
|
return (FPeq(pt1->x, pt2->x)
|
|
? (double) DBL_MAX
|
|
: (pt1->y - pt2->y) / (pt1->x - pt2->x));
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D line segments.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* String to lseg, lseg to string conversion.
|
|
* External forms: "[(x1, y1), (x2, y2)]"
|
|
* "(x1, y1), (x2, y2)"
|
|
* "x1, y1, x2, y2"
|
|
* closed form ok "((x1, y1), (x2, y2))"
|
|
* (old form) "(x1, y1, x2, y2)"
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
lseg_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
LSEG *lseg;
|
|
int isopen;
|
|
char *s;
|
|
|
|
lseg = (LSEG *) palloc(sizeof(LSEG));
|
|
|
|
if ((!path_decode(TRUE, 2, str, &isopen, &s, &(lseg->p[0])))
|
|
|| (*s != '\0'))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type lseg: \"%s\"", str)));
|
|
|
|
#ifdef NOT_USED
|
|
lseg->m = point_sl(&lseg->p[0], &lseg->p[1]);
|
|
#endif
|
|
|
|
PG_RETURN_LSEG_P(lseg);
|
|
}
|
|
|
|
|
|
Datum
|
|
lseg_out(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *ls = PG_GETARG_LSEG_P(0);
|
|
|
|
PG_RETURN_CSTRING(path_encode(FALSE, 2, (Point *) &(ls->p[0])));
|
|
}
|
|
|
|
/*
|
|
* lseg_recv - converts external binary format to lseg
|
|
*/
|
|
Datum
|
|
lseg_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
LSEG *lseg;
|
|
|
|
lseg = (LSEG *) palloc(sizeof(LSEG));
|
|
|
|
lseg->p[0].x = pq_getmsgfloat8(buf);
|
|
lseg->p[0].y = pq_getmsgfloat8(buf);
|
|
lseg->p[1].x = pq_getmsgfloat8(buf);
|
|
lseg->p[1].y = pq_getmsgfloat8(buf);
|
|
|
|
#ifdef NOT_USED
|
|
lseg->m = point_sl(&lseg->p[0], &lseg->p[1]);
|
|
#endif
|
|
|
|
PG_RETURN_LSEG_P(lseg);
|
|
}
|
|
|
|
/*
|
|
* lseg_send - converts lseg to binary format
|
|
*/
|
|
Datum
|
|
lseg_send(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *ls = PG_GETARG_LSEG_P(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, ls->p[0].x);
|
|
pq_sendfloat8(&buf, ls->p[0].y);
|
|
pq_sendfloat8(&buf, ls->p[1].x);
|
|
pq_sendfloat8(&buf, ls->p[1].y);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* lseg_construct -
|
|
* form a LSEG from two Points.
|
|
*/
|
|
Datum
|
|
lseg_construct(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt1 = PG_GETARG_POINT_P(0);
|
|
Point *pt2 = PG_GETARG_POINT_P(1);
|
|
LSEG *result = (LSEG *) palloc(sizeof(LSEG));
|
|
|
|
result->p[0].x = pt1->x;
|
|
result->p[0].y = pt1->y;
|
|
result->p[1].x = pt2->x;
|
|
result->p[1].y = pt2->y;
|
|
|
|
#ifdef NOT_USED
|
|
result->m = point_sl(pt1, pt2);
|
|
#endif
|
|
|
|
PG_RETURN_LSEG_P(result);
|
|
}
|
|
|
|
/* like lseg_construct, but assume space already allocated */
|
|
static void
|
|
statlseg_construct(LSEG *lseg, Point *pt1, Point *pt2)
|
|
{
|
|
lseg->p[0].x = pt1->x;
|
|
lseg->p[0].y = pt1->y;
|
|
lseg->p[1].x = pt2->x;
|
|
lseg->p[1].y = pt2->y;
|
|
|
|
#ifdef NOT_USED
|
|
lseg->m = point_sl(pt1, pt2);
|
|
#endif
|
|
}
|
|
|
|
Datum
|
|
lseg_length(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
|
|
PG_RETURN_FLOAT8(point_dt(&lseg->p[0], &lseg->p[1]));
|
|
}
|
|
|
|
/*----------------------------------------------------------
|
|
* Relative position routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/*
|
|
** find intersection of the two lines, and see if it falls on
|
|
** both segments.
|
|
*/
|
|
Datum
|
|
lseg_intersect(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(lseg_intersect_internal(l1, l2));
|
|
}
|
|
|
|
static bool
|
|
lseg_intersect_internal(LSEG *l1, LSEG *l2)
|
|
{
|
|
LINE ln;
|
|
Point *interpt;
|
|
bool retval;
|
|
|
|
line_construct_pts(&ln, &l2->p[0], &l2->p[1]);
|
|
interpt = interpt_sl(l1, &ln);
|
|
|
|
if (interpt != NULL && on_ps_internal(interpt, l2))
|
|
retval = true; /* interpt on l1 and l2 */
|
|
else
|
|
retval = false;
|
|
return retval;
|
|
}
|
|
|
|
Datum
|
|
lseg_parallel(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
#ifdef NOT_USED
|
|
PG_RETURN_BOOL(FPeq(l1->m, l2->m));
|
|
#endif
|
|
PG_RETURN_BOOL(FPeq(point_sl(&l1->p[0], &l1->p[1]),
|
|
point_sl(&l2->p[0], &l2->p[1])));
|
|
}
|
|
|
|
/* lseg_perp()
|
|
* Determine if two line segments are perpendicular.
|
|
*
|
|
* This code did not get the correct answer for
|
|
* '((0,0),(0,1))'::lseg ?-| '((0,0),(1,0))'::lseg
|
|
* So, modified it to check explicitly for slope of vertical line
|
|
* returned by point_sl() and the results seem better.
|
|
* - thomas 1998-01-31
|
|
*/
|
|
Datum
|
|
lseg_perp(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
double m1,
|
|
m2;
|
|
|
|
m1 = point_sl(&(l1->p[0]), &(l1->p[1]));
|
|
m2 = point_sl(&(l2->p[0]), &(l2->p[1]));
|
|
|
|
#ifdef GEODEBUG
|
|
printf("lseg_perp- slopes are %g and %g\n", m1, m2);
|
|
#endif
|
|
if (FPzero(m1))
|
|
PG_RETURN_BOOL(FPeq(m2, DBL_MAX));
|
|
else if (FPzero(m2))
|
|
PG_RETURN_BOOL(FPeq(m1, DBL_MAX));
|
|
|
|
PG_RETURN_BOOL(FPeq(m1 / m2, -1.0));
|
|
}
|
|
|
|
Datum
|
|
lseg_vertical(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
|
|
PG_RETURN_BOOL(FPeq(lseg->p[0].x, lseg->p[1].x));
|
|
}
|
|
|
|
Datum
|
|
lseg_horizontal(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
|
|
PG_RETURN_BOOL(FPeq(lseg->p[0].y, lseg->p[1].y));
|
|
}
|
|
|
|
|
|
Datum
|
|
lseg_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(l1->p[0].x, l2->p[0].x) &&
|
|
FPeq(l1->p[0].y, l2->p[0].y) &&
|
|
FPeq(l1->p[1].x, l2->p[1].x) &&
|
|
FPeq(l1->p[1].y, l2->p[1].y));
|
|
}
|
|
|
|
Datum
|
|
lseg_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(!FPeq(l1->p[0].x, l2->p[0].x) ||
|
|
!FPeq(l1->p[0].y, l2->p[0].y) ||
|
|
!FPeq(l1->p[1].x, l2->p[1].x) ||
|
|
!FPeq(l1->p[1].y, l2->p[1].y));
|
|
}
|
|
|
|
Datum
|
|
lseg_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(point_dt(&l1->p[0], &l1->p[1]),
|
|
point_dt(&l2->p[0], &l2->p[1])));
|
|
}
|
|
|
|
Datum
|
|
lseg_le(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(point_dt(&l1->p[0], &l1->p[1]),
|
|
point_dt(&l2->p[0], &l2->p[1])));
|
|
}
|
|
|
|
Datum
|
|
lseg_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(point_dt(&l1->p[0], &l1->p[1]),
|
|
point_dt(&l2->p[0], &l2->p[1])));
|
|
}
|
|
|
|
Datum
|
|
lseg_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(point_dt(&l1->p[0], &l1->p[1]),
|
|
point_dt(&l2->p[0], &l2->p[1])));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Line arithmetic routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* lseg_distance -
|
|
* If two segments don't intersect, then the closest
|
|
* point will be from one of the endpoints to the other
|
|
* segment.
|
|
*/
|
|
Datum
|
|
lseg_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_FLOAT8(lseg_dt(l1, l2));
|
|
}
|
|
|
|
/* lseg_dt()
|
|
* Distance between two line segments.
|
|
* Must check both sets of endpoints to ensure minimum distance is found.
|
|
* - thomas 1998-02-01
|
|
*/
|
|
static double
|
|
lseg_dt(LSEG *l1, LSEG *l2)
|
|
{
|
|
double result,
|
|
d;
|
|
|
|
if (lseg_intersect_internal(l1, l2))
|
|
return 0.0;
|
|
|
|
d = dist_ps_internal(&l1->p[0], l2);
|
|
result = d;
|
|
d = dist_ps_internal(&l1->p[1], l2);
|
|
result = Min(result, d);
|
|
d = dist_ps_internal(&l2->p[0], l1);
|
|
result = Min(result, d);
|
|
d = dist_ps_internal(&l2->p[1], l1);
|
|
result = Min(result, d);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
Datum
|
|
lseg_center(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
Point *result;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = (lseg->p[0].x + lseg->p[1].x) / 2.0;
|
|
result->y = (lseg->p[0].y + lseg->p[1].y) / 2.0;
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
static Point*
|
|
lseg_interpt_internal(LSEG *l1, LSEG *l2)
|
|
{
|
|
Point *result;
|
|
LINE tmp1,
|
|
tmp2;
|
|
|
|
/*
|
|
* Find the intersection of the appropriate lines, if any.
|
|
*/
|
|
line_construct_pts(&tmp1, &l1->p[0], &l1->p[1]);
|
|
line_construct_pts(&tmp2, &l2->p[0], &l2->p[1]);
|
|
result = line_interpt_internal(&tmp1, &tmp2);
|
|
if (!PointerIsValid(result))
|
|
return NULL;
|
|
|
|
/*
|
|
* If the line intersection point isn't within l1 (or equivalently l2),
|
|
* there is no valid segment intersection point at all.
|
|
*/
|
|
if (!on_ps_internal(result, l1) ||
|
|
!on_ps_internal(result, l2))
|
|
{
|
|
pfree(result);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If there is an intersection, then check explicitly for matching
|
|
* endpoints since there may be rounding effects with annoying lsb
|
|
* residue. - tgl 1997-07-09
|
|
*/
|
|
if ((FPeq(l1->p[0].x, l2->p[0].x) && FPeq(l1->p[0].y, l2->p[0].y)) ||
|
|
(FPeq(l1->p[0].x, l2->p[1].x) && FPeq(l1->p[0].y, l2->p[1].y)))
|
|
{
|
|
result->x = l1->p[0].x;
|
|
result->y = l1->p[0].y;
|
|
}
|
|
else if ((FPeq(l1->p[1].x, l2->p[0].x) && FPeq(l1->p[1].y, l2->p[0].y)) ||
|
|
(FPeq(l1->p[1].x, l2->p[1].x) && FPeq(l1->p[1].y, l2->p[1].y)))
|
|
{
|
|
result->x = l1->p[1].x;
|
|
result->y = l1->p[1].y;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* lseg_interpt -
|
|
* Find the intersection point of two segments (if any).
|
|
*/
|
|
Datum
|
|
lseg_interpt(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
Point *result;
|
|
|
|
result = lseg_interpt_internal(l1, l2);
|
|
if (!PointerIsValid(result))
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for position comparisons of differently-typed
|
|
** 2D objects.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*---------------------------------------------------------------------
|
|
* dist_
|
|
* Minimum distance from one object to another.
|
|
*-------------------------------------------------------------------*/
|
|
|
|
Datum
|
|
dist_pl(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
|
|
PG_RETURN_FLOAT8(dist_pl_internal(pt, line));
|
|
}
|
|
|
|
static double
|
|
dist_pl_internal(Point *pt, LINE *line)
|
|
{
|
|
return (line->A * pt->x + line->B * pt->y + line->C) /
|
|
HYPOT(line->A, line->B);
|
|
}
|
|
|
|
Datum
|
|
dist_ps(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LSEG *lseg = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_FLOAT8(dist_ps_internal(pt, lseg));
|
|
}
|
|
|
|
static double
|
|
dist_ps_internal(Point *pt, LSEG *lseg)
|
|
{
|
|
double m; /* slope of perp. */
|
|
LINE *ln;
|
|
double result,
|
|
tmpdist;
|
|
Point *ip;
|
|
|
|
/*
|
|
* Construct a line perpendicular to the input segment
|
|
* and through the input point
|
|
*/
|
|
if (lseg->p[1].x == lseg->p[0].x)
|
|
m = 0;
|
|
else if (lseg->p[1].y == lseg->p[0].y)
|
|
m = (double) DBL_MAX; /* slope is infinite */
|
|
else
|
|
m = (lseg->p[0].x - lseg->p[1].x) / (lseg->p[1].y - lseg->p[0].y);
|
|
ln = line_construct_pm(pt, m);
|
|
|
|
#ifdef GEODEBUG
|
|
printf("dist_ps- line is A=%g B=%g C=%g from (point) slope (%f,%f) %g\n",
|
|
ln->A, ln->B, ln->C, pt->x, pt->y, m);
|
|
#endif
|
|
|
|
/*
|
|
* Calculate distance to the line segment or to the nearest endpoint of
|
|
* the segment.
|
|
*/
|
|
|
|
/* intersection is on the line segment? */
|
|
if ((ip = interpt_sl(lseg, ln)) != NULL)
|
|
{
|
|
/* yes, so use distance to the intersection point */
|
|
result = point_dt(pt, ip);
|
|
#ifdef GEODEBUG
|
|
printf("dist_ps- distance is %f to intersection point is (%f,%f)\n",
|
|
result, ip->x, ip->y);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* no, so use distance to the nearer endpoint */
|
|
result = point_dt(pt, &lseg->p[0]);
|
|
tmpdist = point_dt(pt, &lseg->p[1]);
|
|
if (tmpdist < result)
|
|
result = tmpdist;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
** Distance from a point to a path
|
|
*/
|
|
Datum
|
|
dist_ppath(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
PATH *path = PG_GETARG_PATH_P(1);
|
|
float8 result = 0.0; /* keep compiler quiet */
|
|
bool have_min = false;
|
|
float8 tmp;
|
|
int i;
|
|
LSEG lseg;
|
|
|
|
switch (path->npts)
|
|
{
|
|
case 0:
|
|
/* no points in path? then result is undefined... */
|
|
PG_RETURN_NULL();
|
|
case 1:
|
|
/* one point in path? then get distance between two points... */
|
|
result = point_dt(pt, &path->p[0]);
|
|
break;
|
|
default:
|
|
/* make sure the path makes sense... */
|
|
Assert(path->npts > 1);
|
|
|
|
/*
|
|
* the distance from a point to a path is the smallest distance
|
|
* from the point to any of its constituent segments.
|
|
*/
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
int iprev;
|
|
|
|
if (i > 0)
|
|
iprev = i - 1;
|
|
else
|
|
{
|
|
if (!path->closed)
|
|
continue;
|
|
iprev = path->npts - 1; /* include the closure segment */
|
|
}
|
|
|
|
statlseg_construct(&lseg, &path->p[iprev], &path->p[i]);
|
|
tmp = dist_ps_internal(pt, &lseg);
|
|
if (!have_min || tmp < result)
|
|
{
|
|
result = tmp;
|
|
have_min = true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
dist_pb(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
float8 result;
|
|
Point *near;
|
|
|
|
near = DatumGetPointP(DirectFunctionCall2(close_pb,
|
|
PointPGetDatum(pt),
|
|
BoxPGetDatum(box)));
|
|
result = point_dt(near, pt);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
dist_sl(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
float8 result,
|
|
d2;
|
|
|
|
if (has_interpt_sl(lseg, line))
|
|
result = 0.0;
|
|
else
|
|
{
|
|
result = dist_pl_internal(&lseg->p[0], line);
|
|
d2 = dist_pl_internal(&lseg->p[1], line);
|
|
/* XXX shouldn't we take the min not max? */
|
|
if (d2 > result)
|
|
result = d2;
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
dist_sb(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
Point *tmp;
|
|
Datum result;
|
|
|
|
tmp = DatumGetPointP(DirectFunctionCall2(close_sb,
|
|
LsegPGetDatum(lseg),
|
|
BoxPGetDatum(box)));
|
|
result = DirectFunctionCall2(dist_pb,
|
|
PointPGetDatum(tmp),
|
|
BoxPGetDatum(box));
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
dist_lb(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef NOT_USED
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
#endif
|
|
|
|
/* need to think about this one for a while */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("function \"dist_lb\" not implemented")));
|
|
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
|
|
Datum
|
|
dist_cpoly(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(1);
|
|
float8 result;
|
|
float8 d;
|
|
int i;
|
|
LSEG seg;
|
|
|
|
if (point_inside(&(circle->center), poly->npts, poly->p) != 0)
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("dist_cpoly- center inside of polygon\n");
|
|
#endif
|
|
PG_RETURN_FLOAT8(0.0);
|
|
}
|
|
|
|
/* initialize distance with segment between first and last points */
|
|
seg.p[0].x = poly->p[0].x;
|
|
seg.p[0].y = poly->p[0].y;
|
|
seg.p[1].x = poly->p[poly->npts - 1].x;
|
|
seg.p[1].y = poly->p[poly->npts - 1].y;
|
|
result = dist_ps_internal(&circle->center, &seg);
|
|
#ifdef GEODEBUG
|
|
printf("dist_cpoly- segment 0/n distance is %f\n", result);
|
|
#endif
|
|
|
|
/* check distances for other segments */
|
|
for (i = 0; (i < poly->npts - 1); i++)
|
|
{
|
|
seg.p[0].x = poly->p[i].x;
|
|
seg.p[0].y = poly->p[i].y;
|
|
seg.p[1].x = poly->p[i + 1].x;
|
|
seg.p[1].y = poly->p[i + 1].y;
|
|
d = dist_ps_internal(&circle->center, &seg);
|
|
#ifdef GEODEBUG
|
|
printf("dist_cpoly- segment %d distance is %f\n", (i + 1), d);
|
|
#endif
|
|
if (d < result)
|
|
result = d;
|
|
}
|
|
|
|
result -= circle->radius;
|
|
if (result < 0)
|
|
result = 0;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------
|
|
* interpt_
|
|
* Intersection point of objects.
|
|
* We choose to ignore the "point" of intersection between
|
|
* lines and boxes, since there are typically two.
|
|
*-------------------------------------------------------------------*/
|
|
|
|
/* Get intersection point of lseg and line; returns NULL if no intersection */
|
|
static Point *
|
|
interpt_sl(LSEG *lseg, LINE *line)
|
|
{
|
|
LINE tmp;
|
|
Point *p;
|
|
|
|
line_construct_pts(&tmp, &lseg->p[0], &lseg->p[1]);
|
|
p = line_interpt_internal(&tmp, line);
|
|
#ifdef GEODEBUG
|
|
printf("interpt_sl- segment is (%.*g %.*g) (%.*g %.*g)\n",
|
|
DBL_DIG, lseg->p[0].x, DBL_DIG, lseg->p[0].y, DBL_DIG, lseg->p[1].x, DBL_DIG, lseg->p[1].y);
|
|
printf("interpt_sl- segment becomes line A=%.*g B=%.*g C=%.*g\n",
|
|
DBL_DIG, tmp.A, DBL_DIG, tmp.B, DBL_DIG, tmp.C);
|
|
#endif
|
|
if (PointerIsValid(p))
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("interpt_sl- intersection point is (%.*g %.*g)\n", DBL_DIG, p->x, DBL_DIG, p->y);
|
|
#endif
|
|
if (on_ps_internal(p, lseg))
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("interpt_sl- intersection point is on segment\n");
|
|
#endif
|
|
}
|
|
else
|
|
p = NULL;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* variant: just indicate if intersection point exists */
|
|
static bool
|
|
has_interpt_sl(LSEG *lseg, LINE *line)
|
|
{
|
|
Point *tmp;
|
|
|
|
tmp = interpt_sl(lseg, line);
|
|
if (tmp)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------
|
|
* close_
|
|
* Point of closest proximity between objects.
|
|
*-------------------------------------------------------------------*/
|
|
|
|
/* close_pl -
|
|
* The intersection point of a perpendicular of the line
|
|
* through the point.
|
|
*/
|
|
Datum
|
|
close_pl(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
Point *result;
|
|
LINE *tmp;
|
|
double invm;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
#ifdef NOT_USED
|
|
if (FPeq(line->A, -1.0) && FPzero(line->B))
|
|
{ /* vertical */
|
|
}
|
|
#endif
|
|
if (FPzero(line->B)) /* vertical? */
|
|
{
|
|
result->x = line->C;
|
|
result->y = pt->y;
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
if (FPzero(line->A)) /* horizontal? */
|
|
{
|
|
result->x = pt->x;
|
|
result->y = line->C;
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
/* drop a perpendicular and find the intersection point */
|
|
#ifdef NOT_USED
|
|
invm = -1.0 / line->m;
|
|
#endif
|
|
/* invert and flip the sign on the slope to get a perpendicular */
|
|
invm = line->B / line->A;
|
|
tmp = line_construct_pm(pt, invm);
|
|
result = line_interpt_internal(tmp, line);
|
|
Assert(result != NULL);
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
|
|
/* close_ps()
|
|
* Closest point on line segment to specified point.
|
|
* Take the closest endpoint if the point is left, right,
|
|
* above, or below the segment, otherwise find the intersection
|
|
* point of the segment and its perpendicular through the point.
|
|
*
|
|
* Some tricky code here, relying on boolean expressions
|
|
* evaluating to only zero or one to use as an array index.
|
|
* bug fixes by gthaker@atl.lmco.com; May 1, 1998
|
|
*/
|
|
Datum
|
|
close_ps(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LSEG *lseg = PG_GETARG_LSEG_P(1);
|
|
Point *result = NULL;
|
|
LINE *tmp;
|
|
double invm;
|
|
int xh,
|
|
yh;
|
|
|
|
#ifdef GEODEBUG
|
|
printf("close_sp:pt->x %f pt->y %f\nlseg(0).x %f lseg(0).y %f lseg(1).x %f lseg(1).y %f\n",
|
|
pt->x, pt->y, lseg->p[0].x, lseg->p[0].y,
|
|
lseg->p[1].x, lseg->p[1].y);
|
|
#endif
|
|
|
|
/* xh (or yh) is the index of upper x( or y) end point of lseg */
|
|
/* !xh (or !yh) is the index of lower x( or y) end point of lseg */
|
|
xh = lseg->p[0].x < lseg->p[1].x;
|
|
yh = lseg->p[0].y < lseg->p[1].y;
|
|
|
|
if (FPeq(lseg->p[0].x, lseg->p[1].x)) /* vertical? */
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("close_ps- segment is vertical\n");
|
|
#endif
|
|
/* first check if point is below or above the entire lseg. */
|
|
if (pt->y < lseg->p[!yh].y)
|
|
result = point_copy(&lseg->p[!yh]); /* below the lseg */
|
|
else if (pt->y > lseg->p[yh].y)
|
|
result = point_copy(&lseg->p[yh]); /* above the lseg */
|
|
if (result != NULL)
|
|
PG_RETURN_POINT_P(result);
|
|
|
|
/* point lines along (to left or right) of the vertical lseg. */
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
result->x = lseg->p[0].x;
|
|
result->y = pt->y;
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
else if (FPeq(lseg->p[0].y, lseg->p[1].y)) /* horizontal? */
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("close_ps- segment is horizontal\n");
|
|
#endif
|
|
/* first check if point is left or right of the entire lseg. */
|
|
if (pt->x < lseg->p[!xh].x)
|
|
result = point_copy(&lseg->p[!xh]); /* left of the lseg */
|
|
else if (pt->x > lseg->p[xh].x)
|
|
result = point_copy(&lseg->p[xh]); /* right of the lseg */
|
|
if (result != NULL)
|
|
PG_RETURN_POINT_P(result);
|
|
|
|
/* point lines along (at top or below) the horiz. lseg. */
|
|
result = (Point *) palloc(sizeof(Point));
|
|
result->x = pt->x;
|
|
result->y = lseg->p[0].y;
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/*
|
|
* vert. and horiz. cases are down, now check if the closest point is one
|
|
* of the end points or someplace on the lseg.
|
|
*/
|
|
|
|
invm = -1.0 / point_sl(&(lseg->p[0]), &(lseg->p[1]));
|
|
tmp = line_construct_pm(&lseg->p[!yh], invm); /* lower edge of the
|
|
* "band" */
|
|
if (pt->y < (tmp->A * pt->x + tmp->C))
|
|
{ /* we are below the lower edge */
|
|
result = point_copy(&lseg->p[!yh]); /* below the lseg, take lower
|
|
* end pt */
|
|
#ifdef GEODEBUG
|
|
printf("close_ps below: tmp A %f B %f C %f m %f\n",
|
|
tmp->A, tmp->B, tmp->C, tmp->m);
|
|
#endif
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
tmp = line_construct_pm(&lseg->p[yh], invm); /* upper edge of the
|
|
* "band" */
|
|
if (pt->y > (tmp->A * pt->x + tmp->C))
|
|
{ /* we are below the lower edge */
|
|
result = point_copy(&lseg->p[yh]); /* above the lseg, take higher
|
|
* end pt */
|
|
#ifdef GEODEBUG
|
|
printf("close_ps above: tmp A %f B %f C %f m %f\n",
|
|
tmp->A, tmp->B, tmp->C, tmp->m);
|
|
#endif
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/*
|
|
* at this point the "normal" from point will hit lseg. The closet point
|
|
* will be somewhere on the lseg
|
|
*/
|
|
tmp = line_construct_pm(pt, invm);
|
|
#ifdef GEODEBUG
|
|
printf("close_ps- tmp A %f B %f C %f m %f\n",
|
|
tmp->A, tmp->B, tmp->C, tmp->m);
|
|
#endif
|
|
result = interpt_sl(lseg, tmp);
|
|
Assert(result != NULL);
|
|
#ifdef GEODEBUG
|
|
printf("close_ps- result.x %f result.y %f\n", result->x, result->y);
|
|
#endif
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
|
|
/* close_lseg()
|
|
* Closest point to l1 on l2.
|
|
*/
|
|
Datum
|
|
close_lseg(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *l1 = PG_GETARG_LSEG_P(0);
|
|
LSEG *l2 = PG_GETARG_LSEG_P(1);
|
|
Point *result = NULL;
|
|
Point point;
|
|
double dist;
|
|
double d;
|
|
|
|
d = dist_ps_internal(&l1->p[0], l2);
|
|
dist = d;
|
|
memcpy(&point, &l1->p[0], sizeof(Point));
|
|
|
|
if ((d = dist_ps_internal(&l1->p[1], l2)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&point, &l1->p[1], sizeof(Point));
|
|
}
|
|
|
|
if (dist_ps_internal(&l2->p[0], l1) < dist)
|
|
{
|
|
result = DatumGetPointP(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(&l2->p[0]),
|
|
LsegPGetDatum(l1)));
|
|
memcpy(&point, result, sizeof(Point));
|
|
result = DatumGetPointP(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(&point),
|
|
LsegPGetDatum(l2)));
|
|
}
|
|
|
|
if (dist_ps_internal(&l2->p[1], l1) < dist)
|
|
{
|
|
result = DatumGetPointP(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(&l2->p[1]),
|
|
LsegPGetDatum(l1)));
|
|
memcpy(&point, result, sizeof(Point));
|
|
result = DatumGetPointP(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(&point),
|
|
LsegPGetDatum(l2)));
|
|
}
|
|
|
|
if (result == NULL)
|
|
result = point_copy(&point);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/* close_pb()
|
|
* Closest point on or in box to specified point.
|
|
*/
|
|
Datum
|
|
close_pb(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
LSEG lseg,
|
|
seg;
|
|
Point point;
|
|
double dist,
|
|
d;
|
|
|
|
if (DatumGetBool(DirectFunctionCall2(on_pb,
|
|
PointPGetDatum(pt),
|
|
BoxPGetDatum(box))))
|
|
PG_RETURN_POINT_P(pt);
|
|
|
|
/* pairwise check lseg distances */
|
|
point.x = box->low.x;
|
|
point.y = box->high.y;
|
|
statlseg_construct(&lseg, &box->low, &point);
|
|
dist = dist_ps_internal(pt, &lseg);
|
|
|
|
statlseg_construct(&seg, &box->high, &point);
|
|
if ((d = dist_ps_internal(pt, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&lseg, &seg, sizeof(lseg));
|
|
}
|
|
|
|
point.x = box->high.x;
|
|
point.y = box->low.y;
|
|
statlseg_construct(&seg, &box->low, &point);
|
|
if ((d = dist_ps_internal(pt, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&lseg, &seg, sizeof(lseg));
|
|
}
|
|
|
|
statlseg_construct(&seg, &box->high, &point);
|
|
if ((d = dist_ps_internal(pt, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&lseg, &seg, sizeof(lseg));
|
|
}
|
|
|
|
PG_RETURN_DATUM(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(pt),
|
|
LsegPGetDatum(&lseg)));
|
|
}
|
|
|
|
/* close_sl()
|
|
* Closest point on line to line segment.
|
|
*
|
|
* XXX THIS CODE IS WRONG
|
|
* The code is actually calculating the point on the line segment
|
|
* which is backwards from the routine naming convention.
|
|
* Copied code to new routine close_ls() but haven't fixed this one yet.
|
|
* - thomas 1998-01-31
|
|
*/
|
|
Datum
|
|
close_sl(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
Point *result;
|
|
float8 d1,
|
|
d2;
|
|
|
|
result = interpt_sl(lseg, line);
|
|
if (result)
|
|
PG_RETURN_POINT_P(result);
|
|
|
|
d1 = dist_pl_internal(&lseg->p[0], line);
|
|
d2 = dist_pl_internal(&lseg->p[1], line);
|
|
if (d1 < d2)
|
|
result = point_copy(&lseg->p[0]);
|
|
else
|
|
result = point_copy(&lseg->p[1]);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/* close_ls()
|
|
* Closest point on line segment to line.
|
|
*/
|
|
Datum
|
|
close_ls(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
LSEG *lseg = PG_GETARG_LSEG_P(1);
|
|
Point *result;
|
|
float8 d1,
|
|
d2;
|
|
|
|
result = interpt_sl(lseg, line);
|
|
if (result)
|
|
PG_RETURN_POINT_P(result);
|
|
|
|
d1 = dist_pl_internal(&lseg->p[0], line);
|
|
d2 = dist_pl_internal(&lseg->p[1], line);
|
|
if (d1 < d2)
|
|
result = point_copy(&lseg->p[0]);
|
|
else
|
|
result = point_copy(&lseg->p[1]);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
/* close_sb()
|
|
* Closest point on or in box to line segment.
|
|
*/
|
|
Datum
|
|
close_sb(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
Point point;
|
|
LSEG bseg,
|
|
seg;
|
|
double dist,
|
|
d;
|
|
|
|
/* segment intersects box? then just return closest point to center */
|
|
if (DatumGetBool(DirectFunctionCall2(inter_sb,
|
|
LsegPGetDatum(lseg),
|
|
BoxPGetDatum(box))))
|
|
{
|
|
box_cn(&point, box);
|
|
PG_RETURN_DATUM(DirectFunctionCall2(close_ps,
|
|
PointPGetDatum(&point),
|
|
LsegPGetDatum(lseg)));
|
|
}
|
|
|
|
/* pairwise check lseg distances */
|
|
point.x = box->low.x;
|
|
point.y = box->high.y;
|
|
statlseg_construct(&bseg, &box->low, &point);
|
|
dist = lseg_dt(lseg, &bseg);
|
|
|
|
statlseg_construct(&seg, &box->high, &point);
|
|
if ((d = lseg_dt(lseg, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&bseg, &seg, sizeof(bseg));
|
|
}
|
|
|
|
point.x = box->high.x;
|
|
point.y = box->low.y;
|
|
statlseg_construct(&seg, &box->low, &point);
|
|
if ((d = lseg_dt(lseg, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&bseg, &seg, sizeof(bseg));
|
|
}
|
|
|
|
statlseg_construct(&seg, &box->high, &point);
|
|
if ((d = lseg_dt(lseg, &seg)) < dist)
|
|
{
|
|
dist = d;
|
|
memcpy(&bseg, &seg, sizeof(bseg));
|
|
}
|
|
|
|
/* OK, we now have the closest line segment on the box boundary */
|
|
PG_RETURN_DATUM(DirectFunctionCall2(close_lseg,
|
|
LsegPGetDatum(lseg),
|
|
LsegPGetDatum(&bseg)));
|
|
}
|
|
|
|
Datum
|
|
close_lb(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef NOT_USED
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
#endif
|
|
|
|
/* think about this one for a while */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("function \"close_lb\" not implemented")));
|
|
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*---------------------------------------------------------------------
|
|
* on_
|
|
* Whether one object lies completely within another.
|
|
*-------------------------------------------------------------------*/
|
|
|
|
/* on_pl -
|
|
* Does the point satisfy the equation?
|
|
*/
|
|
Datum
|
|
on_pl(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPzero(line->A * pt->x + line->B * pt->y + line->C));
|
|
}
|
|
|
|
|
|
/* on_ps -
|
|
* Determine colinearity by detecting a triangle inequality.
|
|
* This algorithm seems to behave nicely even with lsb residues - tgl 1997-07-09
|
|
*/
|
|
Datum
|
|
on_ps(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
LSEG *lseg = PG_GETARG_LSEG_P(1);
|
|
|
|
PG_RETURN_BOOL(on_ps_internal(pt, lseg));
|
|
}
|
|
|
|
static bool
|
|
on_ps_internal(Point *pt, LSEG *lseg)
|
|
{
|
|
return FPeq(point_dt(pt, &lseg->p[0]) + point_dt(pt, &lseg->p[1]),
|
|
point_dt(&lseg->p[0], &lseg->p[1]));
|
|
}
|
|
|
|
Datum
|
|
on_pb(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(pt->x <= box->high.x && pt->x >= box->low.x &&
|
|
pt->y <= box->high.y && pt->y >= box->low.y);
|
|
}
|
|
|
|
/* on_ppath -
|
|
* Whether a point lies within (on) a polyline.
|
|
* If open, we have to (groan) check each segment.
|
|
* (uses same algorithm as for point intersecting segment - tgl 1997-07-09)
|
|
* If closed, we use the old O(n) ray method for point-in-polygon.
|
|
* The ray is horizontal, from pt out to the right.
|
|
* Each segment that crosses the ray counts as an
|
|
* intersection; note that an endpoint or edge may touch
|
|
* but not cross.
|
|
* (we can do p-in-p in lg(n), but it takes preprocessing)
|
|
*/
|
|
Datum
|
|
on_ppath(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *pt = PG_GETARG_POINT_P(0);
|
|
PATH *path = PG_GETARG_PATH_P(1);
|
|
int i,
|
|
n;
|
|
double a,
|
|
b;
|
|
|
|
/*-- OPEN --*/
|
|
if (!path->closed)
|
|
{
|
|
n = path->npts - 1;
|
|
a = point_dt(pt, &path->p[0]);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
b = point_dt(pt, &path->p[i + 1]);
|
|
if (FPeq(a + b,
|
|
point_dt(&path->p[i], &path->p[i + 1])))
|
|
PG_RETURN_BOOL(true);
|
|
a = b;
|
|
}
|
|
PG_RETURN_BOOL(false);
|
|
}
|
|
|
|
/*-- CLOSED --*/
|
|
PG_RETURN_BOOL(point_inside(pt, path->npts, path->p) != 0);
|
|
}
|
|
|
|
Datum
|
|
on_sl(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
|
|
PG_RETURN_BOOL(DatumGetBool(DirectFunctionCall2(on_pl,
|
|
PointPGetDatum(&lseg->p[0]),
|
|
LinePGetDatum(line))) &&
|
|
DatumGetBool(DirectFunctionCall2(on_pl,
|
|
PointPGetDatum(&lseg->p[1]),
|
|
LinePGetDatum(line))));
|
|
}
|
|
|
|
Datum
|
|
on_sb(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
|
|
PG_RETURN_BOOL(DatumGetBool(DirectFunctionCall2(on_pb,
|
|
PointPGetDatum(&lseg->p[0]),
|
|
BoxPGetDatum(box))) &&
|
|
DatumGetBool(DirectFunctionCall2(on_pb,
|
|
PointPGetDatum(&lseg->p[1]),
|
|
BoxPGetDatum(box))));
|
|
}
|
|
|
|
/*---------------------------------------------------------------------
|
|
* inter_
|
|
* Whether one object intersects another.
|
|
*-------------------------------------------------------------------*/
|
|
|
|
Datum
|
|
inter_sl(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
LINE *line = PG_GETARG_LINE_P(1);
|
|
|
|
PG_RETURN_BOOL(has_interpt_sl(lseg, line));
|
|
}
|
|
|
|
/* inter_sb()
|
|
* Do line segment and box intersect?
|
|
*
|
|
* Segment completely inside box counts as intersection.
|
|
* If you want only segments crossing box boundaries,
|
|
* try converting box to path first.
|
|
*
|
|
* Optimize for non-intersection by checking for box intersection first.
|
|
* - thomas 1998-01-30
|
|
*/
|
|
Datum
|
|
inter_sb(PG_FUNCTION_ARGS)
|
|
{
|
|
LSEG *lseg = PG_GETARG_LSEG_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
BOX lbox;
|
|
LSEG bseg;
|
|
Point point;
|
|
|
|
lbox.low.x = Min(lseg->p[0].x, lseg->p[1].x);
|
|
lbox.low.y = Min(lseg->p[0].y, lseg->p[1].y);
|
|
lbox.high.x = Max(lseg->p[0].x, lseg->p[1].x);
|
|
lbox.high.y = Max(lseg->p[0].y, lseg->p[1].y);
|
|
|
|
/* nothing close to overlap? then not going to intersect */
|
|
if (!box_ov(&lbox, box))
|
|
PG_RETURN_BOOL(false);
|
|
|
|
/* an endpoint of segment is inside box? then clearly intersects */
|
|
if (DatumGetBool(DirectFunctionCall2(on_pb,
|
|
PointPGetDatum(&lseg->p[0]),
|
|
BoxPGetDatum(box))) ||
|
|
DatumGetBool(DirectFunctionCall2(on_pb,
|
|
PointPGetDatum(&lseg->p[1]),
|
|
BoxPGetDatum(box))))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
/* pairwise check lseg intersections */
|
|
point.x = box->low.x;
|
|
point.y = box->high.y;
|
|
statlseg_construct(&bseg, &box->low, &point);
|
|
if (lseg_intersect_internal(&bseg, lseg))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
statlseg_construct(&bseg, &box->high, &point);
|
|
if (lseg_intersect_internal(&bseg, lseg))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
point.x = box->high.x;
|
|
point.y = box->low.y;
|
|
statlseg_construct(&bseg, &box->low, &point);
|
|
if (lseg_intersect_internal(&bseg, lseg))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
statlseg_construct(&bseg, &box->high, &point);
|
|
if (lseg_intersect_internal(&bseg, lseg))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
/* if we dropped through, no two segs intersected */
|
|
PG_RETURN_BOOL(false);
|
|
}
|
|
|
|
/* inter_lb()
|
|
* Do line and box intersect?
|
|
*/
|
|
Datum
|
|
inter_lb(PG_FUNCTION_ARGS)
|
|
{
|
|
LINE *line = PG_GETARG_LINE_P(0);
|
|
BOX *box = PG_GETARG_BOX_P(1);
|
|
LSEG bseg;
|
|
Point p1,
|
|
p2;
|
|
|
|
/* pairwise check lseg intersections */
|
|
p1.x = box->low.x;
|
|
p1.y = box->low.y;
|
|
p2.x = box->low.x;
|
|
p2.y = box->high.y;
|
|
statlseg_construct(&bseg, &p1, &p2);
|
|
if (has_interpt_sl(&bseg, line))
|
|
PG_RETURN_BOOL(true);
|
|
p1.x = box->high.x;
|
|
p1.y = box->high.y;
|
|
statlseg_construct(&bseg, &p1, &p2);
|
|
if (has_interpt_sl(&bseg, line))
|
|
PG_RETURN_BOOL(true);
|
|
p2.x = box->high.x;
|
|
p2.y = box->low.y;
|
|
statlseg_construct(&bseg, &p1, &p2);
|
|
if (has_interpt_sl(&bseg, line))
|
|
PG_RETURN_BOOL(true);
|
|
p1.x = box->low.x;
|
|
p1.y = box->low.y;
|
|
statlseg_construct(&bseg, &p1, &p2);
|
|
if (has_interpt_sl(&bseg, line))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
/* if we dropped through, no intersection */
|
|
PG_RETURN_BOOL(false);
|
|
}
|
|
|
|
/*------------------------------------------------------------------
|
|
* The following routines define a data type and operator class for
|
|
* POLYGONS .... Part of which (the polygon's bounding box) is built on
|
|
* top of the BOX data type.
|
|
*
|
|
* make_bound_box - create the bounding box for the input polygon
|
|
*------------------------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------------------------
|
|
* Make the smallest bounding box for the given polygon.
|
|
*---------------------------------------------------------------------*/
|
|
static void
|
|
make_bound_box(POLYGON *poly)
|
|
{
|
|
int i;
|
|
double x1,
|
|
y1,
|
|
x2,
|
|
y2;
|
|
|
|
if (poly->npts > 0)
|
|
{
|
|
x2 = x1 = poly->p[0].x;
|
|
y2 = y1 = poly->p[0].y;
|
|
for (i = 1; i < poly->npts; i++)
|
|
{
|
|
if (poly->p[i].x < x1)
|
|
x1 = poly->p[i].x;
|
|
if (poly->p[i].x > x2)
|
|
x2 = poly->p[i].x;
|
|
if (poly->p[i].y < y1)
|
|
y1 = poly->p[i].y;
|
|
if (poly->p[i].y > y2)
|
|
y2 = poly->p[i].y;
|
|
}
|
|
|
|
box_fill(&(poly->boundbox), x1, x2, y1, y2);
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("cannot create bounding box for empty polygon")));
|
|
}
|
|
|
|
/*------------------------------------------------------------------
|
|
* poly_in - read in the polygon from a string specification
|
|
*
|
|
* External format:
|
|
* "((x0,y0),...,(xn,yn))"
|
|
* "x0,y0,...,xn,yn"
|
|
* also supports the older style "(x1,...,xn,y1,...yn)"
|
|
*------------------------------------------------------------------*/
|
|
Datum
|
|
poly_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
POLYGON *poly;
|
|
int npts;
|
|
int size;
|
|
int isopen;
|
|
char *s;
|
|
|
|
if ((npts = pair_count(str, ',')) <= 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type polygon: \"%s\"", str)));
|
|
|
|
size = offsetof(POLYGON, p[0]) +sizeof(poly->p[0]) * npts;
|
|
poly = (POLYGON *) palloc0(size); /* zero any holes */
|
|
|
|
SET_VARSIZE(poly, size);
|
|
poly->npts = npts;
|
|
|
|
if ((!path_decode(FALSE, npts, str, &isopen, &s, &(poly->p[0])))
|
|
|| (*s != '\0'))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type polygon: \"%s\"", str)));
|
|
|
|
make_bound_box(poly);
|
|
|
|
PG_RETURN_POLYGON_P(poly);
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
* poly_out - convert internal POLYGON representation to the
|
|
* character string format "((f8,f8),...,(f8,f8))"
|
|
*---------------------------------------------------------------*/
|
|
Datum
|
|
poly_out(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
|
|
PG_RETURN_CSTRING(path_encode(TRUE, poly->npts, poly->p));
|
|
}
|
|
|
|
/*
|
|
* poly_recv - converts external binary format to polygon
|
|
*
|
|
* External representation is int32 number of points, and the points.
|
|
* We recompute the bounding box on read, instead of trusting it to
|
|
* be valid. (Checking it would take just as long, so may as well
|
|
* omit it from external representation.)
|
|
*/
|
|
Datum
|
|
poly_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
POLYGON *poly;
|
|
int32 npts;
|
|
int32 i;
|
|
int size;
|
|
|
|
npts = pq_getmsgint(buf, sizeof(int32));
|
|
if (npts <= 0 || npts >= (int32) ((INT_MAX - offsetof(POLYGON, p[0])) / sizeof(Point)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid number of points in external \"polygon\" value")));
|
|
|
|
size = offsetof(POLYGON, p[0]) +sizeof(poly->p[0]) * npts;
|
|
poly = (POLYGON *) palloc0(size); /* zero any holes */
|
|
|
|
SET_VARSIZE(poly, size);
|
|
poly->npts = npts;
|
|
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
poly->p[i].x = pq_getmsgfloat8(buf);
|
|
poly->p[i].y = pq_getmsgfloat8(buf);
|
|
}
|
|
|
|
make_bound_box(poly);
|
|
|
|
PG_RETURN_POLYGON_P(poly);
|
|
}
|
|
|
|
/*
|
|
* poly_send - converts polygon to binary format
|
|
*/
|
|
Datum
|
|
poly_send(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
StringInfoData buf;
|
|
int32 i;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint(&buf, poly->npts, sizeof(int32));
|
|
for (i = 0; i < poly->npts; i++)
|
|
{
|
|
pq_sendfloat8(&buf, poly->p[i].x);
|
|
pq_sendfloat8(&buf, poly->p[i].y);
|
|
}
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A strictly left of polygon B? i.e. is
|
|
* the right most point of A left of the left most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_left(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.high.x < polyb->boundbox.low.x;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A overlapping or left of polygon B? i.e. is
|
|
* the right most point of A at or left of the right most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_overleft(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.high.x <= polyb->boundbox.high.x;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A strictly right of polygon B? i.e. is
|
|
* the left most point of A right of the right most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_right(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.low.x > polyb->boundbox.high.x;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A overlapping or right of polygon B? i.e. is
|
|
* the left most point of A at or right of the left most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_overright(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.low.x >= polyb->boundbox.low.x;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A strictly below polygon B? i.e. is
|
|
* the upper most point of A below the lower most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_below(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.high.y < polyb->boundbox.low.y;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A overlapping or below polygon B? i.e. is
|
|
* the upper most point of A at or below the upper most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_overbelow(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.high.y <= polyb->boundbox.high.y;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A strictly above polygon B? i.e. is
|
|
* the lower most point of A above the upper most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_above(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.low.y > polyb->boundbox.high.y;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A overlapping or above polygon B? i.e. is
|
|
* the lower most point of A at or above the lower most point
|
|
* of B?
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_overabove(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
result = polya->boundbox.low.y >= polyb->boundbox.low.y;
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------
|
|
* Is polygon A the same as polygon B? i.e. are all the
|
|
* points the same?
|
|
* Check all points for matches in both forward and reverse
|
|
* direction since polygons are non-directional and are
|
|
* closed shapes.
|
|
*-------------------------------------------------------*/
|
|
Datum
|
|
poly_same(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
if (polya->npts != polyb->npts)
|
|
result = false;
|
|
else
|
|
result = plist_same(polya->npts, polya->p, polyb->p);
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------
|
|
* Determine if polygon A overlaps polygon B
|
|
*-----------------------------------------------------------------*/
|
|
Datum
|
|
poly_overlap(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
/* Quick check by bounding box */
|
|
result = (polya->npts > 0 && polyb->npts > 0 &&
|
|
box_ov(&polya->boundbox, &polyb->boundbox)) ? true : false;
|
|
|
|
/*
|
|
* Brute-force algorithm - try to find intersected edges,
|
|
* if so then polygons are overlapped else check is one
|
|
* polygon inside other or not by testing single point
|
|
* of them.
|
|
*/
|
|
if (result)
|
|
{
|
|
int ia, ib;
|
|
LSEG sa, sb;
|
|
|
|
/* Init first of polya's edge with last point */
|
|
sa.p[0] = polya->p[polya->npts - 1];
|
|
result = false;
|
|
|
|
for(ia=0; ia<polya->npts && result == false; ia++)
|
|
{
|
|
/* Second point of polya's edge is a current one */
|
|
sa.p[1] = polya->p[ia];
|
|
|
|
/* Init first of polyb's edge with last point */
|
|
sb.p[0] = polyb->p[polyb->npts - 1];
|
|
|
|
for(ib=0; ib<polyb->npts && result == false; ib++)
|
|
{
|
|
sb.p[1] = polyb->p[ib];
|
|
result = lseg_intersect_internal(&sa, &sb);
|
|
sb.p[0] = sb.p[1];
|
|
}
|
|
|
|
/*
|
|
* move current endpoint to the first point
|
|
* of next edge
|
|
*/
|
|
sa.p[0] = sa.p[1];
|
|
}
|
|
|
|
if (result==false)
|
|
{
|
|
result = ( point_inside(polya->p, polyb->npts, polyb->p)
|
|
||
|
|
point_inside(polyb->p, polya->npts, polya->p) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
/*
|
|
* Tests special kind of segment for in/out of polygon.
|
|
* Special kind means:
|
|
* - point a should be on segment s
|
|
* - segment (a,b) should not be contained by s
|
|
* Returns true if:
|
|
* - segment (a,b) is collinear to s and (a,b) is in polygon
|
|
* - segment (a,b) s not collinear to s. Note: that doesn't
|
|
* mean that segment is in polygon!
|
|
*/
|
|
|
|
static bool
|
|
touched_lseg_inside_poly(Point *a, Point *b, LSEG *s, POLYGON *poly, int start)
|
|
{
|
|
/* point a is on s, b is not */
|
|
LSEG t;
|
|
|
|
t.p[0] = *a;
|
|
t.p[1] = *b;
|
|
|
|
#define POINTEQ(pt1, pt2) (FPeq((pt1)->x, (pt2)->x) && FPeq((pt1)->y, (pt2)->y))
|
|
if ( POINTEQ(a, s->p) )
|
|
{
|
|
if ( on_ps_internal(s->p+1, &t) )
|
|
return lseg_inside_poly(b, s->p+1, poly, start);
|
|
}
|
|
else if (POINTEQ(a, s->p+1))
|
|
{
|
|
if ( on_ps_internal(s->p, &t) )
|
|
return lseg_inside_poly(b, s->p, poly, start);
|
|
}
|
|
else if ( on_ps_internal(s->p, &t) )
|
|
{
|
|
return lseg_inside_poly(b, s->p, poly, start);
|
|
}
|
|
else if ( on_ps_internal(s->p+1, &t) )
|
|
{
|
|
return lseg_inside_poly(b, s->p+1, poly, start);
|
|
}
|
|
|
|
return true; /* may be not true, but that will check later */
|
|
}
|
|
|
|
/*
|
|
* Returns true if segment (a,b) is in polygon, option
|
|
* start is used for optimization - function checks
|
|
* polygon's edges started from start
|
|
*/
|
|
static bool
|
|
lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start)
|
|
{
|
|
LSEG s,
|
|
t;
|
|
int i;
|
|
bool res = true,
|
|
intersection = false;
|
|
|
|
t.p[0] = *a;
|
|
t.p[1] = *b;
|
|
s.p[0] = poly->p[( start == 0) ? (poly->npts - 1) : (start - 1)];
|
|
|
|
for(i=start; i<poly->npts && res == true; i++)
|
|
{
|
|
Point *interpt;
|
|
|
|
s.p[1] = poly->p[i];
|
|
|
|
if ( on_ps_internal(t.p, &s) )
|
|
{
|
|
if ( on_ps_internal(t.p+1, &s) )
|
|
return true; /* t is contained by s */
|
|
|
|
/* Y-cross */
|
|
res = touched_lseg_inside_poly(t.p, t.p+1, &s, poly, i+1);
|
|
}
|
|
else if ( on_ps_internal(t.p+1, &s) )
|
|
{
|
|
/* Y-cross */
|
|
res = touched_lseg_inside_poly(t.p+1, t.p, &s, poly, i+1);
|
|
}
|
|
else if ( (interpt = lseg_interpt_internal(&t, &s)) != NULL )
|
|
{
|
|
/*
|
|
* segments are X-crossing, go to check each subsegment
|
|
*/
|
|
|
|
intersection = true;
|
|
res = lseg_inside_poly(t.p, interpt, poly, i+1);
|
|
if (res)
|
|
res = lseg_inside_poly(t.p+1, interpt, poly, i+1);
|
|
pfree(interpt);
|
|
}
|
|
|
|
s.p[0] = s.p[1];
|
|
}
|
|
|
|
if (res && !intersection)
|
|
{
|
|
Point p;
|
|
|
|
/*
|
|
* if X-intersection wasn't found then check central point
|
|
* of tested segment. In opposite case we already check all
|
|
* subsegments
|
|
*/
|
|
p.x = (t.p[0].x + t.p[1].x) / 2.0;
|
|
p.y = (t.p[0].y + t.p[1].y) / 2.0;
|
|
|
|
res = point_inside(&p, poly->npts, poly->p);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------
|
|
* Determine if polygon A contains polygon B.
|
|
*-----------------------------------------------------------------*/
|
|
Datum
|
|
poly_contain(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
bool result;
|
|
|
|
/*
|
|
* Quick check to see if bounding box is contained.
|
|
*/
|
|
if (polya->npts > 0 && polyb->npts > 0 &&
|
|
DatumGetBool(DirectFunctionCall2(box_contain,
|
|
BoxPGetDatum(&polya->boundbox),
|
|
BoxPGetDatum(&polyb->boundbox))))
|
|
{
|
|
int i;
|
|
LSEG s;
|
|
|
|
s.p[0] = polyb->p[polyb->npts - 1];
|
|
result = true;
|
|
|
|
for(i=0; i<polyb->npts && result == true; i++)
|
|
{
|
|
s.p[1] = polyb->p[i];
|
|
result = lseg_inside_poly(s.p, s.p+1, polya, 0);
|
|
s.p[0] = s.p[1];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = false;
|
|
}
|
|
|
|
/*
|
|
* Avoid leaking memory for toasted inputs ... needed for rtree indexes
|
|
*/
|
|
PG_FREE_IF_COPY(polya, 0);
|
|
PG_FREE_IF_COPY(polyb, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------
|
|
* Determine if polygon A is contained by polygon B
|
|
*-----------------------------------------------------------------*/
|
|
Datum
|
|
poly_contained(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum polya = PG_GETARG_DATUM(0);
|
|
Datum polyb = PG_GETARG_DATUM(1);
|
|
|
|
/* Just switch the arguments and pass it off to poly_contain */
|
|
PG_RETURN_DATUM(DirectFunctionCall2(poly_contain, polyb, polya));
|
|
}
|
|
|
|
|
|
Datum
|
|
poly_contain_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
Point *p = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOOL(point_inside(p, poly->npts, poly->p) != 0);
|
|
}
|
|
|
|
Datum
|
|
pt_contained_poly(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p = PG_GETARG_POINT_P(0);
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(1);
|
|
|
|
PG_RETURN_BOOL(point_inside(p, poly->npts, poly->p) != 0);
|
|
}
|
|
|
|
|
|
Datum
|
|
poly_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef NOT_USED
|
|
POLYGON *polya = PG_GETARG_POLYGON_P(0);
|
|
POLYGON *polyb = PG_GETARG_POLYGON_P(1);
|
|
#endif
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("function \"poly_distance\" not implemented")));
|
|
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D points.
|
|
**
|
|
***********************************************************************/
|
|
|
|
Datum
|
|
construct_point(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 x = PG_GETARG_FLOAT8(0);
|
|
float8 y = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_POINT_P(point_construct(x, y));
|
|
}
|
|
|
|
Datum
|
|
point_add(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p1 = PG_GETARG_POINT_P(0);
|
|
Point *p2 = PG_GETARG_POINT_P(1);
|
|
Point *result;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = (p1->x + p2->x);
|
|
result->y = (p1->y + p2->y);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
Datum
|
|
point_sub(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p1 = PG_GETARG_POINT_P(0);
|
|
Point *p2 = PG_GETARG_POINT_P(1);
|
|
Point *result;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = (p1->x - p2->x);
|
|
result->y = (p1->y - p2->y);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
Datum
|
|
point_mul(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p1 = PG_GETARG_POINT_P(0);
|
|
Point *p2 = PG_GETARG_POINT_P(1);
|
|
Point *result;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
result->x = (p1->x * p2->x) - (p1->y * p2->y);
|
|
result->y = (p1->x * p2->y) + (p1->y * p2->x);
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
Datum
|
|
point_div(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p1 = PG_GETARG_POINT_P(0);
|
|
Point *p2 = PG_GETARG_POINT_P(1);
|
|
Point *result;
|
|
double div;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
|
|
div = (p2->x * p2->x) + (p2->y * p2->y);
|
|
|
|
if (div == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result->x = ((p1->x * p2->x) + (p1->y * p2->y)) / div;
|
|
result->y = ((p2->x * p1->y) - (p2->y * p1->x)) / div;
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D boxes.
|
|
**
|
|
***********************************************************************/
|
|
|
|
Datum
|
|
points_box(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *p1 = PG_GETARG_POINT_P(0);
|
|
Point *p2 = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOX_P(box_construct(p1->x, p2->x, p1->y, p2->y));
|
|
}
|
|
|
|
Datum
|
|
box_add(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
Point *p = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOX_P(box_construct((box->high.x + p->x),
|
|
(box->low.x + p->x),
|
|
(box->high.y + p->y),
|
|
(box->low.y + p->y)));
|
|
}
|
|
|
|
Datum
|
|
box_sub(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
Point *p = PG_GETARG_POINT_P(1);
|
|
|
|
PG_RETURN_BOX_P(box_construct((box->high.x - p->x),
|
|
(box->low.x - p->x),
|
|
(box->high.y - p->y),
|
|
(box->low.y - p->y)));
|
|
}
|
|
|
|
Datum
|
|
box_mul(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
Point *p = PG_GETARG_POINT_P(1);
|
|
BOX *result;
|
|
Point *high,
|
|
*low;
|
|
|
|
high = DatumGetPointP(DirectFunctionCall2(point_mul,
|
|
PointPGetDatum(&box->high),
|
|
PointPGetDatum(p)));
|
|
low = DatumGetPointP(DirectFunctionCall2(point_mul,
|
|
PointPGetDatum(&box->low),
|
|
PointPGetDatum(p)));
|
|
|
|
result = box_construct(high->x, low->x, high->y, low->y);
|
|
|
|
PG_RETURN_BOX_P(result);
|
|
}
|
|
|
|
Datum
|
|
box_div(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
Point *p = PG_GETARG_POINT_P(1);
|
|
BOX *result;
|
|
Point *high,
|
|
*low;
|
|
|
|
high = DatumGetPointP(DirectFunctionCall2(point_div,
|
|
PointPGetDatum(&box->high),
|
|
PointPGetDatum(p)));
|
|
low = DatumGetPointP(DirectFunctionCall2(point_div,
|
|
PointPGetDatum(&box->low),
|
|
PointPGetDatum(p)));
|
|
|
|
result = box_construct(high->x, low->x, high->y, low->y);
|
|
|
|
PG_RETURN_BOX_P(result);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D paths.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/* path_add()
|
|
* Concatenate two paths (only if they are both open).
|
|
*/
|
|
Datum
|
|
path_add(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *p1 = PG_GETARG_PATH_P(0);
|
|
PATH *p2 = PG_GETARG_PATH_P(1);
|
|
PATH *result;
|
|
int size,
|
|
base_size;
|
|
int i;
|
|
|
|
if (p1->closed || p2->closed)
|
|
PG_RETURN_NULL();
|
|
|
|
base_size = sizeof(p1->p[0]) * (p1->npts + p2->npts);
|
|
size = offsetof(PATH, p[0]) +base_size;
|
|
|
|
/* Check for integer overflow */
|
|
if (base_size / sizeof(p1->p[0]) != (p1->npts + p2->npts) ||
|
|
size <= base_size)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("too many points requested")));
|
|
|
|
result = (PATH *) palloc(size);
|
|
|
|
SET_VARSIZE(result, size);
|
|
result->npts = (p1->npts + p2->npts);
|
|
result->closed = p1->closed;
|
|
|
|
for (i = 0; i < p1->npts; i++)
|
|
{
|
|
result->p[i].x = p1->p[i].x;
|
|
result->p[i].y = p1->p[i].y;
|
|
}
|
|
for (i = 0; i < p2->npts; i++)
|
|
{
|
|
result->p[i + p1->npts].x = p2->p[i].x;
|
|
result->p[i + p1->npts].y = p2->p[i].y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(result);
|
|
}
|
|
|
|
/* path_add_pt()
|
|
* Translation operators.
|
|
*/
|
|
Datum
|
|
path_add_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
int i;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
path->p[i].x += point->x;
|
|
path->p[i].y += point->y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
Datum
|
|
path_sub_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
int i;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
path->p[i].x -= point->x;
|
|
path->p[i].y -= point->y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
/* path_mul_pt()
|
|
* Rotation and scaling operators.
|
|
*/
|
|
Datum
|
|
path_mul_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
Point *p;
|
|
int i;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
p = DatumGetPointP(DirectFunctionCall2(point_mul,
|
|
PointPGetDatum(&path->p[i]),
|
|
PointPGetDatum(point)));
|
|
path->p[i].x = p->x;
|
|
path->p[i].y = p->y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
Datum
|
|
path_div_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P_COPY(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
Point *p;
|
|
int i;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
p = DatumGetPointP(DirectFunctionCall2(point_div,
|
|
PointPGetDatum(&path->p[i]),
|
|
PointPGetDatum(point)));
|
|
path->p[i].x = p->x;
|
|
path->p[i].y = p->y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
|
|
Datum
|
|
path_center(PG_FUNCTION_ARGS)
|
|
{
|
|
#ifdef NOT_USED
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
#endif
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("function \"path_center\" not implemented")));
|
|
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
Datum
|
|
path_poly(PG_FUNCTION_ARGS)
|
|
{
|
|
PATH *path = PG_GETARG_PATH_P(0);
|
|
POLYGON *poly;
|
|
int size;
|
|
int i;
|
|
|
|
/* This is not very consistent --- other similar cases return NULL ... */
|
|
if (!path->closed)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("open path cannot be converted to polygon")));
|
|
|
|
size = offsetof(POLYGON, p[0]) +sizeof(poly->p[0]) * path->npts;
|
|
poly = (POLYGON *) palloc(size);
|
|
|
|
SET_VARSIZE(poly, size);
|
|
poly->npts = path->npts;
|
|
|
|
for (i = 0; i < path->npts; i++)
|
|
{
|
|
poly->p[i].x = path->p[i].x;
|
|
poly->p[i].y = path->p[i].y;
|
|
}
|
|
|
|
make_bound_box(poly);
|
|
|
|
PG_RETURN_POLYGON_P(poly);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 2D polygons.
|
|
**
|
|
***********************************************************************/
|
|
|
|
Datum
|
|
poly_npoints(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
|
|
PG_RETURN_INT32(poly->npts);
|
|
}
|
|
|
|
|
|
Datum
|
|
poly_center(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
Datum result;
|
|
CIRCLE *circle;
|
|
|
|
circle = DatumGetCircleP(DirectFunctionCall1(poly_circle,
|
|
PolygonPGetDatum(poly)));
|
|
result = DirectFunctionCall1(circle_center,
|
|
CirclePGetDatum(circle));
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
poly_box(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
BOX *box;
|
|
|
|
if (poly->npts < 1)
|
|
PG_RETURN_NULL();
|
|
|
|
box = box_copy(&poly->boundbox);
|
|
|
|
PG_RETURN_BOX_P(box);
|
|
}
|
|
|
|
|
|
/* box_poly()
|
|
* Convert a box to a polygon.
|
|
*/
|
|
Datum
|
|
box_poly(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
POLYGON *poly;
|
|
int size;
|
|
|
|
/* map four corners of the box to a polygon */
|
|
size = offsetof(POLYGON, p[0]) +sizeof(poly->p[0]) * 4;
|
|
poly = (POLYGON *) palloc(size);
|
|
|
|
SET_VARSIZE(poly, size);
|
|
poly->npts = 4;
|
|
|
|
poly->p[0].x = box->low.x;
|
|
poly->p[0].y = box->low.y;
|
|
poly->p[1].x = box->low.x;
|
|
poly->p[1].y = box->high.y;
|
|
poly->p[2].x = box->high.x;
|
|
poly->p[2].y = box->high.y;
|
|
poly->p[3].x = box->high.x;
|
|
poly->p[3].y = box->low.y;
|
|
|
|
box_fill(&poly->boundbox, box->high.x, box->low.x,
|
|
box->high.y, box->low.y);
|
|
|
|
PG_RETURN_POLYGON_P(poly);
|
|
}
|
|
|
|
|
|
Datum
|
|
poly_path(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
PATH *path;
|
|
int size;
|
|
int i;
|
|
|
|
size = offsetof(PATH, p[0]) +sizeof(path->p[0]) * poly->npts;
|
|
path = (PATH *) palloc(size);
|
|
|
|
SET_VARSIZE(path, size);
|
|
path->npts = poly->npts;
|
|
path->closed = TRUE;
|
|
|
|
for (i = 0; i < poly->npts; i++)
|
|
{
|
|
path->p[i].x = poly->p[i].x;
|
|
path->p[i].y = poly->p[i].y;
|
|
}
|
|
|
|
PG_RETURN_PATH_P(path);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for circles.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* Formatting and conversion routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* circle_in - convert a string to internal form.
|
|
*
|
|
* External format: (center and radius of circle)
|
|
* "((f8,f8)<f8>)"
|
|
* also supports quick entry style "(f8,f8,f8)"
|
|
*/
|
|
Datum
|
|
circle_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
CIRCLE *circle;
|
|
char *s,
|
|
*cp;
|
|
int depth = 0;
|
|
|
|
circle = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
|
|
s = str;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
if ((*s == LDELIM_C) || (*s == LDELIM))
|
|
{
|
|
depth++;
|
|
cp = (s + 1);
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
if (*cp == LDELIM)
|
|
s = cp;
|
|
}
|
|
|
|
if (!pair_decode(s, &circle->center.x, &circle->center.y, &s))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type circle: \"%s\"", str)));
|
|
|
|
if (*s == DELIM)
|
|
s++;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
|
|
if ((!single_decode(s, &circle->radius, &s)) || (circle->radius < 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type circle: \"%s\"", str)));
|
|
|
|
while (depth > 0)
|
|
{
|
|
if ((*s == RDELIM)
|
|
|| ((*s == RDELIM_C) && (depth == 1)))
|
|
{
|
|
depth--;
|
|
s++;
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type circle: \"%s\"", str)));
|
|
}
|
|
|
|
if (*s != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type circle: \"%s\"", str)));
|
|
|
|
PG_RETURN_CIRCLE_P(circle);
|
|
}
|
|
|
|
/* circle_out - convert a circle to external form.
|
|
*/
|
|
Datum
|
|
circle_out(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
char *result;
|
|
char *cp;
|
|
|
|
result = palloc(2 * P_MAXLEN + 6);
|
|
|
|
cp = result;
|
|
*cp++ = LDELIM_C;
|
|
*cp++ = LDELIM;
|
|
if (!pair_encode(circle->center.x, circle->center.y, cp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("could not format \"circle\" value")));
|
|
|
|
cp += strlen(cp);
|
|
*cp++ = RDELIM;
|
|
*cp++ = DELIM;
|
|
if (!single_encode(circle->radius, cp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("could not format \"circle\" value")));
|
|
|
|
cp += strlen(cp);
|
|
*cp++ = RDELIM_C;
|
|
*cp = '\0';
|
|
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* circle_recv - converts external binary format to circle
|
|
*/
|
|
Datum
|
|
circle_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
CIRCLE *circle;
|
|
|
|
circle = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
|
|
circle->center.x = pq_getmsgfloat8(buf);
|
|
circle->center.y = pq_getmsgfloat8(buf);
|
|
circle->radius = pq_getmsgfloat8(buf);
|
|
|
|
if (circle->radius < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid radius in external \"circle\" value")));
|
|
|
|
PG_RETURN_CIRCLE_P(circle);
|
|
}
|
|
|
|
/*
|
|
* circle_send - converts circle to binary format
|
|
*/
|
|
Datum
|
|
circle_send(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, circle->center.x);
|
|
pq_sendfloat8(&buf, circle->center.y);
|
|
pq_sendfloat8(&buf, circle->radius);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators for CIRCLEs.
|
|
* <, >, <=, >=, and == are based on circle area.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* circles identical?
|
|
*/
|
|
Datum
|
|
circle_same(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(circle1->radius, circle2->radius) &&
|
|
FPeq(circle1->center.x, circle2->center.x) &&
|
|
FPeq(circle1->center.y, circle2->center.y));
|
|
}
|
|
|
|
/* circle_overlap - does circle1 overlap circle2?
|
|
*/
|
|
Datum
|
|
circle_overlap(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(point_dt(&circle1->center, &circle2->center),
|
|
circle1->radius + circle2->radius));
|
|
}
|
|
|
|
/* circle_overleft - is the right edge of circle1 at or left of
|
|
* the right edge of circle2?
|
|
*/
|
|
Datum
|
|
circle_overleft(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle((circle1->center.x + circle1->radius),
|
|
(circle2->center.x + circle2->radius)));
|
|
}
|
|
|
|
/* circle_left - is circle1 strictly left of circle2?
|
|
*/
|
|
Datum
|
|
circle_left(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt((circle1->center.x + circle1->radius),
|
|
(circle2->center.x - circle2->radius)));
|
|
}
|
|
|
|
/* circle_right - is circle1 strictly right of circle2?
|
|
*/
|
|
Datum
|
|
circle_right(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt((circle1->center.x - circle1->radius),
|
|
(circle2->center.x + circle2->radius)));
|
|
}
|
|
|
|
/* circle_overright - is the left edge of circle1 at or right of
|
|
* the left edge of circle2?
|
|
*/
|
|
Datum
|
|
circle_overright(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge((circle1->center.x - circle1->radius),
|
|
(circle2->center.x - circle2->radius)));
|
|
}
|
|
|
|
/* circle_contained - is circle1 contained by circle2?
|
|
*/
|
|
Datum
|
|
circle_contained(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle((point_dt(&circle1->center, &circle2->center) + circle1->radius), circle2->radius));
|
|
}
|
|
|
|
/* circle_contain - does circle1 contain circle2?
|
|
*/
|
|
Datum
|
|
circle_contain(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle((point_dt(&circle1->center, &circle2->center) + circle2->radius), circle1->radius));
|
|
}
|
|
|
|
|
|
/* circle_below - is circle1 strictly below circle2?
|
|
*/
|
|
Datum
|
|
circle_below(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt((circle1->center.y + circle1->radius),
|
|
(circle2->center.y - circle2->radius)));
|
|
}
|
|
|
|
/* circle_above - is circle1 strictly above circle2?
|
|
*/
|
|
Datum
|
|
circle_above(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt((circle1->center.y - circle1->radius),
|
|
(circle2->center.y + circle2->radius)));
|
|
}
|
|
|
|
/* circle_overbelow - is the upper edge of circle1 at or below
|
|
* the upper edge of circle2?
|
|
*/
|
|
Datum
|
|
circle_overbelow(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle((circle1->center.y + circle1->radius),
|
|
(circle2->center.y + circle2->radius)));
|
|
}
|
|
|
|
/* circle_overabove - is the lower edge of circle1 at or above
|
|
* the lower edge of circle2?
|
|
*/
|
|
Datum
|
|
circle_overabove(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge((circle1->center.y - circle1->radius),
|
|
(circle2->center.y - circle2->radius)));
|
|
}
|
|
|
|
|
|
/* circle_relop - is area(circle1) relop area(circle2), within
|
|
* our accuracy constraint?
|
|
*/
|
|
Datum
|
|
circle_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPeq(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
Datum
|
|
circle_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPne(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
Datum
|
|
circle_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPlt(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
Datum
|
|
circle_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPgt(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
Datum
|
|
circle_le(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPle(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
Datum
|
|
circle_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
|
|
PG_RETURN_BOOL(FPge(circle_ar(circle1), circle_ar(circle2)));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* "Arithmetic" operators on circles.
|
|
*---------------------------------------------------------*/
|
|
|
|
static CIRCLE *
|
|
circle_copy(CIRCLE *circle)
|
|
{
|
|
CIRCLE *result;
|
|
|
|
if (!PointerIsValid(circle))
|
|
return NULL;
|
|
|
|
result = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
memcpy((char *) result, (char *) circle, sizeof(CIRCLE));
|
|
return result;
|
|
}
|
|
|
|
|
|
/* circle_add_pt()
|
|
* Translation operator.
|
|
*/
|
|
Datum
|
|
circle_add_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
CIRCLE *result;
|
|
|
|
result = circle_copy(circle);
|
|
|
|
result->center.x += point->x;
|
|
result->center.y += point->y;
|
|
|
|
PG_RETURN_CIRCLE_P(result);
|
|
}
|
|
|
|
Datum
|
|
circle_sub_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
CIRCLE *result;
|
|
|
|
result = circle_copy(circle);
|
|
|
|
result->center.x -= point->x;
|
|
result->center.y -= point->y;
|
|
|
|
PG_RETURN_CIRCLE_P(result);
|
|
}
|
|
|
|
|
|
/* circle_mul_pt()
|
|
* Rotation and scaling operators.
|
|
*/
|
|
Datum
|
|
circle_mul_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
CIRCLE *result;
|
|
Point *p;
|
|
|
|
result = circle_copy(circle);
|
|
|
|
p = DatumGetPointP(DirectFunctionCall2(point_mul,
|
|
PointPGetDatum(&circle->center),
|
|
PointPGetDatum(point)));
|
|
result->center.x = p->x;
|
|
result->center.y = p->y;
|
|
result->radius *= HYPOT(point->x, point->y);
|
|
|
|
PG_RETURN_CIRCLE_P(result);
|
|
}
|
|
|
|
Datum
|
|
circle_div_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
CIRCLE *result;
|
|
Point *p;
|
|
|
|
result = circle_copy(circle);
|
|
|
|
p = DatumGetPointP(DirectFunctionCall2(point_div,
|
|
PointPGetDatum(&circle->center),
|
|
PointPGetDatum(point)));
|
|
result->center.x = p->x;
|
|
result->center.y = p->y;
|
|
result->radius /= HYPOT(point->x, point->y);
|
|
|
|
PG_RETURN_CIRCLE_P(result);
|
|
}
|
|
|
|
|
|
/* circle_area - returns the area of the circle.
|
|
*/
|
|
Datum
|
|
circle_area(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
|
|
PG_RETURN_FLOAT8(circle_ar(circle));
|
|
}
|
|
|
|
|
|
/* circle_diameter - returns the diameter of the circle.
|
|
*/
|
|
Datum
|
|
circle_diameter(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
|
|
PG_RETURN_FLOAT8(2 * circle->radius);
|
|
}
|
|
|
|
|
|
/* circle_radius - returns the radius of the circle.
|
|
*/
|
|
Datum
|
|
circle_radius(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
|
|
PG_RETURN_FLOAT8(circle->radius);
|
|
}
|
|
|
|
|
|
/* circle_distance - returns the distance between
|
|
* two circles.
|
|
*/
|
|
Datum
|
|
circle_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0);
|
|
CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1);
|
|
float8 result;
|
|
|
|
result = point_dt(&circle1->center, &circle2->center)
|
|
- (circle1->radius + circle2->radius);
|
|
if (result < 0)
|
|
result = 0;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
circle_contain_pt(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *point = PG_GETARG_POINT_P(1);
|
|
double d;
|
|
|
|
d = point_dt(&circle->center, point);
|
|
PG_RETURN_BOOL(d <= circle->radius);
|
|
}
|
|
|
|
|
|
Datum
|
|
pt_contained_circle(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *point = PG_GETARG_POINT_P(0);
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(1);
|
|
double d;
|
|
|
|
d = point_dt(&circle->center, point);
|
|
PG_RETURN_BOOL(d <= circle->radius);
|
|
}
|
|
|
|
|
|
/* dist_pc - returns the distance between
|
|
* a point and a circle.
|
|
*/
|
|
Datum
|
|
dist_pc(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *point = PG_GETARG_POINT_P(0);
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(1);
|
|
float8 result;
|
|
|
|
result = point_dt(point, &circle->center) - circle->radius;
|
|
if (result < 0)
|
|
result = 0;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/* circle_center - returns the center point of the circle.
|
|
*/
|
|
Datum
|
|
circle_center(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
Point *result;
|
|
|
|
result = (Point *) palloc(sizeof(Point));
|
|
result->x = circle->center.x;
|
|
result->y = circle->center.y;
|
|
|
|
PG_RETURN_POINT_P(result);
|
|
}
|
|
|
|
|
|
/* circle_ar - returns the area of the circle.
|
|
*/
|
|
static double
|
|
circle_ar(CIRCLE *circle)
|
|
{
|
|
return M_PI * (circle->radius * circle->radius);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Conversion operators.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
cr_circle(PG_FUNCTION_ARGS)
|
|
{
|
|
Point *center = PG_GETARG_POINT_P(0);
|
|
float8 radius = PG_GETARG_FLOAT8(1);
|
|
CIRCLE *result;
|
|
|
|
result = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
|
|
result->center.x = center->x;
|
|
result->center.y = center->y;
|
|
result->radius = radius;
|
|
|
|
PG_RETURN_CIRCLE_P(result);
|
|
}
|
|
|
|
Datum
|
|
circle_box(PG_FUNCTION_ARGS)
|
|
{
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(0);
|
|
BOX *box;
|
|
double delta;
|
|
|
|
box = (BOX *) palloc(sizeof(BOX));
|
|
|
|
delta = circle->radius / sqrt(2.0);
|
|
|
|
box->high.x = circle->center.x + delta;
|
|
box->low.x = circle->center.x - delta;
|
|
box->high.y = circle->center.y + delta;
|
|
box->low.y = circle->center.y - delta;
|
|
|
|
PG_RETURN_BOX_P(box);
|
|
}
|
|
|
|
/* box_circle()
|
|
* Convert a box to a circle.
|
|
*/
|
|
Datum
|
|
box_circle(PG_FUNCTION_ARGS)
|
|
{
|
|
BOX *box = PG_GETARG_BOX_P(0);
|
|
CIRCLE *circle;
|
|
|
|
circle = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
|
|
circle->center.x = (box->high.x + box->low.x) / 2;
|
|
circle->center.y = (box->high.y + box->low.y) / 2;
|
|
|
|
circle->radius = point_dt(&circle->center, &box->high);
|
|
|
|
PG_RETURN_CIRCLE_P(circle);
|
|
}
|
|
|
|
|
|
Datum
|
|
circle_poly(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 npts = PG_GETARG_INT32(0);
|
|
CIRCLE *circle = PG_GETARG_CIRCLE_P(1);
|
|
POLYGON *poly;
|
|
int base_size,
|
|
size;
|
|
int i;
|
|
double angle;
|
|
double anglestep;
|
|
|
|
if (FPzero(circle->radius))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot convert circle with radius zero to polygon")));
|
|
|
|
if (npts < 2)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("must request at least 2 points")));
|
|
|
|
base_size = sizeof(poly->p[0]) * npts;
|
|
size = offsetof(POLYGON, p[0]) +base_size;
|
|
|
|
/* Check for integer overflow */
|
|
if (base_size / npts != sizeof(poly->p[0]) || size <= base_size)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("too many points requested")));
|
|
|
|
poly = (POLYGON *) palloc0(size); /* zero any holes */
|
|
SET_VARSIZE(poly, size);
|
|
poly->npts = npts;
|
|
|
|
anglestep = (2.0 * M_PI) / npts;
|
|
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
angle = i * anglestep;
|
|
poly->p[i].x = circle->center.x - (circle->radius * cos(angle));
|
|
poly->p[i].y = circle->center.y + (circle->radius * sin(angle));
|
|
}
|
|
|
|
make_bound_box(poly);
|
|
|
|
PG_RETURN_POLYGON_P(poly);
|
|
}
|
|
|
|
/* poly_circle - convert polygon to circle
|
|
*
|
|
* XXX This algorithm should use weighted means of line segments
|
|
* rather than straight average values of points - tgl 97/01/21.
|
|
*/
|
|
Datum
|
|
poly_circle(PG_FUNCTION_ARGS)
|
|
{
|
|
POLYGON *poly = PG_GETARG_POLYGON_P(0);
|
|
CIRCLE *circle;
|
|
int i;
|
|
|
|
if (poly->npts < 2)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("cannot convert empty polygon to circle")));
|
|
|
|
circle = (CIRCLE *) palloc(sizeof(CIRCLE));
|
|
|
|
circle->center.x = 0;
|
|
circle->center.y = 0;
|
|
circle->radius = 0;
|
|
|
|
for (i = 0; i < poly->npts; i++)
|
|
{
|
|
circle->center.x += poly->p[i].x;
|
|
circle->center.y += poly->p[i].y;
|
|
}
|
|
circle->center.x /= poly->npts;
|
|
circle->center.y /= poly->npts;
|
|
|
|
for (i = 0; i < poly->npts; i++)
|
|
circle->radius += point_dt(&poly->p[i], &circle->center);
|
|
circle->radius /= poly->npts;
|
|
|
|
if (FPzero(circle->radius))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("cannot convert empty polygon to circle")));
|
|
|
|
PG_RETURN_CIRCLE_P(circle);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Private routines for multiple types.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*
|
|
* Test to see if the point is inside the polygon, returns 1/0, or 2 if
|
|
* the point is on the polygon.
|
|
* Code adapted but not copied from integer-based routines in WN: A
|
|
* Server for the HTTP
|
|
* version 1.15.1, file wn/image.c
|
|
* http://hopf.math.northwestern.edu/index.html
|
|
* Description of algorithm: http://www.linuxjournal.com/article/2197
|
|
* http://www.linuxjournal.com/article/2029
|
|
*/
|
|
|
|
#define POINT_ON_POLYGON INT_MAX
|
|
|
|
static int
|
|
point_inside(Point *p, int npts, Point *plist)
|
|
{
|
|
double x0,
|
|
y0;
|
|
double prev_x,
|
|
prev_y;
|
|
int i = 0;
|
|
double x,
|
|
y;
|
|
int cross,
|
|
total_cross = 0;
|
|
|
|
if (npts <= 0)
|
|
return 0;
|
|
|
|
/* compute first polygon point relative to single point */
|
|
x0 = plist[0].x - p->x;
|
|
y0 = plist[0].y - p->y;
|
|
|
|
prev_x = x0;
|
|
prev_y = y0;
|
|
/* loop over polygon points and aggregate total_cross */
|
|
for (i = 1; i < npts; i++)
|
|
{
|
|
/* compute next polygon point relative to single point */
|
|
x = plist[i].x - p->x;
|
|
y = plist[i].y - p->y;
|
|
|
|
/* compute previous to current point crossing */
|
|
if ((cross = lseg_crossing(x, y, prev_x, prev_y)) == POINT_ON_POLYGON)
|
|
return 2;
|
|
total_cross += cross;
|
|
|
|
prev_x = x;
|
|
prev_y = y;
|
|
}
|
|
|
|
/* now do the first point */
|
|
if ((cross = lseg_crossing(x0, y0, prev_x, prev_y)) == POINT_ON_POLYGON)
|
|
return 2;
|
|
total_cross += cross;
|
|
|
|
if (total_cross != 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* lseg_crossing()
|
|
* Returns +/-2 if line segment crosses the positive X-axis in a +/- direction.
|
|
* Returns +/-1 if one point is on the positive X-axis.
|
|
* Returns 0 if both points are on the positive X-axis, or there is no crossing.
|
|
* Returns POINT_ON_POLYGON if the segment contains (0,0).
|
|
* Wow, that is one confusing API, but it is used above, and when summed,
|
|
* can tell is if a point is in a polygon.
|
|
*/
|
|
|
|
static int
|
|
lseg_crossing(double x, double y, double prev_x, double prev_y)
|
|
{
|
|
double z;
|
|
int y_sign;
|
|
|
|
if (FPzero(y))
|
|
{ /* y == 0, on X axis */
|
|
if (FPzero(x)) /* (x,y) is (0,0)? */
|
|
return POINT_ON_POLYGON;
|
|
else if (FPgt(x, 0))
|
|
{ /* x > 0 */
|
|
if (FPzero(prev_y)) /* y and prev_y are zero */
|
|
/* prev_x > 0? */
|
|
return FPgt(prev_x, 0) ? 0 : POINT_ON_POLYGON;
|
|
return FPlt(prev_y, 0) ? 1 : -1;
|
|
}
|
|
else
|
|
{ /* x < 0, x not on positive X axis */
|
|
if (FPzero(prev_y))
|
|
/* prev_x < 0? */
|
|
return FPlt(prev_x, 0) ? 0 : POINT_ON_POLYGON;
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{ /* y != 0 */
|
|
/* compute y crossing direction from previous point */
|
|
y_sign = FPgt(y, 0) ? 1 : -1;
|
|
|
|
if (FPzero(prev_y))
|
|
/* previous point was on X axis, so new point is either off or on */
|
|
return FPlt(prev_x, 0) ? 0 : y_sign;
|
|
else if (FPgt(y_sign * prev_y, 0))
|
|
/* both above or below X axis */
|
|
return 0; /* same sign */
|
|
else
|
|
{ /* y and prev_y cross X-axis */
|
|
if (FPge(x, 0) && FPgt(prev_x, 0))
|
|
/* both non-negative so cross positive X-axis */
|
|
return 2 * y_sign;
|
|
if (FPlt(x, 0) && FPle(prev_x, 0))
|
|
/* both non-positive so do not cross positive X-axis */
|
|
return 0;
|
|
|
|
/* x and y cross axises, see URL above point_inside() */
|
|
z = (x - prev_x) * y - (y - prev_y) * x;
|
|
if (FPzero(z))
|
|
return POINT_ON_POLYGON;
|
|
return FPgt((y_sign * z), 0) ? 0 : 2 * y_sign;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static bool
|
|
plist_same(int npts, Point *p1, Point *p2)
|
|
{
|
|
int i,
|
|
ii,
|
|
j;
|
|
|
|
/* find match for first point */
|
|
for (i = 0; i < npts; i++)
|
|
{
|
|
if ((FPeq(p2[i].x, p1[0].x))
|
|
&& (FPeq(p2[i].y, p1[0].y)))
|
|
{
|
|
|
|
/* match found? then look forward through remaining points */
|
|
for (ii = 1, j = i + 1; ii < npts; ii++, j++)
|
|
{
|
|
if (j >= npts)
|
|
j = 0;
|
|
if ((!FPeq(p2[j].x, p1[ii].x))
|
|
|| (!FPeq(p2[j].y, p1[ii].y)))
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("plist_same- %d failed forward match with %d\n", j, ii);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
#ifdef GEODEBUG
|
|
printf("plist_same- ii = %d/%d after forward match\n", ii, npts);
|
|
#endif
|
|
if (ii == npts)
|
|
return TRUE;
|
|
|
|
/* match not found forwards? then look backwards */
|
|
for (ii = 1, j = i - 1; ii < npts; ii++, j--)
|
|
{
|
|
if (j < 0)
|
|
j = (npts - 1);
|
|
if ((!FPeq(p2[j].x, p1[ii].x))
|
|
|| (!FPeq(p2[j].y, p1[ii].y)))
|
|
{
|
|
#ifdef GEODEBUG
|
|
printf("plist_same- %d failed reverse match with %d\n", j, ii);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
#ifdef GEODEBUG
|
|
printf("plist_same- ii = %d/%d after reverse match\n", ii, npts);
|
|
#endif
|
|
if (ii == npts)
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|