Tom Lane 7c5e5439d2 Get rid of some old and crufty global variables in the planner. When
this code was last gone over, there wasn't really any alternative to
globals because we didn't have the PlannerInfo struct being passed all
through the planner code.  Now that we do, we can restructure things
to avoid non-reentrancy.  I'm fooling with this because otherwise I'd
have had to add another global variable for the planned compact
range table list.
2007-02-19 07:03:34 +00:00

1708 lines
52 KiB
C

/*-------------------------------------------------------------------------
*
* planner.c
* The query optimizer external interface.
*
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.213 2007/02/19 07:03:29 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "catalog/pg_operator.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/* Expression kind codes for preprocess_expression */
#define EXPRKIND_QUAL 0
#define EXPRKIND_TARGET 1
#define EXPRKIND_RTFUNC 2
#define EXPRKIND_VALUES 3
#define EXPRKIND_LIMIT 4
#define EXPRKIND_ININFO 5
#define EXPRKIND_APPINFO 6
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
static Plan *inheritance_planner(PlannerInfo *root);
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
static bool is_dummy_plan(Plan *plan);
static double preprocess_limit(PlannerInfo *root,
double tuple_fraction,
int64 *offset_est, int64 *count_est);
static Oid *extract_grouping_ops(List *groupClause);
static bool choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
Path *cheapest_path, Path *sorted_path,
Oid *groupOperators, double dNumGroups,
AggClauseCounts *agg_counts);
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
AttrNumber **groupColIdx, bool *need_tlist_eval);
static void locate_grouping_columns(PlannerInfo *root,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx);
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
/*****************************************************************************
*
* Query optimizer entry point
*
*****************************************************************************/
Plan *
planner(Query *parse, bool isCursor, int cursorOptions,
ParamListInfo boundParams)
{
PlannerGlobal *glob;
double tuple_fraction;
Plan *result_plan;
/*
* Set up global state for this planner invocation. This data is needed
* across all levels of sub-Query that might exist in the given command,
* so we keep it in a separate struct that's linked to by each per-Query
* PlannerInfo.
*/
glob = makeNode(PlannerGlobal);
glob->boundParams = boundParams;
glob->paramlist = NIL;
glob->next_plan_id = 0;
/* Determine what fraction of the plan is likely to be scanned */
if (isCursor)
{
/*
* We have no real idea how many tuples the user will ultimately FETCH
* from a cursor, but it seems a good bet that he doesn't want 'em
* all. Optimize for 10% retrieval (you gotta better number? Should
* this be a SETtable parameter?)
*/
tuple_fraction = 0.10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
result_plan = subquery_planner(glob, parse, 1, tuple_fraction, NULL);
/*
* If creating a plan for a scrollable cursor, make sure it can run
* backwards on demand. Add a Material node at the top at need.
*/
if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
{
if (!ExecSupportsBackwardScan(result_plan))
result_plan = materialize_finished_plan(result_plan);
}
/* final cleanup of the plan */
result_plan = set_plan_references(result_plan, parse->rtable);
/* executor wants to know total number of Params used overall */
result_plan->nParamExec = list_length(glob->paramlist);
return result_plan;
}
/*--------------------
* subquery_planner
* Invokes the planner on a subquery. We recurse to here for each
* sub-SELECT found in the query tree.
*
* glob is the global state for the current planner run.
* parse is the querytree produced by the parser & rewriter.
* level is the current recursion depth (1 at the top-level Query).
* tuple_fraction is the fraction of tuples we expect will be retrieved.
* tuple_fraction is interpreted as explained for grouping_planner, below.
*
* If subquery_pathkeys isn't NULL, it receives a list of pathkeys indicating
* the output sort ordering of the completed plan.
*
* Basically, this routine does the stuff that should only be done once
* per Query object. It then calls grouping_planner. At one time,
* grouping_planner could be invoked recursively on the same Query object;
* that's not currently true, but we keep the separation between the two
* routines anyway, in case we need it again someday.
*
* subquery_planner will be called recursively to handle sub-Query nodes
* found within the query's expressions and rangetable.
*
* Returns a query plan.
*--------------------
*/
Plan *
subquery_planner(PlannerGlobal *glob, Query *parse,
Index level, double tuple_fraction,
List **subquery_pathkeys)
{
int saved_plan_id = glob->next_plan_id;
PlannerInfo *root;
Plan *plan;
List *newHaving;
ListCell *l;
/* Create a PlannerInfo data structure for this subquery */
root = makeNode(PlannerInfo);
root->parse = parse;
root->glob = glob;
root->query_level = level;
root->planner_cxt = CurrentMemoryContext;
root->init_plans = NIL;
root->eq_classes = NIL;
root->in_info_list = NIL;
root->append_rel_list = NIL;
/*
* Look for IN clauses at the top level of WHERE, and transform them into
* joins. Note that this step only handles IN clauses originally at top
* level of WHERE; if we pull up any subqueries in the next step, their
* INs are processed just before pulling them up.
*/
if (parse->hasSubLinks)
parse->jointree->quals = pull_up_IN_clauses(root,
parse->jointree->quals);
/*
* Check to see if any subqueries in the rangetable can be merged into
* this query.
*/
parse->jointree = (FromExpr *)
pull_up_subqueries(root, (Node *) parse->jointree, false, false);
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
* avoid the expense of doing flatten_join_alias_vars(). Also check for
* outer joins --- if none, we can skip reduce_outer_joins() and some
* other processing. This must be done after we have done
* pull_up_subqueries, of course.
*
* Note: if reduce_outer_joins manages to eliminate all outer joins,
* root->hasOuterJoins is not reset currently. This is OK since its
* purpose is merely to suppress unnecessary processing in simple cases.
*/
root->hasJoinRTEs = false;
root->hasOuterJoins = false;
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
{
root->hasJoinRTEs = true;
if (IS_OUTER_JOIN(rte->jointype))
{
root->hasOuterJoins = true;
/* Can quit scanning once we find an outer join */
break;
}
}
}
/*
* Expand any rangetable entries that are inheritance sets into "append
* relations". This can add entries to the rangetable, but they must be
* plain base relations not joins, so it's OK (and marginally more
* efficient) to do it after checking for join RTEs. We must do it after
* pulling up subqueries, else we'd fail to handle inherited tables in
* subqueries.
*/
expand_inherited_tables(root);
/*
* Set hasHavingQual to remember if HAVING clause is present. Needed
* because preprocess_expression will reduce a constant-true condition to
* an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
*/
root->hasHavingQual = (parse->havingQual != NULL);
/* Clear this flag; might get set in distribute_qual_to_rels */
root->hasPseudoConstantQuals = false;
/*
* Do expression preprocessing on targetlist and quals.
*/
parse->targetList = (List *)
preprocess_expression(root, (Node *) parse->targetList,
EXPRKIND_TARGET);
parse->returningList = (List *)
preprocess_expression(root, (Node *) parse->returningList,
EXPRKIND_TARGET);
preprocess_qual_conditions(root, (Node *) parse->jointree);
parse->havingQual = preprocess_expression(root, parse->havingQual,
EXPRKIND_QUAL);
parse->limitOffset = preprocess_expression(root, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(root, parse->limitCount,
EXPRKIND_LIMIT);
root->in_info_list = (List *)
preprocess_expression(root, (Node *) root->in_info_list,
EXPRKIND_ININFO);
root->append_rel_list = (List *)
preprocess_expression(root, (Node *) root->append_rel_list,
EXPRKIND_APPINFO);
/* Also need to preprocess expressions for function and values RTEs */
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_FUNCTION)
rte->funcexpr = preprocess_expression(root, rte->funcexpr,
EXPRKIND_RTFUNC);
else if (rte->rtekind == RTE_VALUES)
rte->values_lists = (List *)
preprocess_expression(root, (Node *) rte->values_lists,
EXPRKIND_VALUES);
}
/*
* In some cases we may want to transfer a HAVING clause into WHERE. We
* cannot do so if the HAVING clause contains aggregates (obviously) or
* volatile functions (since a HAVING clause is supposed to be executed
* only once per group). Also, it may be that the clause is so expensive
* to execute that we're better off doing it only once per group, despite
* the loss of selectivity. This is hard to estimate short of doing the
* entire planning process twice, so we use a heuristic: clauses
* containing subplans are left in HAVING. Otherwise, we move or copy the
* HAVING clause into WHERE, in hopes of eliminating tuples before
* aggregation instead of after.
*
* If the query has explicit grouping then we can simply move such a
* clause into WHERE; any group that fails the clause will not be in the
* output because none of its tuples will reach the grouping or
* aggregation stage. Otherwise we must have a degenerate (variable-free)
* HAVING clause, which we put in WHERE so that query_planner() can use it
* in a gating Result node, but also keep in HAVING to ensure that we
* don't emit a bogus aggregated row. (This could be done better, but it
* seems not worth optimizing.)
*
* Note that both havingQual and parse->jointree->quals are in
* implicitly-ANDed-list form at this point, even though they are declared
* as Node *.
*/
newHaving = NIL;
foreach(l, (List *) parse->havingQual)
{
Node *havingclause = (Node *) lfirst(l);
if (contain_agg_clause(havingclause) ||
contain_volatile_functions(havingclause) ||
contain_subplans(havingclause))
{
/* keep it in HAVING */
newHaving = lappend(newHaving, havingclause);
}
else if (parse->groupClause)
{
/* move it to WHERE */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals, havingclause);
}
else
{
/* put a copy in WHERE, keep it in HAVING */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals,
copyObject(havingclause));
newHaving = lappend(newHaving, havingclause);
}
}
parse->havingQual = (Node *) newHaving;
/*
* If we have any outer joins, try to reduce them to plain inner joins.
* This step is most easily done after we've done expression
* preprocessing.
*/
if (root->hasOuterJoins)
reduce_outer_joins(root);
/*
* Do the main planning. If we have an inherited target relation, that
* needs special processing, else go straight to grouping_planner.
*/
if (parse->resultRelation &&
rt_fetch(parse->resultRelation, parse->rtable)->inh)
plan = inheritance_planner(root);
else
plan = grouping_planner(root, tuple_fraction);
/*
* If any subplans were generated, or if we're inside a subplan, build
* initPlan list and extParam/allParam sets for plan nodes, and attach the
* initPlans to the top plan node.
*/
if (root->glob->next_plan_id != saved_plan_id || root->query_level > 1)
SS_finalize_plan(root, plan);
/* Return sort ordering info if caller wants it */
if (subquery_pathkeys)
*subquery_pathkeys = root->query_pathkeys;
return plan;
}
/*
* preprocess_expression
* Do subquery_planner's preprocessing work for an expression,
* which can be a targetlist, a WHERE clause (including JOIN/ON
* conditions), or a HAVING clause.
*/
static Node *
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
{
/*
* Fall out quickly if expression is empty. This occurs often enough to
* be worth checking. Note that null->null is the correct conversion for
* implicit-AND result format, too.
*/
if (expr == NULL)
return NULL;
/*
* If the query has any join RTEs, replace join alias variables with
* base-relation variables. We must do this before sublink processing,
* else sublinks expanded out from join aliases wouldn't get processed. We
* can skip it in VALUES lists, however, since they can't contain any Vars
* at all.
*/
if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
expr = flatten_join_alias_vars(root, expr);
/*
* Simplify constant expressions.
*
* Note: this also flattens nested AND and OR expressions into N-argument
* form. All processing of a qual expression after this point must be
* careful to maintain AND/OR flatness --- that is, do not generate a tree
* with AND directly under AND, nor OR directly under OR.
*
* Because this is a relatively expensive process, we skip it when the
* query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()". The
* expression will only be evaluated once anyway, so no point in
* pre-simplifying; we can't execute it any faster than the executor can,
* and we will waste cycles copying the tree. Notice however that we
* still must do it for quals (to get AND/OR flatness); and if we are in a
* subquery we should not assume it will be done only once.
*
* For VALUES lists we never do this at all, again on the grounds that we
* should optimize for one-time evaluation.
*/
if (kind != EXPRKIND_VALUES &&
(root->parse->jointree->fromlist != NIL ||
kind == EXPRKIND_QUAL ||
root->query_level > 1))
expr = eval_const_expressions(expr);
/*
* If it's a qual or havingQual, canonicalize it.
*/
if (kind == EXPRKIND_QUAL)
{
expr = (Node *) canonicalize_qual((Expr *) expr);
#ifdef OPTIMIZER_DEBUG
printf("After canonicalize_qual()\n");
pprint(expr);
#endif
}
/* Expand SubLinks to SubPlans */
if (root->parse->hasSubLinks)
expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
/*
* XXX do not insert anything here unless you have grokked the comments in
* SS_replace_correlation_vars ...
*/
/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
if (root->query_level > 1)
expr = SS_replace_correlation_vars(root, expr);
/*
* If it's a qual or havingQual, convert it to implicit-AND format. (We
* don't want to do this before eval_const_expressions, since the latter
* would be unable to simplify a top-level AND correctly. Also,
* SS_process_sublinks expects explicit-AND format.)
*/
if (kind == EXPRKIND_QUAL)
expr = (Node *) make_ands_implicit((Expr *) expr);
return expr;
}
/*
* preprocess_qual_conditions
* Recursively scan the query's jointree and do subquery_planner's
* preprocessing work on each qual condition found therein.
*/
static void
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
{
if (jtnode == NULL)
return;
if (IsA(jtnode, RangeTblRef))
{
/* nothing to do here */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
preprocess_qual_conditions(root, lfirst(l));
f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
preprocess_qual_conditions(root, j->larg);
preprocess_qual_conditions(root, j->rarg);
j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*
* inheritance_planner
* Generate a plan in the case where the result relation is an
* inheritance set.
*
* We have to handle this case differently from cases where a source relation
* is an inheritance set. Source inheritance is expanded at the bottom of the
* plan tree (see allpaths.c), but target inheritance has to be expanded at
* the top. The reason is that for UPDATE, each target relation needs a
* different targetlist matching its own column set. Also, for both UPDATE
* and DELETE, the executor needs the Append plan node at the top, else it
* can't keep track of which table is the current target table. Fortunately,
* the UPDATE/DELETE target can never be the nullable side of an outer join,
* so it's OK to generate the plan this way.
*
* Returns a query plan.
*/
static Plan *
inheritance_planner(PlannerInfo *root)
{
Query *parse = root->parse;
int parentRTindex = parse->resultRelation;
List *subplans = NIL;
List *resultRelations = NIL;
List *returningLists = NIL;
List *rtable = NIL;
List *tlist = NIL;
PlannerInfo subroot;
ListCell *l;
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
Plan *subplan;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
/*
* Generate modified query with this rel as target. We have to be
* prepared to translate varnos in in_info_list as well as in the
* Query proper.
*/
memcpy(&subroot, root, sizeof(PlannerInfo));
subroot.parse = (Query *)
adjust_appendrel_attrs((Node *) parse,
appinfo);
subroot.in_info_list = (List *)
adjust_appendrel_attrs((Node *) root->in_info_list,
appinfo);
subroot.init_plans = NIL;
/* There shouldn't be any OJ info to translate, as yet */
Assert(subroot.oj_info_list == NIL);
/* Generate plan */
subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
/*
* If this child rel was excluded by constraint exclusion, exclude it
* from the plan.
*/
if (is_dummy_plan(subplan))
continue;
/* Save rtable and tlist from first rel for use below */
if (subplans == NIL)
{
rtable = subroot.parse->rtable;
tlist = subplan->targetlist;
}
subplans = lappend(subplans, subplan);
/* Make sure any initplans from this rel get into the outer list */
root->init_plans = list_concat(root->init_plans, subroot.init_plans);
/* Build target-relations list for the executor */
resultRelations = lappend_int(resultRelations, appinfo->child_relid);
/* Build list of per-relation RETURNING targetlists */
if (parse->returningList)
{
Assert(list_length(subroot.parse->returningLists) == 1);
returningLists = list_concat(returningLists,
subroot.parse->returningLists);
}
}
parse->resultRelations = resultRelations;
parse->returningLists = returningLists;
/* Mark result as unordered (probably unnecessary) */
root->query_pathkeys = NIL;
/*
* If we managed to exclude every child rel, return a dummy plan
*/
if (subplans == NIL)
return (Plan *) make_result(tlist,
(Node *) list_make1(makeBoolConst(false,
false)),
NULL);
/*
* Planning might have modified the rangetable, due to changes of the
* Query structures inside subquery RTEs. We have to ensure that this
* gets propagated back to the master copy. But can't do this until we
* are done planning, because all the calls to grouping_planner need
* virgin sub-Queries to work from. (We are effectively assuming that
* sub-Queries will get planned identically each time, or at least that
* the impacts on their rangetables will be the same each time.)
*
* XXX should clean this up someday
*/
parse->rtable = rtable;
return (Plan *) make_append(subplans, true, tlist);
}
/*--------------------
* grouping_planner
* Perform planning steps related to grouping, aggregation, etc.
* This primarily means adding top-level processing to the basic
* query plan produced by query_planner.
*
* tuple_fraction is the fraction of tuples we expect will be retrieved
*
* tuple_fraction is interpreted as follows:
* 0: expect all tuples to be retrieved (normal case)
* 0 < tuple_fraction < 1: expect the given fraction of tuples available
* from the plan to be retrieved
* tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
* expected to be retrieved (ie, a LIMIT specification)
*
* Returns a query plan. Also, root->query_pathkeys is returned as the
* actual output ordering of the plan (in pathkey format).
*--------------------
*/
static Plan *
grouping_planner(PlannerInfo *root, double tuple_fraction)
{
Query *parse = root->parse;
List *tlist = parse->targetList;
int64 offset_est = 0;
int64 count_est = 0;
Plan *result_plan;
List *current_pathkeys;
List *sort_pathkeys;
double dNumGroups = 0;
/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
if (parse->limitCount || parse->limitOffset)
tuple_fraction = preprocess_limit(root, tuple_fraction,
&offset_est, &count_est);
if (parse->setOperations)
{
List *set_sortclauses;
/*
* If there's a top-level ORDER BY, assume we have to fetch all the
* tuples. This might seem too simplistic given all the hackery below
* to possibly avoid the sort ... but a nonzero tuple_fraction is only
* of use to plan_set_operations() when the setop is UNION ALL, and
* the result of UNION ALL is always unsorted.
*/
if (parse->sortClause)
tuple_fraction = 0.0;
/*
* Construct the plan for set operations. The result will not need
* any work except perhaps a top-level sort and/or LIMIT.
*/
result_plan = plan_set_operations(root, tuple_fraction,
&set_sortclauses);
/*
* Calculate pathkeys representing the sort order (if any) of the set
* operation's result. We have to do this before overwriting the sort
* key information...
*/
current_pathkeys = make_pathkeys_for_sortclauses(root,
set_sortclauses,
result_plan->targetlist,
true);
/*
* We should not need to call preprocess_targetlist, since we must be
* in a SELECT query node. Instead, use the targetlist returned by
* plan_set_operations (since this tells whether it returned any
* resjunk columns!), and transfer any sort key information from the
* original tlist.
*/
Assert(parse->commandType == CMD_SELECT);
tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
/*
* Can't handle FOR UPDATE/SHARE here (parser should have checked
* already, but let's make sure).
*/
if (parse->rowMarks)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
/*
* Calculate pathkeys that represent result ordering requirements
*/
sort_pathkeys = make_pathkeys_for_sortclauses(root,
parse->sortClause,
tlist,
true);
}
else
{
/* No set operations, do regular planning */
List *sub_tlist;
List *group_pathkeys;
AttrNumber *groupColIdx = NULL;
Oid *groupOperators = NULL;
bool need_tlist_eval = true;
QualCost tlist_cost;
Path *cheapest_path;
Path *sorted_path;
Path *best_path;
long numGroups = 0;
AggClauseCounts agg_counts;
int numGroupCols = list_length(parse->groupClause);
bool use_hashed_grouping = false;
MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
/* Preprocess targetlist */
tlist = preprocess_targetlist(root, tlist);
/*
* Generate appropriate target list for subplan; may be different from
* tlist if grouping or aggregation is needed.
*/
sub_tlist = make_subplanTargetList(root, tlist,
&groupColIdx, &need_tlist_eval);
/*
* Calculate pathkeys that represent grouping/ordering requirements.
* Stash them in PlannerInfo so that query_planner can canonicalize
* them after EquivalenceClasses have been formed.
*/
root->group_pathkeys =
make_pathkeys_for_sortclauses(root,
parse->groupClause,
tlist,
false);
root->sort_pathkeys =
make_pathkeys_for_sortclauses(root,
parse->sortClause,
tlist,
false);
/*
* Will need actual number of aggregates for estimating costs.
*
* Note: we do not attempt to detect duplicate aggregates here; a
* somewhat-overestimated count is okay for our present purposes.
*
* Note: think not that we can turn off hasAggs if we find no aggs. It
* is possible for constant-expression simplification to remove all
* explicit references to aggs, but we still have to follow the
* aggregate semantics (eg, producing only one output row).
*/
if (parse->hasAggs)
{
count_agg_clauses((Node *) tlist, &agg_counts);
count_agg_clauses(parse->havingQual, &agg_counts);
}
/*
* Figure out whether we need a sorted result from query_planner.
*
* If we have a GROUP BY clause, then we want a result sorted properly
* for grouping. Otherwise, if there is an ORDER BY clause, we want
* to sort by the ORDER BY clause. (Note: if we have both, and ORDER
* BY is a superset of GROUP BY, it would be tempting to request sort
* by ORDER BY --- but that might just leave us failing to exploit an
* available sort order at all. Needs more thought...)
*/
if (parse->groupClause)
root->query_pathkeys = root->group_pathkeys;
else if (parse->sortClause)
root->query_pathkeys = root->sort_pathkeys;
else
root->query_pathkeys = NIL;
/*
* Generate the best unsorted and presorted paths for this Query (but
* note there may not be any presorted path). query_planner will also
* estimate the number of groups in the query, and canonicalize all
* the pathkeys.
*/
query_planner(root, sub_tlist, tuple_fraction,
&cheapest_path, &sorted_path, &dNumGroups);
group_pathkeys = root->group_pathkeys;
sort_pathkeys = root->sort_pathkeys;
/*
* If grouping, extract the grouping operators and decide whether we
* want to use hashed grouping.
*/
if (parse->groupClause)
{
groupOperators = extract_grouping_ops(parse->groupClause);
use_hashed_grouping =
choose_hashed_grouping(root, tuple_fraction,
cheapest_path, sorted_path,
groupOperators, dNumGroups,
&agg_counts);
/* Also convert # groups to long int --- but 'ware overflow! */
numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
}
/*
* Select the best path. If we are doing hashed grouping, we will
* always read all the input tuples, so use the cheapest-total path.
* Otherwise, trust query_planner's decision about which to use.
*/
if (use_hashed_grouping || !sorted_path)
best_path = cheapest_path;
else
best_path = sorted_path;
/*
* Check to see if it's possible to optimize MIN/MAX aggregates. If
* so, we will forget all the work we did so far to choose a "regular"
* path ... but we had to do it anyway to be able to tell which way is
* cheaper.
*/
result_plan = optimize_minmax_aggregates(root,
tlist,
best_path);
if (result_plan != NULL)
{
/*
* optimize_minmax_aggregates generated the full plan, with the
* right tlist, and it has no sort order.
*/
current_pathkeys = NIL;
}
else
{
/*
* Normal case --- create a plan according to query_planner's
* results.
*/
result_plan = create_plan(root, best_path);
current_pathkeys = best_path->pathkeys;
/*
* create_plan() returns a plan with just a "flat" tlist of
* required Vars. Usually we need to insert the sub_tlist as the
* tlist of the top plan node. However, we can skip that if we
* determined that whatever query_planner chose to return will be
* good enough.
*/
if (need_tlist_eval)
{
/*
* If the top-level plan node is one that cannot do expression
* evaluation, we must insert a Result node to project the
* desired tlist.
*/
if (!is_projection_capable_plan(result_plan))
{
result_plan = (Plan *) make_result(sub_tlist, NULL,
result_plan);
}
else
{
/*
* Otherwise, just replace the subplan's flat tlist with
* the desired tlist.
*/
result_plan->targetlist = sub_tlist;
}
/*
* Also, account for the cost of evaluation of the sub_tlist.
*
* Up to now, we have only been dealing with "flat" tlists,
* containing just Vars. So their evaluation cost is zero
* according to the model used by cost_qual_eval() (or if you
* prefer, the cost is factored into cpu_tuple_cost). Thus we
* can avoid accounting for tlist cost throughout
* query_planner() and subroutines. But now we've inserted a
* tlist that might contain actual operators, sub-selects, etc
* --- so we'd better account for its cost.
*
* Below this point, any tlist eval cost for added-on nodes
* should be accounted for as we create those nodes.
* Presently, of the node types we can add on, only Agg and
* Group project new tlists (the rest just copy their input
* tuples) --- so make_agg() and make_group() are responsible
* for computing the added cost.
*/
cost_qual_eval(&tlist_cost, sub_tlist);
result_plan->startup_cost += tlist_cost.startup;
result_plan->total_cost += tlist_cost.startup +
tlist_cost.per_tuple * result_plan->plan_rows;
}
else
{
/*
* Since we're using query_planner's tlist and not the one
* make_subplanTargetList calculated, we have to refigure any
* grouping-column indexes make_subplanTargetList computed.
*/
locate_grouping_columns(root, tlist, result_plan->targetlist,
groupColIdx);
}
/*
* Insert AGG or GROUP node if needed, plus an explicit sort step
* if necessary.
*
* HAVING clause, if any, becomes qual of the Agg or Group node.
*/
if (use_hashed_grouping)
{
/* Hashed aggregate plan --- no sort needed */
result_plan = (Plan *) make_agg(root,
tlist,
(List *) parse->havingQual,
AGG_HASHED,
numGroupCols,
groupColIdx,
groupOperators,
numGroups,
agg_counts.numAggs,
result_plan);
/* Hashed aggregation produces randomly-ordered results */
current_pathkeys = NIL;
}
else if (parse->hasAggs)
{
/* Plain aggregate plan --- sort if needed */
AggStrategy aggstrategy;
if (parse->groupClause)
{
if (!pathkeys_contained_in(group_pathkeys,
current_pathkeys))
{
result_plan = (Plan *)
make_sort_from_groupcols(root,
parse->groupClause,
groupColIdx,
result_plan);
current_pathkeys = group_pathkeys;
}
aggstrategy = AGG_SORTED;
/*
* The AGG node will not change the sort ordering of its
* groups, so current_pathkeys describes the result too.
*/
}
else
{
aggstrategy = AGG_PLAIN;
/* Result will be only one row anyway; no sort order */
current_pathkeys = NIL;
}
result_plan = (Plan *) make_agg(root,
tlist,
(List *) parse->havingQual,
aggstrategy,
numGroupCols,
groupColIdx,
groupOperators,
numGroups,
agg_counts.numAggs,
result_plan);
}
else if (parse->groupClause)
{
/*
* GROUP BY without aggregation, so insert a group node (plus
* the appropriate sort node, if necessary).
*
* Add an explicit sort if we couldn't make the path come out
* the way the GROUP node needs it.
*/
if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
{
result_plan = (Plan *)
make_sort_from_groupcols(root,
parse->groupClause,
groupColIdx,
result_plan);
current_pathkeys = group_pathkeys;
}
result_plan = (Plan *) make_group(root,
tlist,
(List *) parse->havingQual,
numGroupCols,
groupColIdx,
groupOperators,
dNumGroups,
result_plan);
/* The Group node won't change sort ordering */
}
else if (root->hasHavingQual)
{
/*
* No aggregates, and no GROUP BY, but we have a HAVING qual.
* This is a degenerate case in which we are supposed to emit
* either 0 or 1 row depending on whether HAVING succeeds.
* Furthermore, there cannot be any variables in either HAVING
* or the targetlist, so we actually do not need the FROM
* table at all! We can just throw away the plan-so-far and
* generate a Result node. This is a sufficiently unusual
* corner case that it's not worth contorting the structure of
* this routine to avoid having to generate the plan in the
* first place.
*/
result_plan = (Plan *) make_result(tlist,
parse->havingQual,
NULL);
}
} /* end of non-minmax-aggregate case */
} /* end of if (setOperations) */
/*
* If we were not able to make the plan come out in the right order, add
* an explicit sort step.
*/
if (parse->sortClause)
{
if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
{
result_plan = (Plan *) make_sort_from_pathkeys(root,
result_plan,
sort_pathkeys);
current_pathkeys = sort_pathkeys;
}
}
/*
* If there is a DISTINCT clause, add the UNIQUE node.
*/
if (parse->distinctClause)
{
result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
/*
* If there was grouping or aggregation, leave plan_rows as-is (ie,
* assume the result was already mostly unique). If not, use the
* number of distinct-groups calculated by query_planner.
*/
if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
result_plan->plan_rows = dNumGroups;
}
/*
* Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
*/
if (parse->limitCount || parse->limitOffset)
{
result_plan = (Plan *) make_limit(result_plan,
parse->limitOffset,
parse->limitCount,
offset_est,
count_est);
}
/*
* Deal with the RETURNING clause if any. It's convenient to pass the
* returningList through setrefs.c now rather than at top level (if we
* waited, handling inherited UPDATE/DELETE would be much harder).
*/
if (parse->returningList)
{
List *rlist;
rlist = set_returning_clause_references(parse->returningList,
result_plan,
parse->resultRelation);
parse->returningLists = list_make1(rlist);
}
/*
* Return the actual output ordering in query_pathkeys for possible use by
* an outer query level.
*/
root->query_pathkeys = current_pathkeys;
return result_plan;
}
/*
* Detect whether a plan node is a "dummy" plan created when a relation
* is deemed not to need scanning due to constraint exclusion.
*
* Currently, such dummy plans are Result nodes with constant FALSE
* filter quals.
*/
static bool
is_dummy_plan(Plan *plan)
{
if (IsA(plan, Result))
{
List *rcqual = (List *) ((Result *) plan)->resconstantqual;
if (list_length(rcqual) == 1)
{
Const *constqual = (Const *) linitial(rcqual);
if (constqual && IsA(constqual, Const))
{
if (!constqual->constisnull &&
!DatumGetBool(constqual->constvalue))
return true;
}
}
}
return false;
}
/*
* preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
*
* We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
* results back in *count_est and *offset_est. These variables are set to
* 0 if the corresponding clause is not present, and -1 if it's present
* but we couldn't estimate the value for it. (The "0" convention is OK
* for OFFSET but a little bit bogus for LIMIT: effectively we estimate
* LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's
* usual practice of never estimating less than one row.) These values will
* be passed to make_limit, which see if you change this code.
*
* The return value is the suitably adjusted tuple_fraction to use for
* planning the query. This adjustment is not overridable, since it reflects
* plan actions that grouping_planner() will certainly take, not assumptions
* about context.
*/
static double
preprocess_limit(PlannerInfo *root, double tuple_fraction,
int64 *offset_est, int64 *count_est)
{
Query *parse = root->parse;
Node *est;
double limit_fraction;
/* Should not be called unless LIMIT or OFFSET */
Assert(parse->limitCount || parse->limitOffset);
/*
* Try to obtain the clause values. We use estimate_expression_value
* primarily because it can sometimes do something useful with Params.
*/
if (parse->limitCount)
{
est = estimate_expression_value(root, parse->limitCount);
if (est && IsA(est, Const))
{
if (((Const *) est)->constisnull)
{
/* NULL indicates LIMIT ALL, ie, no limit */
*count_est = 0; /* treat as not present */
}
else
{
*count_est = DatumGetInt64(((Const *) est)->constvalue);
if (*count_est <= 0)
*count_est = 1; /* force to at least 1 */
}
}
else
*count_est = -1; /* can't estimate */
}
else
*count_est = 0; /* not present */
if (parse->limitOffset)
{
est = estimate_expression_value(root, parse->limitOffset);
if (est && IsA(est, Const))
{
if (((Const *) est)->constisnull)
{
/* Treat NULL as no offset; the executor will too */
*offset_est = 0; /* treat as not present */
}
else
{
*offset_est = DatumGetInt64(((Const *) est)->constvalue);
if (*offset_est < 0)
*offset_est = 0; /* less than 0 is same as 0 */
}
}
else
*offset_est = -1; /* can't estimate */
}
else
*offset_est = 0; /* not present */
if (*count_est != 0)
{
/*
* A LIMIT clause limits the absolute number of tuples returned.
* However, if it's not a constant LIMIT then we have to guess; for
* lack of a better idea, assume 10% of the plan's result is wanted.
*/
if (*count_est < 0 || *offset_est < 0)
{
/* LIMIT or OFFSET is an expression ... punt ... */
limit_fraction = 0.10;
}
else
{
/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
limit_fraction = (double) *count_est + (double) *offset_est;
}
/*
* If we have absolute limits from both caller and LIMIT, use the
* smaller value; likewise if they are both fractional. If one is
* fractional and the other absolute, we can't easily determine which
* is smaller, but we use the heuristic that the absolute will usually
* be smaller.
*/
if (tuple_fraction >= 1.0)
{
if (limit_fraction >= 1.0)
{
/* both absolute */
tuple_fraction = Min(tuple_fraction, limit_fraction);
}
else
{
/* caller absolute, limit fractional; use caller's value */
}
}
else if (tuple_fraction > 0.0)
{
if (limit_fraction >= 1.0)
{
/* caller fractional, limit absolute; use limit */
tuple_fraction = limit_fraction;
}
else
{
/* both fractional */
tuple_fraction = Min(tuple_fraction, limit_fraction);
}
}
else
{
/* no info from caller, just use limit */
tuple_fraction = limit_fraction;
}
}
else if (*offset_est != 0 && tuple_fraction > 0.0)
{
/*
* We have an OFFSET but no LIMIT. This acts entirely differently
* from the LIMIT case: here, we need to increase rather than decrease
* the caller's tuple_fraction, because the OFFSET acts to cause more
* tuples to be fetched instead of fewer. This only matters if we got
* a tuple_fraction > 0, however.
*
* As above, use 10% if OFFSET is present but unestimatable.
*/
if (*offset_est < 0)
limit_fraction = 0.10;
else
limit_fraction = (double) *offset_est;
/*
* If we have absolute counts from both caller and OFFSET, add them
* together; likewise if they are both fractional. If one is
* fractional and the other absolute, we want to take the larger, and
* we heuristically assume that's the fractional one.
*/
if (tuple_fraction >= 1.0)
{
if (limit_fraction >= 1.0)
{
/* both absolute, so add them together */
tuple_fraction += limit_fraction;
}
else
{
/* caller absolute, limit fractional; use limit */
tuple_fraction = limit_fraction;
}
}
else
{
if (limit_fraction >= 1.0)
{
/* caller fractional, limit absolute; use caller's value */
}
else
{
/* both fractional, so add them together */
tuple_fraction += limit_fraction;
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0; /* assume fetch all */
}
}
}
return tuple_fraction;
}
/*
* extract_grouping_ops - make an array of the equality operator OIDs
* for the GROUP BY clause
*/
static Oid *
extract_grouping_ops(List *groupClause)
{
int numCols = list_length(groupClause);
int colno = 0;
Oid *groupOperators;
ListCell *glitem;
groupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(glitem, groupClause)
{
GroupClause *groupcl = (GroupClause *) lfirst(glitem);
groupOperators[colno] = get_equality_op_for_ordering_op(groupcl->sortop);
if (!OidIsValid(groupOperators[colno])) /* shouldn't happen */
elog(ERROR, "could not find equality operator for ordering operator %u",
groupcl->sortop);
colno++;
}
return groupOperators;
}
/*
* choose_hashed_grouping - should we use hashed grouping?
*/
static bool
choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
Path *cheapest_path, Path *sorted_path,
Oid *groupOperators, double dNumGroups,
AggClauseCounts *agg_counts)
{
int numGroupCols = list_length(root->parse->groupClause);
double cheapest_path_rows;
int cheapest_path_width;
Size hashentrysize;
List *current_pathkeys;
Path hashed_p;
Path sorted_p;
int i;
/*
* Check can't-do-it conditions, including whether the grouping operators
* are hashjoinable. (We assume hashing is OK if they are marked
* oprcanhash. If there isn't actually a supporting hash function,
* the executor will complain at runtime.)
*
* Executor doesn't support hashed aggregation with DISTINCT aggregates.
* (Doing so would imply storing *all* the input values in the hash table,
* which seems like a certain loser.)
*/
if (!enable_hashagg)
return false;
if (agg_counts->numDistinctAggs != 0)
return false;
for (i = 0; i < numGroupCols; i++)
{
if (!op_hashjoinable(groupOperators[i]))
return false;
}
/*
* Don't do it if it doesn't look like the hashtable will fit into
* work_mem.
*
* Beware here of the possibility that cheapest_path->parent is NULL. This
* could happen if user does something silly like SELECT 'foo' GROUP BY 1;
*/
if (cheapest_path->parent)
{
cheapest_path_rows = cheapest_path->parent->rows;
cheapest_path_width = cheapest_path->parent->width;
}
else
{
cheapest_path_rows = 1; /* assume non-set result */
cheapest_path_width = 100; /* arbitrary */
}
/* Estimate per-hash-entry space at tuple width... */
hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
/* plus space for pass-by-ref transition values... */
hashentrysize += agg_counts->transitionSpace;
/* plus the per-hash-entry overhead */
hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
if (hashentrysize * dNumGroups > work_mem * 1024L)
return false;
/*
* See if the estimated cost is no more than doing it the other way. While
* avoiding the need for sorted input is usually a win, the fact that the
* output won't be sorted may be a loss; so we need to do an actual cost
* comparison.
*
* We need to consider cheapest_path + hashagg [+ final sort] versus
* either cheapest_path [+ sort] + group or agg [+ final sort] or
* presorted_path + group or agg [+ final sort] where brackets indicate a
* step that may not be needed. We assume query_planner() will have
* returned a presorted path only if it's a winner compared to
* cheapest_path for this purpose.
*
* These path variables are dummies that just hold cost fields; we don't
* make actual Paths for these steps.
*/
cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
numGroupCols, dNumGroups,
cheapest_path->startup_cost, cheapest_path->total_cost,
cheapest_path_rows);
/* Result of hashed agg is always unsorted */
if (root->sort_pathkeys)
cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
dNumGroups, cheapest_path_width);
if (sorted_path)
{
sorted_p.startup_cost = sorted_path->startup_cost;
sorted_p.total_cost = sorted_path->total_cost;
current_pathkeys = sorted_path->pathkeys;
}
else
{
sorted_p.startup_cost = cheapest_path->startup_cost;
sorted_p.total_cost = cheapest_path->total_cost;
current_pathkeys = cheapest_path->pathkeys;
}
if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
{
cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
cheapest_path_rows, cheapest_path_width);
current_pathkeys = root->group_pathkeys;
}
if (root->parse->hasAggs)
cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
numGroupCols, dNumGroups,
sorted_p.startup_cost, sorted_p.total_cost,
cheapest_path_rows);
else
cost_group(&sorted_p, root, numGroupCols, dNumGroups,
sorted_p.startup_cost, sorted_p.total_cost,
cheapest_path_rows);
/* The Agg or Group node will preserve ordering */
if (root->sort_pathkeys &&
!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
dNumGroups, cheapest_path_width);
/*
* Now make the decision using the top-level tuple fraction. First we
* have to convert an absolute count (LIMIT) into fractional form.
*/
if (tuple_fraction >= 1.0)
tuple_fraction /= dNumGroups;
if (compare_fractional_path_costs(&hashed_p, &sorted_p,
tuple_fraction) < 0)
{
/* Hashed is cheaper, so use it */
return true;
}
return false;
}
/*---------------
* make_subplanTargetList
* Generate appropriate target list when grouping is required.
*
* When grouping_planner inserts Aggregate, Group, or Result plan nodes
* above the result of query_planner, we typically want to pass a different
* target list to query_planner than the outer plan nodes should have.
* This routine generates the correct target list for the subplan.
*
* The initial target list passed from the parser already contains entries
* for all ORDER BY and GROUP BY expressions, but it will not have entries
* for variables used only in HAVING clauses; so we need to add those
* variables to the subplan target list. Also, we flatten all expressions
* except GROUP BY items into their component variables; the other expressions
* will be computed by the inserted nodes rather than by the subplan.
* For example, given a query like
* SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
* we want to pass this targetlist to the subplan:
* a,b,c,d,a+b
* where the a+b target will be used by the Sort/Group steps, and the
* other targets will be used for computing the final results. (In the
* above example we could theoretically suppress the a and b targets and
* pass down only c,d,a+b, but it's not really worth the trouble to
* eliminate simple var references from the subplan. We will avoid doing
* the extra computation to recompute a+b at the outer level; see
* replace_vars_with_subplan_refs() in setrefs.c.)
*
* If we are grouping or aggregating, *and* there are no non-Var grouping
* expressions, then the returned tlist is effectively dummy; we do not
* need to force it to be evaluated, because all the Vars it contains
* should be present in the output of query_planner anyway.
*
* 'tlist' is the query's target list.
* 'groupColIdx' receives an array of column numbers for the GROUP BY
* expressions (if there are any) in the subplan's target list.
* 'need_tlist_eval' is set true if we really need to evaluate the
* result tlist.
*
* The result is the targetlist to be passed to the subplan.
*---------------
*/
static List *
make_subplanTargetList(PlannerInfo *root,
List *tlist,
AttrNumber **groupColIdx,
bool *need_tlist_eval)
{
Query *parse = root->parse;
List *sub_tlist;
List *extravars;
int numCols;
*groupColIdx = NULL;
/*
* If we're not grouping or aggregating, there's nothing to do here;
* query_planner should receive the unmodified target list.
*/
if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
{
*need_tlist_eval = true;
return tlist;
}
/*
* Otherwise, start with a "flattened" tlist (having just the vars
* mentioned in the targetlist and HAVING qual --- but not upper- level
* Vars; they will be replaced by Params later on).
*/
sub_tlist = flatten_tlist(tlist);
extravars = pull_var_clause(parse->havingQual, false);
sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
list_free(extravars);
*need_tlist_eval = false; /* only eval if not flat tlist */
/*
* If grouping, create sub_tlist entries for all GROUP BY expressions
* (GROUP BY items that are simple Vars should be in the list already),
* and make an array showing where the group columns are in the sub_tlist.
*/
numCols = list_length(parse->groupClause);
if (numCols > 0)
{
int keyno = 0;
AttrNumber *grpColIdx;
ListCell *gl;
grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
*groupColIdx = grpColIdx;
foreach(gl, parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
Node *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
TargetEntry *te = NULL;
ListCell *sl;
/* Find or make a matching sub_tlist entry */
foreach(sl, sub_tlist)
{
te = (TargetEntry *) lfirst(sl);
if (equal(groupexpr, te->expr))
break;
}
if (!sl)
{
te = makeTargetEntry((Expr *) groupexpr,
list_length(sub_tlist) + 1,
NULL,
false);
sub_tlist = lappend(sub_tlist, te);
*need_tlist_eval = true; /* it's not flat anymore */
}
/* and save its resno */
grpColIdx[keyno++] = te->resno;
}
}
return sub_tlist;
}
/*
* locate_grouping_columns
* Locate grouping columns in the tlist chosen by query_planner.
*
* This is only needed if we don't use the sub_tlist chosen by
* make_subplanTargetList. We have to forget the column indexes found
* by that routine and re-locate the grouping vars in the real sub_tlist.
*/
static void
locate_grouping_columns(PlannerInfo *root,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx)
{
int keyno = 0;
ListCell *gl;
/*
* No work unless grouping.
*/
if (!root->parse->groupClause)
{
Assert(groupColIdx == NULL);
return;
}
Assert(groupColIdx != NULL);
foreach(gl, root->parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
Node *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
TargetEntry *te = NULL;
ListCell *sl;
foreach(sl, sub_tlist)
{
te = (TargetEntry *) lfirst(sl);
if (equal(groupexpr, te->expr))
break;
}
if (!sl)
elog(ERROR, "failed to locate grouping columns");
groupColIdx[keyno++] = te->resno;
}
}
/*
* postprocess_setop_tlist
* Fix up targetlist returned by plan_set_operations().
*
* We need to transpose sort key info from the orig_tlist into new_tlist.
* NOTE: this would not be good enough if we supported resjunk sort keys
* for results of set operations --- then, we'd need to project a whole
* new tlist to evaluate the resjunk columns. For now, just ereport if we
* find any resjunk columns in orig_tlist.
*/
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
ListCell *l;
ListCell *orig_tlist_item = list_head(orig_tlist);
foreach(l, new_tlist)
{
TargetEntry *new_tle = (TargetEntry *) lfirst(l);
TargetEntry *orig_tle;
/* ignore resjunk columns in setop result */
if (new_tle->resjunk)
continue;
Assert(orig_tlist_item != NULL);
orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
orig_tlist_item = lnext(orig_tlist_item);
if (orig_tle->resjunk) /* should not happen */
elog(ERROR, "resjunk output columns are not implemented");
Assert(new_tle->resno == orig_tle->resno);
new_tle->ressortgroupref = orig_tle->ressortgroupref;
}
if (orig_tlist_item != NULL)
elog(ERROR, "resjunk output columns are not implemented");
return new_tlist;
}